
Vol.:(0123456789)1 3

Photosynthesis Research (2018) 138:303–313 
https://doi.org/10.1007/s11120-018-0544-6

REVIEW

Molecular mechanism of SRP-dependent light-harvesting protein 
transport to the thylakoid membrane in plants

Dominik Ziehe1 · Beatrix Dünschede1 · Danja Schünemann1

Received: 30 October 2017 / Accepted: 20 June 2018 / Published online: 28 June 2018 
© The Author(s) 2018

Abstract
The light-harvesting chlorophyll a/b binding proteins (LHCP) belong to a large family of membrane proteins. They form 
the antenna complexes of photosystem I and II and function in light absorption and transfer of the excitation energy to 
the photosystems. As nuclear-encoded proteins, the LHCPs are imported into the chloroplast and further targeted to their 
final destination—the thylakoid membrane. Due to their hydrophobicity, the formation of the so-called ‘transit complex’ 
in the stroma is important to prevent their aggregation in this aqueous environment. The posttranslational LHCP targeting 
mechanism is well regulated through the interaction of various soluble and membrane-associated protein components and 
includes several steps: the binding of the LHCP to the heterodimeric cpSRP43/cpSRP54 complex to form the soluble transit 
complex; the docking of the transit complex to the SRP receptor cpFtsY and the Alb3 translocase at the membrane followed 
by the release and integration of the LHCP into the thylakoid membrane in a GTP-dependent manner. This review sum-
marizes the molecular mechanisms and dynamics behind the posttranslational LHCP targeting to the thylakoid membrane 
of Arabidopsis thaliana.
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Introduction and overview of LHCP 
transport to the thylakoid membrane

The capture of light energy is essential for biomass pro-
duction through photosynthesis. In organisms ranging from 
green algae to vascular plants, photosystems I and II are 
associated with antenna complexes that consist of the light-
harvesting chlorophyll a/b binding proteins (LHCPs) and are 
specialized for the harvesting and transfer of energy to the 
photosystems. LHCPs are integral thylakoid membrane pro-
teins with three membrane-spanning regions and represent 
the most abundant proteins in this membrane system. LHCPs 
are encoded in the nucleus, translated in the cytosol, and 
targeted to the chloroplast via N-terminal transit sequences. 
Upon import into the chloroplast, which is mediated by 
two translocons in the outer and inner envelope membrane 
(TOC/TIC) (Jarvis 2008; Paila et al. 2015; Bölter and Soll 
2016; Sjuts et al. 2017), the transit sequence is cleaved off 

(Richter and Lamppa 1999) (Fig. 1). The question of how 
the LHCPs are translocated through the stroma and subse-
quently inserted and assembled in the thylakoid membrane 
has been a subject of study for approximately three dec-
ades. In early studies, it was shown that a proteinaceous stro-
mal factor is required for the formation of a soluble, stable 
~ 120 kDa LHCP intermediate termed the transit complex, 
which traverses the stroma before thylakoid insertion (Ful-
som and Cline 1988; Cline et al. 1989; Reed et al. 1990; 
Payan and Cline 1991). This factor was later identified as 
the so-called chloroplast signal recognition particle (cpSRP), 
which is located in the stromal fraction of the chloroplast (Li 
et al. 1995; Schünemann et al. 1998; Klimyuk et al. 1999). 
The cpSRP complex of higher plants is well characterized; 
it consists of two subunits, the conserved 54 kDa GTPase 
cpSRP54 and a unique chloroplast-specific 43 kDa protein, 
cpSRP43 (Franklin and Hoffman 1993; Schünemann et al. 
1998; Klimyuk et al. 1999) (Fig. 1). CpSRP54 is homolo-
gous to cytosolic eukaryotic SRP54 and to the prokaryotic 
54 homolog (Ffh) (Franklin and Hoffman 1993; Li et al. 
1995), which are required for cotranslational protein trans-
port to the endoplasmic reticulum and the plasma membrane, 
respectively (Akopian et al. 2013; Saraogi and Shan 2014; 
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Voorhees and Hegde 2016). Consistent with the previous 
finding of a soluble LHCP intermediate, it has been demon-
strated that complex formation between cpSRP and LHCP 
prevents aggregation of the hydrophobic LHCP in the aque-
ous milieu of the stroma and maintains it in an insertion-
competent stage (Schünemann et al. 1998; Yuan et al. 2002; 
Goforth et al. 2004). The handover of the LHCP from the 
TOC/TIC import translocon to the cpSRP complex involves 
the ankyrin-repeat protein LTD (LHCP translocation defect), 
which is able to interact with the Tic machinery, LHCP, and 
cpSRP (Ouyang et al. 2011) (Fig. 1). Although cpSRP is suf-
ficient to keep LHCP soluble and in an insertion-competent 

