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The 27 kDa Trypanosoma brucei 
Pentatricopeptide Repeat Protein 
is a G-tract Specific RNA Binding 
Protein
Pakoyo F. Kamba1,2,4, David A. Dickson1,5, Neil A. White1,6, Jennifer L. Ekstrom1,7, 
Donna J. Koslowsky2,3 & Charles G. Hoogstraten   1

Pentatricopeptide repeat (PPR) proteins, a helical repeat family of organellar RNA binding proteins, 
play essential roles in post-transcriptional RNA processing. In Trypanosoma brucei, an expanded family 
of PPR proteins localize to the parasite’s single mitochondrion, where they are believed to perform 
important roles in both RNA processing and translation. We studied the RNA binding specificity of 
the simplest T. brucei PPR protein (KRIPP11) using electrophoretic mobility shift assays, fluorescence 
anisotropy, circular dichroism spectroscopy, and in vitro selection. We found KRIPP11 to be an RNA 
binding protein with specificity for sequences of four or more consecutive guanosine residues (G-tracts). 
Such G-tracts are dramatically enriched in T. brucei mitochondrial transcripts that are destined for 
extensive uridine insertion/deletion editing but are not present in mRNAs following editing. We further 
found that the quadruplex oligoguanosine RNA conformation is preferentially recognized by KRIPP11 
over other conformational forms, and is bound without disruption of the quadruplex structure. In 
combination with prior data demonstrating association of KRIPP11 with the small ribosomal subunit, 
these results suggest possible roles for KRIPP11 in bridging mRNA maturation and translation or in 
facilitating translation of unusual dual-coded open reading frames.

Trypanosomes, including the causative agent of human African trypanosomiasis (HAT) Trypanosoma brucei, 
are characterized by a single, large mitochondrion (kinetoplast) containing a disc-shaped DNA genome, itself 
made from a concatenated network of large DNA maxicircles and small DNA minicircles1,2. This unusual mito-
chondrion is central to the life cycle and pathogenesis of kinetoplastid parasites. In T. brucei, modulation of 
mitochondrial activity facilitates parasite adaptation from the sugar-deficient tsetse fly gut, where it depends on 
oxidative phosphorylation, to the sugar-rich environment in human blood, where it depends on glycolysis for 
energy3,4. In these parasites, both nuclear and mitochondrial genes are polycistronic and most regulation of gene 
expression occurs at the RNA level5–9. Strikingly, 12 of the 18 protein coding genes in trypanosome mitochondrial 
DNA are composed of incomplete open reading frames (ORFs) which are post-transcriptionally converted into 
translatable mRNAs by a process of systematic uridine insertion and/or deletion called RNA editing10. In fact, 
the primary (pre-edited) transcripts of nine of the T. brucei mitochondrial mRNA genes undergo such massive 
editing (pan-editing) that approximately 50% of the sequence of mature mRNA consists of externally inserted 
uridines10,11. RNA editing by nucleotide insertion and deletion is unique to trypanosomes12, and thus serves as a 
potential target for pharmacological intervention.

RNA editing and other post-transcriptional RNA processing events in trypanosome mitochondria are 
executed by a variety of RNA binding proteins whose roles and mechanisms of action are only now being 
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characterized10,13–17. Deciphering the RNA binding characteristics of these important proteins is therefore critical 
to our understanding of the relationship between specific RNA targeting and biological function. Among tryp-
anosome mitochondrial RNA binding proteins, the pentatricopeptide repeat (PPR) family of sequence-specific 
RNA binding proteins has proven to be particularly important. First discovered in Arabidopsis thaliana in 2000, 
PPR proteins are characterized by tandem repeats of 35 amino acids, with each motif folding into a pair of antipar-
allel alpha-helices similar to the peptide-binding tetratricopeptide (34 amino acid) repeat (TPR) motif18,19. Over 
the last decade, these proteins have been linked to a wide variety of stages of post-transcriptional RNA processing 
in chloroplasts and plant mitochondria20–24. Typically, plant genomes code for hundreds of PPR proteins whereas 
non-plant eukaryotes contain fewer than ten25. An exception is found in trypanosomes, where approximately 40 
PPR proteins have been reported in T. brucei14,26,27. These proteins vary dramatically both in the number of PPR 
repeats and in the presence and nature of accessory non-PPR domains. PPR proteins are highly conserved across 
trypanosomatids and RNAi knockdowns cause parasite growth retardation, growth arrest, and death, consistent 
with functional essentiality16,26–28. Underlying the severe phenotypes is deterioration in oxidative phosphoryla-
tion and thus in mitochondrial function16,26–29.

Proteomic and genetic analyses have provided some insights into the functions of T. brucei PPR proteins. 
Most T. brucei PPR proteins co-purify with polyadenylation complexes and/or mitochondrial ribosomal subu-
nits, suggesting a role in their respective functions29–32. For PPR proteins in which the effect of RNAi on mRNA 
processing has been reported, namely, KPAF1, KRIPP1 and KRIPP8, compromised poly(A/U) synthesis and 
translation of mitochondrial mRNA has been observed29,32. However, knockdown of different PPR proteins often 
affects specific post-transcriptional processes and specific gene transcripts26–29,32, suggesting their cognate RNA 
sequences are unique.

Identifying the specific RNA ligands for PPR proteins is crucial to elucidating their mechanism(s) of RNA 
binding. Unfortunately, poor protein solubility and difficulty in heterologous expression25,33 have limited such 
studies to a restricted subset of plant PPR proteins. These studies have shown that PPR proteins exhibit high 
sequence specificity in RNA recognition. For example, maize PPR10 protects and defines both the 5′ and 3′ ter-
mini of transcripts from two different loci (atpH and psaJ) by binding to a highly conserved RNA motif located in 
the intergenic regions downstream of each gene34,35. Another PPR protein, CRR4 from Arabidopsis thaliana, spec-
ifies the site of RNA editing in the chloroplast ndhD gene by recognizing a specific motif surrounding the editing 
site24,36. In maize, PPR103 protects the 5′-terminus of processed rpl16 transcripts from exonucleolytic degrada-
tion37. Numerous examples of this type have led to a general picture of plant PPR proteins as sequence-specific 
effectors and modulators of specialized organellar RNA metabolism23,38.