stage, the insertion of LHCPs into the thylakoid membrane 
requires additional factors. They comprise (i) the thylakoid 
membrane-associated SRP receptor cpFtsY (Kogata et al. 
1999; Tu et al. 1999; Yuan et al. 2002), which is a homolog 
of the eukaryotic SRP receptor SRα and the prokaryotic 
FtsY, (ii) GTP, which is hydrolyzed by the SRP GTPases 
cpSRP54 and cpFtsY (Akopian et al. 2013) and (iii) the 
integral thylakoid membrane translocase Alb3 (albino 3) 
(Moore et al. 2000) (Fig. 1). Alb3 is a homolog of the bac-
terial YidC and mitochondrial Oxa proteins, which mediate 
the insertion, assembly, and folding of membrane proteins in 
the plasma membrane and inner mitochondrial membrane, 
respectively (Dünschede and Schünemann 2011; Wang and 
Dalbey 2011; Saller et al. 2012; Hennon et al. 2015).

In this review, we summarize the molecular details of 
the individual steps of posttranslational cpSRP-dependent 
LHCP transport in plants, including cpSRP43/cpSRP54 het-
erodimerization, cpSRP/LHCP transit complex formation, 
docking of the transit complex at the thylakoid membrane, 
and insertion of LHCP into the membrane. We also dis-
cuss aspects of the regulation and dynamics of the transport 
machinery. For information on the evolution of this transport 
system and on the overlapping function of cpSRP pathway 
components in the cotranslational transport of plastid-
encoded proteins, we refer to previous reviews (Henry et al. 
2007; Richter et al. 2010; Ziehe et al. 2017).

Formation of the cpSRP43/54 heterodimer 
in Arabidopsis thaliana

The chloroplast-specific cpSRP43 is a multidomain protein 
that consists of three chromodomains (CD1, CD2, CD3) and 
four ankyrin repeats (Ank1-Ank4) (Klimyuk et al. 1999; 
Goforth et al. 2004; Stengel et al. 2008). The N-terminal 
region of cpSRP43 harbors the first chromodomain (CD1), 
which is followed by 4 ankyrin repeats (Ank1-4) and two 
additional chromodomains (CD2, CD3) in the C-terminus 
(Fig. 2b). The second cpSRP subunit, cpSRP54, consists of 
an N-terminal N domain, a central G domain with GTPase 
activity and a methionine-rich M domain in the C-terminus 
(Franklin and Hoffman 1993) (Fig. 2c). In 2008, Stengel et 
al. published the first crystal structure of cpSRP43 (CD1-
Ank4), revealing a unique arrangement of the chromodo-
mains and the ankyrin repeats (Stengel et al. 2008) (Table 1). 
The crystal structure shows the characteristic helix-turn-
helix motifs of Ank2 and Ank3 and the elongated nature 
of the Ank1 and Ank4 helices. CD1 is composed of three 
antiparallel β-sheets and a vertical α-helix that is oriented in 
the direction of the first ankyrin helix. Overall, the crystal 
structure reveals the elongated horseshoe character of the 
CD1-Ank4 region that is typical of ankyrin-repeat proteins.

Fig. 1   LHCPs are targeted to the thylakoid membrane via the post-
translational cpSRP-dependent transport pathway. LHCPs are 
imported posttranslationally into chloroplasts via the TOC/TIC trans-
locon in the outer and inner envelope membrane. After import into 
the stroma, the transit peptide is cleaved off and the LHCPs are for-
warded to the cpSRP complex by LTD. The transit complex consist-
ing of cpSRP43, cpSRP54, and LHCP traverses the stroma and docks 
to the thylakoid membrane via interaction with cpFtsY and the Alb3 
insertase. Alb3/cpFtsY are associated with the cpSecY translocase, 
which is, however, most likely not involved in the insertion process. 
GTP hydrolysis catalyzed by the SRP GTPases cpSRP54 and cpFtsY 
drives the dissociation of protein components
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CpSRP43/cpSRP54 complex formation was intensively 
studied by several groups. Initially, the cpSRP54 M domain 
was identified as the main binding region for cpSRP43 
(Jonas-Straube et al. 2001; Groves et al. 2001; Goforth et al. 
2004). Later, a 10-residue segment within the C-terminal tail 
region of cpSRP54M (RRKRp10) was shown to be impor-
tant for cpSRP43 binding. This segment contains the con-
served positively charged cpSRP43 binding motif ARRKR 
comprising residues 535–539 of cpSRP54 (Funke et al. 
2005; Dünschede et al. 2015) (Fig. 2c). The formation of 
the cpSRP complex is mainly accomplished by the interac-
tion of the ARRKR motif with cpSRP43-CD2. CD2 consists 
of three-stranded antiparallel β-sheets with a perpendicu-
lar α-helix and thus has the characteristic chromodomain 
architecture (Holdermann et al. 2012) (Table 1). In contrast 
to CD1, which is tightly connected to the ankyrin repeats, 
CD2 does not participate in any tertiary interactions with 
the N-terminal domains of cpSRP43 and is therefore more 
flexible. Within CD2 are located residues that form two aro-
matic cages that together present the binding interface for 
cpSRP54 (Holdermann et al. 2012) (Fig. 2b). Cage 1, which 
is formed by E268, W291 and D293, recognizes R537 of 
the cpSRP43 binding motif, whereas R536 is bound by the 
second aromatic cage, which consists of F267, Y269, and 
H304. Further detailed study revealed that the RRKRp10 
peptide binds at the interface between CD2 and Ank4 and 
that in this complex CD2 is more closely positioned to Ank4 
compared to free cpSRP43 (Holdermann et al. 2012). The 
importance of the Ank4 region for the cpSRP43/cpSRP54 
interaction was also indicated by the observation that the 
affinity of binding of full-length cpSRP43 to RRKRp10 
(Kd 0.39 µM) is significantly increased in comparison to 
that of cpSRP43 CD2 (Holdermann et al. 2012). Notably, 
full-length cpSRP54 and cpSRP54M bind cpSRP43 with 
even higher affinity (Kd 2–95 nM) (Hermkes et al. 2006; 
Gao et al. 2015; Ziehe et al. 2016) (Table 2), suggesting that 
additional regions of cpSRP54 are required to support high-
affinity cpSRP complex formation. Little is known about 
the dynamics of the formation of this complex in vivo, but 
current data indicate that most if not all of the cpSRP43 is 
complexed with cpSRP54 in the stroma (Schünemann et al. 
1998; Klimyuk et al. 1999).

CpSRP binds LHCP to form a soluble LHCP 
transport intermediate, the transit complex

As described in the introduction, the LHC proteins are 
bound by the cpSRP complex in a way that maintains their 
solubility and insertion competence. Several studies have 
aimed to identify the intermolecular contacts between LHCP 
and the cpSRP subunits within the transit complex as sum-
marized below.