For the plant PPR proteins whose specific RNA ligands are known, progress has been made in elucidating 
their RNA binding mechanisms via biochemical studies with truncated PPR proteins, computational modeling, 
and x-ray crystallography. Biochemical studies have shown retention of RNA binding in severely truncated pro-
teins, suggesting that the RNA binding activity resides in the PPR modules. Computational studies by phyloge-
netic analysis of residue conservation across numerous PPR motifs39 and iterative alignment of residues at each 
position in the PPR motif with bases in the cognate RNA footprint have suggested a common code of RNA bind-
ing in which each PPR repeat recognizes a single nucleotide via RNA contacts from amino acids at positions 1, 3 
and 640–42. Experimental studies using engineered PPR proteins have provided strong support for this mechanism 
of single-stranded RNA recognition43. Crystal structures of two plant-derived PPR proteins in complex with 
RNA targets (maize PPR10 and Arabidopsis thaliana THA8) confirmed the recognition of individual nucleotides 
of single-stranded RNA by individual PPR repeats and elucidated the basis for many aspects of the emerging 
recognition code44–46. These correspondences have been more finely mapped by a set of four crystal structures of 
designed PPR proteins (dPPRs) in complex with their predicted RNA targets47.

In contrast to plants, the specific RNA sequences recognized by individual T. brucei PPR proteins have hardly 
been elucidated, hindering progress in their mechanistic studies and subsequent biotechnological applications. 
Trypanosomal PPR proteins vary greatly in the number of PPR repeats and in the number and nature of accessory 
domains. In the initial work reported here, we focused on the 27 kDa T. brucei PPR protein KRIPP11 (TriTrypDB 
Tb927.8.6040; genbank XM_842341; previously PPR27), which is one of the smallest and simplest members 
of the protein family. The four PPR repeats originally identified in this protein26, together with two additional 
35-residue regions predicted to carry strong helical content, yield a probable total of six tandem PPR repeats 
in 239 amino acids and no identifiable accessory domains (Fig. 1A). Though KRIPP11 was initially thought to 
be a cytoplasmic protein due to negative mitochondrial targeting by classical computational tools27, contempo-
rary computational tools support mitochondrial localization (Supplementary Material, Table S1). Mitochondrial 
localization is experimentally supported by a strong kinetoplast signal in imaging data from the TrypTag data-
base48 and by the demonstration of stable RNA-independent association with mitochondrial small subunit ribo-
somal complexes31,32. In this work, we use an integrated approach of biophysical probing of RNA affinity using 
electrophoretic shift mobility assay (EMSA) and equilibrium fluorescence anisotropy and in vitro selection of 
protein ligands to derive significant insight into the binding specificity and function of this protein. We find that 
KRIPP11 shows a strong preference for sequences containing G-tracts of four to six residues or more, such as 
are extensively found in the subset of kinetoplastid pre-mRNAs destined to undergo extensive uridine insertion/
deletion editing. Preliminary in vitro evidence suggests targeting of G-tracts in quadruplex RNA form.

Results
Heterologous expression of soluble, monomeric KRIPP11.  KRIPP11 was expressed as a fusion pro-
tein with maltose binding protein (MBP) to promote yield and solubility. Using the constructs in Fig. 1B,C, we 
obtained a mean soluble yield of 5.0 mg per liter of culture for the MBP-KRIPP11 fusion protein. After tan-
dem affinity chromatography using sequential Ni-NTA and amylose resins, fusion protein of over 90% purity 
was obtained (Fig. 1D,E). Following removal of the MBP tag with TEV protease, the oligomeric state of mature 
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KRIPP11 was verified using native PAGE. The mature KRIPP11 migrated slightly faster than the 27 kDa TEV 
protease, consistent with a monomeric state of this 24.4 kDa protein in the cleavage mixture (Fig. 1F). Since the 
cleaved KRIPP11 was found to be vulnerable to aggregation and precipitation upon purification, uncleaved MBP-
KRIPP11-His6 fusion protein was used for the binding assays and selections. Separately expressed MBP-His6 
(Fig. 1C) was used as a control to rule out MBP as the source of observed nucleic-acid binding.

Binding specificity of KRIPP11 for single-stranded poly(G) RNA.  Preliminary insights into the 
sequence- and chemical specificity of KRIPP11’s nucleic acid ligand were obtained by assessing the protein’s affin-
ity for homooligomeric and simple heterooligomeric RNAs and DNA. Among 12-nucleotide homooligomers, 
EMSA showed an upward shift in the mobility of 12-nucleotide ssRNA for only poly(G) for protein concentra-
tions up to 12 μM (Fig. 2A–D).

We further explored the binding specificity of KRIPP11 for single- versus double-stranded RNA as well as ver-
sus the identical DNA sequence. Annealing of G12- with an excess of C12-RNA to form double-stranded (G.C)12 
abolishes the KRIPP11-induced upward shift in poly(G) mobility (Fig. 2E). By contrast, an interaction with G12 
ssDNA is observed, although only at higher concentrations of protein, indicating a reduced binding affinity 
(Fig. 2F). Finally, we tested the affinity of KRIPP11 for shorter G homooligomers as well as representative G-rich 
heterooligomers and a (GGU)4 sequence suggested by the in vitro selection results (see below). Of the sequences 
tested, intense shifted bands on increasing KRIPP11 concentration only appeared with the G9 homooligomer 
(Fig. 3). EMSA experiments testing G12, G9, and G6 against MBP-His6 showed no evidence of binding, confirming 
that the observed high-affinity binding is to the KRIPP11 moiety rather than to the MBP or His6 fusion partners 
(“MBP” lanes in Figs 2 and 3). The EMSA results thus emphasize that, among the variety of sequences examined, 
stable KRIPP11-RNA complexes are only observed for longer poly(G) sequences.