Using various LHCP truncation constructs, an 18-residue-
long binding site between the second and third transmem-
brane domains, L18 (VDPLYPGGSFDPLGLADD), and a 
hydrophobic region following the L18 motif were shown 
to be crucial for transit complex formation with cpSRP 
(DeLille et al. 2000) (Fig. 2a). The L18 motif harboring the 
DPLG sequence is conserved among LHCPs (Stengel et al. 
2008; Barros and Kühlbrandt 2009) and therefore seems to 
be an important feature of members of this protein family. 
Tu et al. identified cpSRP43 as the binding partner for the 
L18 motif, while a direct interaction of cpSRP54 with LHCP 
was not detected (Tu et al. 2000). Further studies mapped 
the binding interface between LHCP and cpSRP via a pep-
scan analysis and confirmed the cpSRP43/L18 interaction 
(Groves et al. 2001). Cross-linking studies with pea Lhcb1 
and cpSRP43 or a cpSRP complex revealed the presence of 
direct contacts between the L18 motif of Lhcb1 and the first 
part of TMD3 with cpSRP43; no contacts between Lhcb1 
and cpSRP54 were detected (Cain et al. 2011). The struc-
ture of the cpSRP43/L18 complex was resolved by Stengel 
et al. (2008) (Table 1). CpSRP43 forms two predominantly 
hydrophobic grooves on its concave surface. L18 binds 
to groove 1, which is formed by ankyrin repeats 2–4. The 
DPLG motif is compactly folded and wraps around Y204 of 
Ank3 (Fig. 2b) and it was shown that mutations in the DPLG 
motif or in Y204 of cpSRP43 impair the cpSRP43/L18 
interaction (Stengel et al. 2008). Studies to quantitatively 
analyze the interaction of cpSRP43 with the L18 region of 
LHCP reported dissociation constants (Kd) ranging from 
22 nM to 1.17 µM (Table 2). While the interaction between 
cpSRP43 and LHCP has been unambiguously proven, the 
question whether cpSRP54 contacts LHCP directly is less 
clear. As mentioned above, binding of cpSRP54 to LHCP 
was not observed in some studies, but other studies have 
reported evidence for cpSRP54/LHCP interaction. Initial 
reports revealed that cpSRP54 binds to residues within the 
third transmembrane domain (High et al. 1997; Groves et al. 
2001) (Fig. 2c), emphasizing the importance of this trans-
membrane domain for transit complex formation (DeLille 
et al. 2000). Recently, it has been demonstrated that the 
absence of cpSRP54 or mutations within the M domain of 
cpSRP54 impair the formation of the cpSRP/LHCP transit 
complex (Dünschede et al. 2015; Henderson et al. 2016). 
Although the foregoing studies indicate that cpSRP54 plays 
an important role in transit complex formation, its precise 
contribution remains unclear. Apparently, it is not essen-
tial for the formation of soluble LHCP as it was shown that 
cpSRP43 alone acts as an ATP-independent chaperone for 
LHCP and is sufficient to maintain its solubility (Falk and 
Sinning 2010b; Jaru-Ampornpan et al. 2010). Therefore, 
cpSRP54 probably acts as an optimizing element that main-
tains the transit complex in an ideal insertion-competent 
state, thereby rendering the transport process more efficient 
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(see also below in ‘Regulation and dynamics of the transport 
machinery’).

Docking of the transit complex 
at the membrane and LHCP insertion

The cpSRP receptor cpFtsY binds peripherally to thylakoid 
membranes, and biochemical and genetic data prove that 
cpFtsY is linked to LHCP insertion (Kogata et al. 1999; 
Tu et al. 2000; Yuan et al. 2002; Tzvetkova-Chevolleau 
et al. 2007; Marty et al. 2009). Similar to cpSRP54, cpFtsY 
contains an NG domain that is necessary for GTP binding 
and hydrolysis (Fig. 2d). Crystal structures of various plant 

cpFtsY proteins reveal the characteristic four helix bun-
dle within the N domain and the five G motifs within the 
G domain (Stengel et al. 2007; Chandrasekar et al. 2008; 
Träger et al. 2012) (Table 1). Tethering of cpFtsY to the 
membrane is mediated via an amphipathic helix located 
at the N-terminus (Stengel et al. 2007; Marty et al. 2009) 
(Fig. 2d). Within this region, two conserved phenylalanine 
residues, F48 and F49, are crucial for membrane binding, 
and it was demonstrated that cpFtsY is only functional in 
LHCP insertion when it is attached to the thylakoid mem-
brane (Marty et al. 2009). CpFtsY is able to bind cpSRP54 
and complex formation is established by interaction between 
the homologous NG domains of the two proteins (Jaru-
Ampornpan et al. 2007; Stengel et al. 2007; Chandrasekar 
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et al. 2008; Wild et al. 2016) (Table 1). Interestingly, recent 
data indicate that the M domain of cpSRP54 accelerates 
and stabilizes cpSRP54/cpFtsY complex formation via 
interaction between a positively charged cluster in the G 
domain of cpFtsY and a negatively charged cluster within 
the M domain of cpSRP54 (Jaru-Ampornpan et al. 2007; 
Chandrasekar et al. 2017) (Table 2). Furthermore, complex 
formation between cpFtsY and cpSRP54 is considerably 
stimulated by anionic phospholipids (Chandrasekar and 
Shan 2017) (Table 2).

In addition to cpFtsY, the integral thylakoid membrane 
protein Alb3 is involved in LHCP insertion. The characteri-
zation of Alb3 as the responsible insertase is based on the 
results of several studies that demonstrated specific inhi-
bition of LHCP insertion by anti-Alb3 antibodies (Moore 

et al. 2000, 2003), and a direct interaction of Alb3 with 
components of the cpSRP transport pathway (Moore et al. 
2003; Bals et al. 2010; Falk et al. 2010; Lewis et al. 2010; 
Dünschede et al. 2011; Walter et al. 2015; Chandrasekar 
and Shan 2017) (see also below). Consistently, the alb3 null 
mutant in Arabidopsis thaliana displays an albino pheno-
type (Sundberg et al. 1997). Similar to bacterial YidC, the 
crystal structure of which was recently solved (Kumazaki 
et al. 2014a, b), Alb3 is predicted to contain five conserved 
transmembrane helices and a structurally disordered C-ter-
minus protruding into the stroma of the chloroplast (Falk 
et al. 2010) (Fig. 2e). Blue native PAGE indicates that Alb3 
can form dimers (Dünschede et al. 2011) (Fig. 1).

Several studies have described a direct interaction 
between Alb3 and cpSRP43 (Bals et al. 2010; Falk et al. 
2010; Lewis et al. 2010; Dünschede et al. 2011; Liang et al. 
2016). Two positively charged binding motifs within the 
C-terminus of Alb3, motif II (Dünschede et al. 2011; Falk 
et al. 2010) and motif IV (Falk et al. 2010), are important 
for cpSRP43 binding (Fig. 2e). Structural data revealed 
that motif IV binds to cpSRP43 CD3 (Horn et al. 2015) 
(Table 1). Biochemical data point to an interaction of motif 
II and cpSRP43 CD1-Ank4 (Liang et al. 2016). Furthermore, 
a binding site within the transmembrane region of Alb3 was 
described (Dünschede et al. 2011) (Fig. 2e). These data led 
to the conclusion that the transit complex is recruited to 
Alb3 via cpSRP43/Alb3 interaction. This docking model 
was further supported by the finding that cpSRP43 alone is 
able to keep LHCPs soluble (Falk and Sinning 2010b; Jaru-
Ampornpan et al. 2010) and by the results of Tzvetkova-
Chevolleau et al., who postulated an alternative LHCP trans-
port pathway in Arabidopsis thaliana that bypasses cpFtsY 
and cpSRP54 but still requires cpSRP43 for LHCP target-
ing (Tzvetkova-Chevolleau et al. 2007). The latter authors 
demonstrated that the ffc/cpftsy double-knockout mutant 
lacking functional cpSRP54 and cpFtsY has a less severe 
phenotype and accumulates more LHCPs than the cpftsy 
single-knockout mutant. Therefore, these data provide sup-
port for an LHCP transport mechanism that depends on an 
efficient interaction between Alb3 and cpSRP43. However, 
the dissociation constant of the cpSRP43/Alb3 C-terminus 
interaction was described inconsistently. Whereas a Kd of 
~ 90 nM, indicating high-affinity binding, was reported by 
Lewis et al. (2010), other reports point to a rather weak, 
transient interaction (Kd 5–18 µM) (Falk et al. 2010; Falk 
and Sinning 2010a; Horn et al. 2015; Liang et al. 2016) 
(Table 2). Notably, the affinity of cpSRP43 for full-length 
Alb3 has not been determined yet. Therefore, the contribu-
tion of the Alb3/cpSRP43 interaction to the recruitment of 
the transit complex to the membrane remains unclear.