For quantitative determination of equilibrium binding constants Kd, we applied a fluorescence anisotropy 
binding assay. In this technique, the reorientation of a fluorophore bound to the nucleic acid oligomer is slowed 
upon protein complex formation due to slower global tumbling, leading to a greater retention of polarization in 
fluorescence emission upon excitation with a polarized source. Examination of titrations for the 12-mer homoo-
ligomers showed a substantial, saturatable shift in anisotropy only for G12 (Fig. 2G), consistent with the EMSA 
results (Fig. 2A–D). Upon fitting to a single-site isotherm (Equation 2, Methods), a Kd of (0.66 ± 0.13) µM was 
obtained for G12, increasing to (1.88 ± 0.13) μM for the corresponding deoxy sequence (Fig. 4). The binding curve 
saturated and fit well to the standard isotherm, consistent with a specific interaction. Two independent measures 
of binding thus confirm the specificity of KRIPP11 for poly(G) among the homooligomers.

By contrast, poly(G) sequences as short as G4 and a subset of the heteropolymers tested displayed saturable, 
specific interactions via fluorescence anisotropy assays, albeit in all cases with reduced affinity compared to G12, 
despite the lack of complex formation in EMSA (Supplementary Material, Fig. S1). Dissociation constants for 
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Figure 1.  (A) Organization of PPR motifs in KRIPP11. (B) Scheme of the overexpression construct for the 
MBP-KRIPP11 fusion protein emphasizing the His6 tag at the C-terminus of KRIPP11. TEV protease cleavage 
site, which leaves two additional residues (GS) at the N-terminus of KRIPP11, is indicated. (C) Overexpression 
construct for free MBP with a His6 tag at the C-terminus. (D) SDS-PAGE for MBP-KRIPP11-His6 fractions 
from the Ni-NTA column. Supt., supernatant; m, PageRuler™ size marker; IB, inclusion bodies; FT, flow 
through; three lanes of wash and three of eluate. (E) SDS-PAGE of MBP-KRIPP11-His6 fractions from the 
amylose column. FT, two lanes flow through; m, marker; four lanes of wash and four of eluate. (F) 6–12% 
gradient native polyacrylamide gel showing the monomeric state of KRIPP11. TEV cleavage mixture is shown 
in the absence and presence of DDM detergent (see text). For this and subsequent figures, uncropped originals 
of all gel images are available as Supplementary Information (Fig. S2).



www.nature.com/scientificreports/

4SCiEntifiC Reports |         (2018) 8:16989  | DOI:10.1038/s41598-018-34377-9

measured sequences are collected in Table 1. Affinity tracked roughly with the longest stretch of consecutive 
G residues; for example, (GGU)4 displayed the weakest affinity of the sequences analyzed despite having a rel-
atively high number (eight) of total G residues. The contrast between anisotropy data and EMSA results may 
be explained by the nature of EMSA as a non-equilibrium assay, which makes it poorly suited to the detection 
of interactions with a fast ligand dissociation rate. On the other hand, FA is an equilibrium assay with greater 
dynamic range of analysis for binding affinity than EMSA49. The quantitative results in Table 1 reiterate the nature 
of KRIPP11 as a nucleic acid binding protein with specificity for nonduplex G-tract RNA sequences.

In vitro selection of KRIPP11 binding sequences.  To delineate the binding specificity of KRIPP11 in a 
more unbiased fashion, we applied the technology of in vitro selection to isolate RNA sequences with high affin-
ity to the protein from a pool of over 1018 RNA sequences randomized at 20 continuous positions. In vitro selec-
tion of aptamer sequences from fully randomized pools such as this provides an unbiased view of consensus RNA 
binding preferences for proteins and other molecules50,51. During 11 rounds of in vitro selection, the RNA pool 
was progressively enriched with KRIPP11-binding activity as measured by the partitioning of fluorescent RNA 
into the protein-bound pool (Fig. 5A). Sequencing of 100 clones from the final selection round revealed a bound 
pool enriched in poly(G) (4 to 8 consecutive G nucleotides) and to a lesser extent poly(U) (4 to 5 consecutive U 
nucleotides) sequences (Table S2). Little specificity for specific sequences was obtained, as reflected in the rela-
tively low-information consensus binding sequence produced by standard algorithms (Fig. 5B). Assay of bind-
ing to a repeating GGU sequence suggested by the apparent consensus sequence yielded weaker binding than a 
simple G homooligomer (Table 1). This lack of validation tends to argue against the functional significance of the 
U-containing motif, although effects arising from the somewhat different buffer conditions in use for the two proce-
dures may also account for the discrepancy (see Methods; briefly, fluorescence polarization assays were conducted in 
20 mM Tris-HCl pH 7.5, 0.15 M KCl, 5 mM MgCl2, 1 mM DTT, whereas the binding buffer for selection experiments 
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Figure 2.  Analysis of KRIPP11 binding. (Panels A–D) EMSA analysis on 2% tris-glycine agarose gels 
showing retardation of G12 and not the other RNA homooligomers (A12, U12, and C12) as a function of protein 
concentration; (E) (G.C)12; (F) dG12. A reaction with MBP-His6 was used as a negative control for EMSA 
experiments. (G) Fluorescence anisotropy binding isotherms for KRIPP11 against ssRNA homooligomers.
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was 50 mM phosphate pH 7.5, 0.1 M KCl, 1.5 mM MgCl2, 2 mM imidazole). Taken together with the homopolymer 
binding data above, the selection results establish KRIPP11 as a G-tract specific RNA binding protein.

Potential functional role of a G-tract binding protein in T. brucei.  To investigate the potential bio-
logical significance of these results, we examined the T. brucei mitochondrial genome for open reading frames 
coding for G-rich pre-mRNAs. Interestingly, a strong pattern of preferential enrichment of G-tracts in some 
transcripts was observed, particularly with respect to the U-insertion/deletion editing state of the transcripts. 
Specifically, we divided pre-edited transcripts into nine that undergo extensive editing, with more than 50% of 
the final sequence consisting of inserted uridines (“pan-edited” henceforth); three that undergo editing events 
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(open circles) from fluorescence anisotropy data. Curves represent fits to a single-site binding isotherm 
(Equation 2).