Other data support the existence of an alternative LHCP 
targeting mode in which the transit complex recruitment to 
Alb3 is accomplished primarily via an interaction between 

Fig. 2   Scheme of protein–protein interactions within the posttrans-
lational cpSRP transport pathway. The mature forms of the proteins 
involved in posttranslational LHCP transport and their functional 
domains are shown. Amino acid positions on the left and right cor-
respond to the Arabidopsis thaliana proteins, except of LHCP, which 
refers to Lhcb1 of Pisum sativum. The diverse interaction partners 
and the interacting domains are indicated. Further details and refer-
ences are given in the main text. a LHCP harbors three transmem-
brane domains (dark green, 1–3). The L18 region containing the cru-
cial DPLG motif, which is responsible for cpSRP43 (Ank3) binding, 
is located between the second and third transmembrane domains. The 
binding region for cpSRP43 extends into LHCP’s transmembrane 
domain three. It is discussed if cpSRP54 binds to transmembrane 
domain three of LHCP. Furthermore, there is a direct interaction 
between Alb3’s C-terminus and LHCP. b CpSRP43 comprises three 
chromodomains (CD1-CD3, red) and four ankyrin repeats (Ank1-
Ank4, orange). The Ank2-Ank4 region with the conserved Y204 
binds the LHCP L18 peptide. The interaction with the ARRKR motif 
of cpSRP54 is accomplished via a twinned aromatic cage located 
in CD2, which is formed by six residues. A stimulating effect of 
Ank4 for cpSRP54/cpSRP43 complex formation was demonstrated 
(depicted by dashed line). CpSRP43 binds to the Alb3’s C-terminus 
(motifs II and IV) via CD2-3, whereby CD3 plays the major role 
(dashed and solid lines, respectively). c CpSRP54 is composed of a 
N-terminal NG domain (gray) and a C-terminal M domain (yellow) 
connected by a linker region (light gray). CpSRP54 binds to cpSRP43 
with its C-terminal ARRKR motif (red) within the M domain. The 
NG domain binds to the homologous domain in cpFtsY. An acidic 
patch (dark shaded, E313; D314; E316; D317) next to the M domain 
forms an additional interaction site for cpFtsY. The M domain pos-
sibly also binds to the third transmembrane domain of LHCP. d Like 
cpSRP54, cpFtsY comprises a NG domain. A membrane targeting 
sequence (MTS, dark shaded) is located close to the N-terminus. As 
mentioned above cpFtsY interacts with cpSRP54 via its NG domain. 
Additionally, it contains a basic patch (K191; K193; K203; R204; 
K235; K236; K 240) as counterpart for cpSRP54’s acidic patch to 
provide an interaction via the complementary charged regions. e Alb3 
is predicted to have five transmembrane domains which are sum-
marized and depicted as transmembrane (TM) region (dark blue). 
CpSRP43 binds to a motif within the TM region, motif II and motif 
IV. Further data indicate that the binding to motif II and motif IV is 
mediated by CD1-Ank4 and CD3, respectively. The Alb3 C-terminus 
also binds the cpSRP54/cpFtsY complex, whereby the binding inter-
face is probably provided by motifs II and IV. Additionally, LHCPs 
bind to the C-terminal region of Alb3

◂
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Alb3 and the cpSRP54/cpFtsY complex. The studies of 
Moore et al (2003) indicate that Alb3 can bind the cpSRP54/
cpFtsY complex even in the absence of cpSRP43 and LHCP, 
and a recent study reported that Alb3 C-terminus binds the 
cpSRP54/cpFtsY complex with an affinity in the submicro-
molar range (Chandrasekar and Shan 2017). Additional data 
suggested that motifs II and IV within Alb3 C-terminus, 
which are responsible for the cpSRP43 interaction, might 
also play a role in binding the cpSRP54/cpFtsY complex 
(Chandrasekar and Shan 2017) (Fig. 2e).