RNA Kd (µM)

G12 0.66 ± 0.13

G9 1.87 ± 0.03

G6 1.07 ± 0.01

G6C2U2A2 0.93 ± 0.01

G4 3.42 ± 0.19

G4C2U3A3 2.21 ± 0.03

(GGU)4 6.55 ± 0.10

Table 1.  Affinity of KRIPP11 for RNA G-tracts of varying sequence determined using fluorescence anisotropy.
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to a much less dramatic extent and exclusively to the 5′ end (Cyb and Murf II) or correction of an internal 
frameshift (COII) (“limited” editing); and the six mitochondrial transcripts that undergo no insertion/deletion 
editing (“never-edited”). The final versions of the twelve pan- and limited-editing transcripts after all editing 
events are complete are denoted “post-editing”. Of these four classes, as well as mitochondrial rRNA transcripts, 
the pan-edited transcripts were specifically and dramatically enriched in G-tracts of at least four consecutive 
guanosines. Indeed, all but one of the pan-edited transcripts contained at least one, and usually several, G-tracts 
of six or more consecutive guanosines, a pattern with zero occurrences in the other transcript classes (Fig. 6; 
Supplementary Material, Tables S3–S7). Further, all of the more than 60 G-tracts identified in pan-edited tran-
scripts are destroyed by the U-insertion/deletion editing, and no new ones are created (cf. Tables S3 and S5); 
in an interesting contrast, the two four-nucleotide G-tracts present in transcripts destined for limited edit-
ing survive the editing process intact (cf. Tables S4 and S5). We also searched available libraries of insect- and 
bloodstream-form gRNA sequences from high-throughput sequencing52,53; an overall average of 0.22% of guide 
RNAs contained a G-tract of four or more nucleotides. Given that G-tracts of four to six or more consecutive 
nucleotides are necessary for stable KRIPP11 binding, the conclusion is that only pan-edited transcripts are likely 
to be bound by KRIPP11 in vivo, and only prior to the completion of the editing process.

Preference of KRIPP11 for putative G-quadruplex forming sequences.  RNA sequences contain-
ing contiguous runs of guanosine residues can, under appropriate conditions, form intra- and intermolecular 
G-quadruplex structures54–56. Thus, two interesting questions for a G-tract specific binding protein such as 
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KRIPP11 are whether it will selectively bind RNA in quadruplex form in solution and, if so, whether that struc-
ture is maintained in the protein-bound form. Since the formation of intermolecular G-quadruplexes by short 
G-rich oligos is likely to be dependent on the thermal history of the sample, we compared the binding of KRIPP11 
to RNA homo-oligomers prepared under thermally denaturing and native conditions (see Methods). When RNA 
previously thermally denatured at 95 °C followed by snap cooling on ice was used in binding assays, the increase 
in anisotropy with KRIPP11 concentration was greatly diminished relative to native RNA and the binding iso-
therm did not saturate, consistent with weakened or less-specific binding (Fig. 7A). To assign the structural dif-
ferences between denatured/renatured and natively-prepared RNA samples, we applied circular dichroism (CD) 
spectroscopy and native gel analysis. The CD spectra of native G12 and G4 ssRNA displayed minima at 245 nm and 
maxima at 265 nm (Fig. 8), consistent with a parallel G-quadruplex conformation55,57. On native PAGE, native 
G12 not only migrated as a ladder-like smear of various RNA sizes larger than that of A12 RNA, most of the RNA 
was also retained in the well (Fig. 7B), consistent with a multimeric state for these species. Following Tluckova 
and coworkers58, we speculate that that the slowest migrating native G12 RNA forms and those retained in the 
well are tetrameric quadruplexes and their aggregates, respectively. A denaturing gel of the G-tracts revealed the 
resistance of some quadruplexes to denaturation (Fig. 7C).

Interestingly, the intensity of native G12 bands on nondenaturing gels was severely diminished in the pres-
ence of monovalent ions compared to that of thermally treated RNA. Monovalent and divalent ions stabilize 
quadruplex structure59,60, and it is possible that they drive the G-tract RNA to a state in which the fluorescein 
stacks against the guanosine, thereby reducing its quantum yield. Thermally treated but slowly cooled G12 RNA 
migrates as a single elongated band at the speed of the fastest migrating band of native RNA (Fig. 7B). It is likely 
that the elongated band results from overlapping dimeric quadruplexes and monomeric RNA58, of which the 
former severely bleaches fluorescein in the presence of metal ions. In contrast, when thermally treated RNA is 
rapidly cooled in the absence of metal ions, up to 20% of G12 migrated at a size most likely to be a trimer while 
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the rest migrated as monomers. In the presence of either K+ or Li+ ions under rapid cooling, however, this larger 
(trimer-like) band of G12 RNA diminished, likely due to transformation into more stable dimeric quadruplexes 
with concomitant quenching of fluorescein, similar to the non-thermally exposed RNA.

In short, KRIPP11 binds RNA with high affinity according to fluorescence polarization assays only if that RNA 
has a thermal history, specifically preparation under native conditions, that shows CD spectra and native-gel 
behavior consistent with a significant degree of G-quadruplex formation, suggesting that KRIPP11 binding is 
specific to quadruplex structures.

KRIPP11 binding does not disrupt G-quadruplex structure.  Some proteins are known to remodel 
nucleic acid quadruplex structures upon binding61–63. To examine the state of KRIPP11-bound RNA, we applied 
fluorescence resonance energy transfer (FRET) analysis. We prepared a mixture of G12 RNA oligomers contain-
ing either a 5′-fluorescein (FLUO) or 3′-TAMRA fluorescent label. A strong FRET affect will be observed only 
if an intermolecular interaction such as G-quadruplex formation brings the fluorescein donor and TAMRA 
acceptor within the Förster radius (approximately 55 Å for this donor-acceptor pair), allowing efficient non-
radiative donor-acceptor energy transfer. If KRIPP11 were to unfold the RNA quadruplexes, therefore, any 
FRET signal arising from the intermolecular quadruplex would reduce with KRIPP11 concentration. Here, we 
found that when annealed to 5′-FLUO-G12, the intensity of G12-TAM-3′ emission increases at least 3-fold rela-
tive to G12-TAMRA-3′ alone (Fig. 9A–C) following excitation at 490 nm. When the sum of the spectra of free 
5′-FLUO-G12 and free G12-TAM-3′ was deducted from the spectrum of annealed 5′-FLUO-G12/G12-TAMRA-3′, 
a net positive TAMRA emission signal (peak intensity of about 8,000 counts/s) and no FLUO emission signal was 
observed, consistent with a FRET effect. Since the fluorescence donors and acceptors reside on different RNA 
chains, FRET arises unambiguously from the formation of intermolecular interactions, presumably in the form 
of G-quadruplex structures (cf. Figure 6). Specifically, the FRET signal arises solely from the subset of complexes 
containing both 5′-FLUO-G12 and G12-TAMRA-3′; complexes containing only multiple copies of a single species 
do not contribute to the observed transfer. The TAMRA emission intensity from FRET was only 5% of the emis-
sion intensity of free 5′-FLUO-G12, implying that there was low efficiency of resonance energy transfer. However, 
the low FRET signal was not unexpected as G-tracts without intervening heterogeneous nucleotides (A, U, and C) 
are very stable with melting points above 95 °C60,64. Thus, only a relatively small fraction of the RNA is unfolded 
and available to anneal to new partners.

The hypothesis that protein binding disrupts intermolecular quadruplex formation predicts that the magnitude 
of FRET would decrease upon protein-RNA complex formation. Upon titration with KRIPP11, however, the flu-
orescence emission of G12-TAM-3′ in the 5′-FLUO-G12/G12-TAMRA-3′ FRET combination (i.e., the FRET signal) 
not only was not reduced but indeed increased (Fig. 9C). Besides structural remodeling, a change in fluorescence 
emission intensity of a ligand-conjugated fluorophore upon protein binding can also occur if the interaction alters 
the microenvironment around the fluorophore, which is very possible if the protein binds proximal to the fluoro-
phore65,66. Given the small size of the oligos used in the KRIPP11 binding assay, the increase in G12-TAMRA-3′ 

-1

-0.5

0

0.5

1

1.5

2

220 240 260 280 300 320

El
lip

�c
ity

 (m
de

g)
Wavelength (nm)

H2O

RBB1

-1.3

-0.8

-0.3

0.2

0.7

1.2

220 240 260 280 300 320

El
lip

�c
ity

 (m
de

g)

Wavelength (nm)

H20

RBB1

A

B

Figure 8.  CD spectra of G12 (A) and G4 (B) in MQ-H2O (blue) and K/Mg buffer (brown). The minima at 
245 nm and maxima at 265 nm are characteristic of parallel G-quadruplexes.



www.nature.com/scientificreports/

9SCiEntifiC Reports |         (2018) 8:16989  | DOI:10.1038/s41598-018-34377-9

fluorescence emission intensity is not surprising. However, since the 5′-FLUO-G12 is the source of fluorescence 
excitation for the G12-TAMRA-3′ in the FRET experiment, the G12-TAMRA-3′ emission would reduce or disappear 
in the event of quadruplex disruption regardless of the altered microenvironment. Thus, it appears that KRIPP11 
does not in fact disrupt G-quadruplex structures upon binding. Taken together with the binding assays of RNAs 
with varying thermal history and therefore presumed quadruplex content (see above), this data suggests the possi-
bility that G-tracts bind to KRIPP11 in quadruplex form. Given that all but one pan-edited transcript contain mul-
tiple long G-tracts (Table S3), these structures could plausibly arise in intramolecular fashion in vivo, in contrast to 
the intermolecular structures presumed to form in the in vitro experiments herein.

Discussion
The family of pentatricopeptide proteins is significantly expanded in the evolutionary lineage leading to trypano-
somatid parasites. Since these parasites are also characterized by numerous unusual features in RNA metabolism, 
including prolific U insertion/deletion editing in mitochondrial transcripts, it is tempting to speculate that the 
expansion of the PPR gene family in trypanosomatids represents a molecular-level adaptive radiation, in which 
ancestral PPR protein(s) have evolved a variety of RNA binding specificities and/or accessory domains to play 
distinct roles within the organelle. As one of the smallest and simplest PPR proteins in T. brucei, and one without 
any obvious accessory domains, KRIPP11 was our initial target for detailed characterization of RNA-binding 
specificity as a window into biological function. In this work, we found that KRIPP11 has a strong preferential 
affinity for non-duplex poly(G) sequences. KRIPP11 binds sequences of four to six or more Gs with high affinity, 
displays strong discrimination against other homooligomers and related sequences as well as double-stranded 
RNA, and shows modest specificity for RNA over identical sequences of single-stranded DNA. Bioinformatic 
analyses of T. brucei mitochondrial RNAs indicate a dramatic selective enrichment of G-tracts with at least four 
consecutive guanosines only in pre-edited transcripts of extensively edited mRNA genes (Fig. 6: Supplementary 
Tables S3–S7).

The simplest explanation of the above results would be that KRIPP11 interacts with transcripts destined for 
extensive editing and protects, sequesters, and/or targets the transcripts to the editing apparatus. Such functions 
are familiar roles for PPR proteins in other organisms21–24,34–36,67,68. Proteomic analyses of trypanosome mito-
chondrial ribosomes, however, indicate that KRIPP11 is associated with the small ribosomal subunit14,31. Indeed, 
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a total of 20 PPR proteins have been identified as components of either the large or small subunit of the mitochon-
drial ribosome. Although many of these PPRs are presumed to play a structural role, some have been shown to be 
involved in translational activation of the mitochondrial mRNAs.