Various studies have demonstrated that LHCP inser-
tion is Alb3-dependent and independent of the thylakoid 
membrane cpSecY/E translocase (Mori et al. 1999; Moore 
et al. 2003). However, a direct association between Alb3 
and the cpSecY translocase has been shown by coimmuno-
precipitation experiments, double immunogold labeling and 
cross-linking studies, while there is no clear evidence for 
the presence of an uncomplexed pool of Alb3 (Klostermann 
et al. 2002). The Alb3/cpSecY translocase association was 
confirmed by Moore et al. (2003) who showed in diverse 
precipitation analyses that a stabilized complex consist-
ing of cpFtsY and cpSRP can precipitate Alb3 and cpSecY 
from solubilized thylakoid membranes. Interestingly, recent 
data obtained in comigration and coimmunoprecipitation 

analyses of solubilized thylakoid membrane complexes 
indicate that cpFtsY and Vipp1 are additional components 
of the Alb3/cpSecY-containing complex in the thylakoid 
membrane (Walter et al. 2015). Therefore, it seems possible 
that the transit complex docks to a preformed cpFtsY/Alb3/
cpSecY complex in the thylakoid membrane; however, the 
cpSec translocase does not appear to be involved in contact 
formation or the insertion process (Fig. 1).

Regulation and dynamics of the transport 
machinery

The nucleotide requirement for LHCP integration was exam-
ined by in vitro reconstitution assays in two main studies. 
Initially, Hoffman and Franklin (1994) showed that GTP 
is the only nucleotide required for integration and demon-
strated an inhibitory effect of non-hydrolyzable analogs of 
GTP (Hoffman and Franklin 1994). The requirement for 
GTP hydrolysis in LHCP insertion was confirmed by Yuan 
et al. (2002). Notably, this study also described a stimulatory 
effect of ATP and of the non-hydrolyzable analog AMP-
PNP, indicating that a yet unknown ATP-binding protein 
might be involved in LHCP integration. GTP is not required 

Table 1   Crystal structures of proteins and protein complexes of the posttranslational cpSRP pathway

All available crystal structures and the corresponding PDB numbers are listed. Additional information about the crystallized fragments and the 
corresponding organism (A. thaliana, Arabidopsis thaliana; P. patens, Physcomitrella patens; E. coli, Escherichia coli) is given

Macromolecule Fragment Organism PDB number References

cpSRP43
 cpSRP43 CD3 Residue: 319–368; His-tag cleaved off A. thaliana 5E4X Horn et al. (2015)
 cpSRP43 CD1-Ank4 Residue: 85–267; His-tag cleaved off A. thaliana 3DEO Stengel et al. (2008)

cpSRP43/cpSRP54
 cpSRP43∆CD3 complexed with RRKRp cpSRP43 residue: 85–318; His-tag cleaved 

off
A. thaliana 3UI2 Holdermann et al. (2012)

cpSRP54 residue: 528–540; His-tag 
cleaved off

A. thaliana

cpSRP43/LHCP
 cpSRP43 CD1-Ank4 complexed with 

L18
Residue: 85–267; His-tag cleaved off A. thaliana 3DEP Stengel et al. (2008)

cpSRP43/Alb3
 cpSRP43 CD2-CD3 fused via thioredoxin 

to Alb3 motif IV
Thioredoxin residue: 3-109; His-tag E. coli 5E4W Horn et al. (2015)
cpSRP43 residue: 265–369 A. thaliana
Alb3 residue: 453–461; GST-tag cleaved 