The low affinity of KRIPP11 for U-rich and A-rich RNA suggests that direct recognition of rRNA or 
fully-edited, translation-competent mRNA by this protein is not likely. A variety of functions for a precursor/
pre-edited RNA binding protein associated with the small ribosomal subunit31,32 are possible. KRIPP11 bind-
ing could bridge mRNA maturation and translation, either by upregulating the substrates for the ribosome by 
stabilizing polycistronic precursors and pre-edited transcripts or by directly bringing the small ribosomal sub-
unit into contact with mRNA. Alternatively, KRIPP11’s differential affinity for G-tracts of different sizes could 
specify the residence time of some RNA processing enzymes on their sites of action, which in the case of RNA 
processing nucleases could prevent stray RNA damage. By masking potential sites of spurious translation initia-
tion, KRIPP11 could prevent premature assembly of the complete translational machinery on unedited mRNA. 
Evidence from plants34–36,39,68–71, humans72–74, yeast75, and even trypanosomes26–28, among others, shows that PPR 
proteins are capable of executing any of these functions. A more speculative function for KRIPP11 may be sug-
gested by the existence of an alternatively-edited product of cytochrome oxidase subunit III (COIII). In this 
transcript, a proposed alternative editing event brings an open reading frame (ORF) found in the pre-edited 
5′ end into frame with the ORF generated by editing of the 3′ end of COIII. The resulting alternatively-edited 
mRNA codes for the AEP-1 protein, which is essential for mitochondrial DNA maintenance76,77. A substantial 
portion of the translation-competent AEP-1 mRNA therefore contains G-tracts that are potential binding sites for 
KRIPP11. Similar alternative editing and dual coding events are widespread in kinetoplastid mitochondria78,79, 
and KRIPP11 may participate in stabilization or translational activation of such nonstandard mRNAs via their 
retained G-tracts. Further insight into the precise mechanistic role of KRIPP11 in organellar RNA metabolism 
will be obtained from knockdown and in vivo RNA-protein crosslinking studies, now in progress.

In the RNA binding assays, KRIPP11 preferentially interacted with G-tracts prepared under conditions 
favoring the quadruplex conformation over those in random coil states, raising the possibility that quadruplex 
forms may be the native target of the protein in its biological context. In recent years, it has become increasingly 
clear that G-quadruplex structures play important functional roles in both DNA and RNA, with specific protein 
targeting of RNA quadruplexes with concomitant stabilization or destabilization of the quadruplex often a key 
factor80–82. Quadruplex-containing structures have also been found in selected aptamers targeting biologically 
relevant proteins83. Thus, G-quadruplex recognition has the ability to modulate biological function in a variety of 
contexts. G-tracts in T. brucei pre-edited mRNAs have been shown to form G-quadruplex structures84, consistent 
with the analysis of KRIPP11 specificity shown here. If KRIPP11 does indeed bind G-tracts in their quadruplex 
form, one interesting unanswered question is how the structural mode of binding of PPR proteins, which in other 
contexts recognize non-quadruplex sequences in extended conformation45–47, is adapted to the very different 
overall shape of quadruplex RNA.

Methods
Materials.  RNA oligos labeled with FLUO (fluorescein) at the 5′ end or TAMRA (tetramethylrhodamine) at 
the 3′ end were synthesized by Thermo Scientific’s Dharmacon RNA Technologies (Lafayette, CO) and depro-
tected according to the manufacturer’s instructions. Dry RNA was dissolved in MQ-H2O. 5′-FLUO labeled dG12 
ssDNA was obtained from Integrated DNA Technologies (CoralVille, IA). The pMalTEV-E30 plasmid vector was 
a kind gift of Dr. Alice Barkan (University of Oregon).

Overexpression constructs and mutagenesis.  To achieve soluble expression, we fused KRIPP11 to the 
C-terminus of the maltose binding protein (MBP) in a pMalTEV-E30 plasmid vector85 using the BamH1 and 
SalI restriction sites (Table S8). The pMalTEV-E30 vector encodes a TEV protease cleavage site just before the 
BamH1 restriction site. Initial expression of MBP-KRIPP11 resulted in significant leaky expression of MBP, which 
contaminated preparations purified on amylose alone. Thus, we inserted a His6 tag at the C-terminus of KRIPP11 
(Fig. 1B) to aid tandem metal ion- and amylose affinity chromatography. MBP-His6 (used as a negative control) 
was expressed from a construct created by inserting His6 at the C-terminus of MBP just before the TEV protease 
cleavage site (Fig. 1C) followed by conversion of the first residue of KRIPP11 in MBP-His6-KRIPP11 to a stop 
codon. Mutagenesis was performed by PCR following the QuikChange® procedure using the primers indicated 
in Table S8.

Protein expression and purification.  Protein was expressed in BL21(DE3) E. coli. Recombinant colo-
nies were inoculated into 10 ml LB broth and grown overnight at 37 °C and 250 rpm. 20 ml of this seed culture 
was then added to 980 ml of LB broth, grown at 37 °C, 250 rpm to an OD600 of about 0.7, induced with 0.1 mM 
isopropyl-β,D-thiogalactopyranoside (IPTG), and maintained at 22 °C for 6 hours. Cultures were harvested by 
centrifugation at 4 °C followed by protein purification under native conditions. Bacteria were resuspended in lysis 
buffer (50 mM NaH2PO4, pH 8.0, 300 mM NaCl, 10 mM imidazole, 5 mM β-ME), lysed by a microtip sonicator 
and clarified by centrifugation. The supernatant was loaded onto a Ni-NTA column and MB-KRIPP11-His6 was 
eluted by 50 mM NaH2PO4, pH 8.0, 300 mM NaCl, 200 mM imidazole, 5 mM β-ME. Ni-NTA eluates were imme-
diately repurified using an amylose column. Amylose eluates were then dialyzed against at least 40 volumes of 
10 mM Tris-HCl, pH 7.5, 50 mM NaCl at 4 °C for at least 12 hours with a 7 K MWCO SnakeSkin® tubing (Thermo 
Scientific, Rockford, IL). Dithiothreitol (DTT) was then added to the dialysates to 1 mM followed by concentra-
tion using 10 K MWCO centrifugal filters. Protein purity was assessed by 5–12% SDS-PAGE and nucleic acid 
contamination was monitored by the A260:A280 ratio.
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KRIPP11 native gel electrophoresis.  After detachment of MBP by TEV protease, free KRIPP11 
aggregated upon purification even in the presence of detergents and glycerol. To establish the oligo-
meric state of KRIPP11, we therefore performed blue native PAGE on the TEV protease cleavage mixture of 
MBP-KRIPP11-His6. Briefly, MBP-KRIPP11 was purified by tandem Ni-NTA and amylose as above. Dilute pro-
tein was then concentrated to 0.7 mg/ml followed by TEV protease cleavage in the presence of 50 mM Tris-HCl, 
0.5 mM EDTA, 1.0 mM DTT, plus or minus 0.05% (w/v) DDM. The reaction was performed at 8 °C for 13 hours. 
1.6 µl of 10x blue native Tris-glycine (BNTG) sample buffer (250 mM Tris, pH 7.0, 30% (w/v) sucrose, 5% (w/v) 
brilliant blue-G) was then added to 14.4 µl of TEV protease cleavage mixture and run on a 6–12% polyacryla-
mide gradient resolving gel with a 3.5% polyacrylamide stacking gel at 150 V constant voltage, 4 °C, for one 
hour. 25 mM Tris, 250 mM glycine was used as running buffer. Native TEV protease (27 kDa), thioredoxin-His6 
(17 kDa), MBP (45 kDa), MBP-KRIPP11 (69 kDa), and factor Xa protease (43 kDa) were the size markers.

Electrophoretic mobility shift assays (EMSA).  5′-FLUO labeled RNA and DNA oligonucleotides 
were used, namely, single stranded C12, U12, A12, G12, G9, G6, G6C2U2A2, G4, G4C2U3A3 and (GGU)4), and double 
stranded (G.C)12. Double-stranded (G.C)12 was prepared by heating a mixture of G12 ssRNA, a three-fold excess 
of C12 ssRNA, and a 5x annealing buffer (50 mM Tris-HCl, pH 7.5, 250 mM NaCl, 5 mM EDTA) on boiling water 
for two minutes followed by slow cooling at room temperature for one hour. Agarose rather than polyacrylamide 
gels were used for electrophoresis because the latter were associated with strong well retention of the RNA as the 
protein concentration rose. Due to the thickness of the agarose gels and the propensity of poly(G) to quench flu-
orescein, 150 nM RNA/DNA was required in the reaction for optimal signal in the gel images. The RNA binding 
reaction consisted of 2.5 µl of RNA/DNA, 7.5 µl of protein (MBP-KRIPP11-His6 or MBP-His6 control as labeled), 
and 2.5 µl of a 5x RNA binding buffer adapted from Stuart and coworkers (100 mM Tris-HCl, pH 7.5, 750 mM 
KCl, 25 mM MgCl2, 5 mM DTT, 0.5 µg/µl BSA, 2 U/µl RNAsin)86. 25 mM Tris, 250 mM glycine was used as run-
ning buffer. Gels were scanned using a VersaDoc™ MP 4000 fluorescence imager (Bio-Rad Laboratories).

Fluorescence polarization spectroscopy.  The anisotropy of 20 nM 5′-FLUO labeled ssRNA or ssDNA 
was assessed in the presence of increasing KRIPP11 concentration. A 450 µl reaction for each protein concentra-
tion was prepared from dialysis buffer, MBP-KRIPP11-His6, 45 µl of a 10x binding buffer (200 mM Tris-HCl, pH 
7.5, 1.5 M KCl, 50 mM MgCl2, 10 mM DTT), and 50 µl of 180 nM RNA/DNA. After at least 15 minutes of equili-
bration at room temperature, the intensities of vertically- and horizontally polarized fluorescence emission (Ivv 
and Ivh respectively) following vertically polarized excitation were obtained at 25 °C using a 5 mm microsquare 
quartz sample cell in a QuantaMaster spectrofluorometer (Photon Technology International). Noise from Raman 
scattering was removed by subtracting the fluorescence emission of KRIPP11 dialysis buffer from data. For all 
assays, the instrument grating factor (G) was about 1.5. Excitation was at 450 nm with a 2.0 mm slit with emission 
measured at 520 nm with a 3.8 mm slit. Fluorescence anisotropy was computed from:

=
−

+
r I GI

I GI2 (1)
vv vh

vv vh

The mean anisotropies of at least three data sets were then normalized and used to determine the Kd by non-
linear fitting with IGOR Pro 6 according to

=
+

r nc
K c (2)d

where c is the protein concentration and n is an overall scaling factor.
Preliminary experiments indicated stronger and more reproducible interactions of KRIPP11 with slowly 

thawed G-tract RNA than with either rapidly thawed or thermally annealed RNA (cf. also Fig. 7A). Thus, reported 
anisotropy experiments used RNA that was thawed slowly on ice-cold water.

In vitro selection of consensus RNA ligands for KRIPP11.  RNA aptamers for KRIPP11 were isolated 
from a pool of 2.4 × 1018 random sequences (20 nucleotide variable region) by 11 rounds of in vitro selection using 
immobilized MBP-KRIPP11-His6 on Ni-NTA magnetic beads using procedures based on published methods87. 
RNA was synthesized by T7 RNA polymerase from a DNA template containing a variable region of 20 nucleo-
tides surrounded by primer binding sites followed by treatment with DNase and purification. Negative selection 
to remove sequences with affinity to the fusion partner was performed in every second round of selection using 
MBP-His6 as a decoy. At each round, the RNA pool in binding buffer (50 mM KH2PO4, pH 7.5, 100 mM KCl, 
1.5 mM MgCl2, 2.0 mM imidazole) was incubated with MBP-His6 beads (if performed) at 4 °C for 20 minutes. The 
flow-through from the latter was then incubated with MBP-KRIPP11-His6 for 20 minutes. Binding stringency was 
increased across the course of the selection by decreasing protein and (for the final round) RNA concentration 
(Table S10). After drainage of unbound RNA, the beads were washed with binding buffer followed by recovery 
of bound RNA by phenol:chloroform extraction and ethanol precipitation and reconstituted in MQ-H2O. The 
resulting RNA pool was converted to cDNA with M-MLV reverse transcriptase followed by PCR-amplification, 
transcription, and RNA purification in preparation for the next round of selection as described previously87. 
Enrichment of KRIPP11-bound RNA after each round of selection was quantitated with the Ribogreen assay88 
using a FLUOstar Omega microplate reader (BMG LABTECH). The cDNA from the 11th round RNA was cloned 
into a TOPO® TA plasmid and sequenced by dideoxynucleotide chain termination. Sequences were then aligned 
with MEME89 and WebLogo90 to identify conserved elements.
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Analysis of G-tract content in T. brucei mitochondrial transcripts.  Sequences of all the kinetoplast 
pre-mRNA and rRNA genes were decoded from the T. brucei maxicircle DNA sequence (GenBank accession 
# M94286.1). Edited mRNA sequences were obtained from Hong and Simpson91. A census of nonoverlapping 
dodecanucleotides containing at least one homopolymeric stretch of four or more Gs in each RNA was then 
made. Next, a count of each Gn homopolymer (n = 4, 5, 6, 7, 8, or 11; no sequences of G9 or G10 were present) in 
each transcript category was made.

Circular dichroism (CD) spectroscopy of guanosine tract RNA.  The native conformation of G-tract 
RNA ligands was investigated by CD spectroscopy. CD spectra were collected using a Chirascan CD spectrome-
ter (Applied Photophysics, Leatherhead, UK) and a 0.1 mm path length cuvette. To assure native conformation, 
frozen RNA samples in MQ-H2O were thawed slowly on ice-cold water. For G12, the concentrations of RNA used 
were 4.1 µM in MQ-H2O and 3.7 µM in RNA binding buffer (20 mM Tris-HCl, pH 7.5, 150 mM KCl, 5.0 mM 
MgCl2, 1.0 mM DTT). For G4, the concentrations of RNA used were 7.5 µM in MQ-H2O and 6.8 µM in RNA 
binding buffer. An average of three spectra was obtained per sample. Before CD spectroscopy, the G12 RNA was 
desalted by dialysis against two1000-fold volumes of MQ-H2O at 12 hour intervals for 24 hours at 4 °C using a 
3.5 K Slide-A-Lyzer® cassette (Thermo Scientific). G4 was used in undialyzed form due to lack of retention by the 
molecular-weight filters used.

RNA native gel electrophoresis.  To further understand the basis for better KRIPP11 binding to native 
G-tracts than thermally exposed ones, we investigated the gel mobility of four samples of 5′-FLUO-G12 RNA 
with varying thermal history. One RNA sample was not exposed to elevated temperature, and represented the 
native RNA. The second RNA sample was heated at 95 °C for 10 minutes, then one of several different 10X RNA 
binding buffers (see caption to Fig. 7) was added after which tubes were transferred to 95 °C hot water and left to 
slowly cool to room temperature for 4 hours followed by storage at 4 °C for at least five days. The third RNA set 
was heated at 95 °C for 10 minutes, snap-cooled on ice for 2 minutes, transferred to room temperature, and RNA 
binding buffer added. The fourth RNA set was heated at 95 °C for 5 minutes, snap-cooled on ice for 2 minutes, 
transferred to room temperature, and RNA binding buffer added. For analysis, 12 µl of a mixture comprising 
10.8 µl of 50 nM RNA and 1.2 µl of 10X sample buffer (10 mM Tris, 1.0 mM EDTA, pH 7.5, 50% (v/v) glycerol, 
0.01% (w/v) bromophenol blue, 0.01%(w/v) xylene cyanol) were loaded on to a native 18% polyacrylamide (29:1 
acrylamide: N,N’-methylene-bis-acrylamide) gel and run at 150 V at 4 °C using TBE (50 mM Tris, 50 mM boric 
acid, 1.0 mM EDTA). A 12 nt poly(A) ssRNA oligo (A12) was loaded as marker for monomeric G12 RNA.

Fluorescence resonance energy transfer (FRET).  FRET was used to determine whether KRIPP11 bind-
ing perturbs the native conformation of G-tract RNA. Separately labeled 5′-FLUO-G12 and 3′-TAMRA labeled 
G12 (G12-TAM-3′) ssRNAs were desalted by dialysis against 200-fold volume of MQ-H2O at 4 °C overnight using a 
2.0 K MWCO Spectra/Por® dialysis membrane (Spectrum Laboratories Inc, Rancho Dominguez, CA). To anneal 
the 5′-FLUO-G12 and G12-TAM-3′, a mixture of 350 µl of each RNA at 3.0 µM monomeric concentration was 
heated at 95 °C for 10 minutes, then 245 µl of MQ-H2O and 105 µl of 10X RNA binding buffer were added, dilut-
ing the RNA to 2.0 µM monomeric concentration. Tubes containing the RNA mixture were then transferred to 
95 °C water in a plastic dish and allowed to slowly cool to room temperature on the bench for 4 hours. Finally, 
the RNA was stored at 4 °C for at least five days to allow further renaturation before FRET assays. The intensities 
of fluorescence emission of 50 nM monomeric concentrations of 5′-FLUO-G12 alone, G12-TAM-3′ alone, and of 
the annealed FLUO-G12/G12-TAM mixture in the absence and presence of various KRIPP11 concentrations were 
then collected at 25 °C following excitation at 490 nm as described above. Three datasets were used to compute 
average spectra.

Data Availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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