off
A. thaliana

cpFtsY
 cpFtsY Residue: 80–383; His-tag P. patens 4AK9 Träger et al. (2012)
 cpFtsY Residue: 24–112; thioredoxin A. thaliana 2OG2 Chandrasekar et al. (2008)
 cpFtsY Residue: 65–366; His-tag cleaved off A. thaliana 3B9Q Stengel et al. (2007)

cpSRP54/cpFtsY
 cpSRP54 complexed with cpFtsY cpSRP54 residue: 77–371; His-tag A. thaliana 5L3R Wild et al. (2016)

cpFtsY residue: 80–366; His-tag A. thaliana
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for formation of the transit complex (Yuan et al. 2002); 
however, it is important for triggering the GTPase cycle 
of the cpSRP54/cpFtsY complex at the membrane (Jaru-
Ampornpan et al. 2007, 2009), which is a multistep process 
comprising assembly of the GTP-loaded cpSRP54/cpFtsY 
complex, reciprocal GTPase activation and dissociation of 
the complex. Interestingly, within the GTPase cycle, the 
cpSRP54/cpFtsY assembly step plays a crucial role in LHCP 
insertion, and GTPase activation enhances the insertion 
efficiency to some extent (Nguyen et al. 2011). Molecular 
dynamic simulations indicate that binding of GTP to cpFtsY 
is an important step in cpSRP54/cpFtsY complex formation 
because it induces conformational changes in cpFtsY that 
favor the formation of a complex with cpSRP54 (Yang et al. 
2011), which is a kinetically fast interaction (Jaru-Amporn-
pan et al. 2007). In recent years, several mechanisms that 
regulate the GTPase activity of the individual SRP GTPases 
and of the cpSRP54/cpFtsY complex have been described. 
GTPase assays using the soluble recombinant cpSRP54/

cpFtsY complex were used to demonstrate that cpSRP43 
and the C-terminus of Alb3 stimulate GTP hydrolysis by the 
complex and that the stimulatory effect of Alb3 C-terminus 
is strictly coupled to the presence of cpSRP43 (Goforth 
et al. 2004; Lewis et al. 2010). A regulatory effect of Alb3 
C-terminus on GTP hydrolysis by the cpSRP54/cpFtsY com-
plex was also described by Chandrasekar and Shan (2017). 
However, in that case Alb3 C-terminus had an inhibitory, 
cpSRP43-independent effect on GTP hydrolysis, which led 
to the hypothesis that this negative regulation might enable 
positioning of the transit complex on the translocase and 
transfer of LHCP to Alb3 before GTP hydrolysis occurs. The 
inconsistent findings are probably due to the use of different 
experimental conditions. Chandrasekar and Shan (2017) per-
formed GTPase assays in the presence of PG liposomes and 
reported that the regulatory effect of Alb3 C-terminus on 
GTPase activation is dependent on the presence of anionic 
phospholipids (Chandrasekar and Shan 2017). The role of 
lipids in regulating the GTPase cycle is further supported by 

Table 2   Kd values of protein–
protein interactions within 
the posttranslational cpSRP-
pathway of Arabidopsis 
thaliana 

Enlisted are the dissociation constants (Kd values) of protein complexes of the posttranslational cpSRP-
pathway. Additionally, the methods by which the Kd values were determined as well as possible variations 
of the experimental settings are shown
FA fluorescence anisotropy, FCS fluorescence correlation spectroscopy, FRET forster resonance energy 
transfer, ITC isothermal titration calorimetry, LA light scattering, MST microscale thermophoresis, SPR 
surface plasmon resonance spectroscopy
* measured in the presence of 0.01 % Nikkol (mimicking of the effect of lipids)

Interaction Method Kd [µM] References

cpSRP43/Alb3
 43/Alb3 C-terminus FA 12–18 Liang et al. (2016)
 43/Alb3 C-terminus ITC 5.1 Horn et al. (2015)
 43/Alb3 C-terminus ITC 9.7–13.2 Falk et al. (2010); Falk and 

Sinning (2010a, 2010b)
 43/Alb3 C-terminus ITC 0.094 Lewis et al. (2010)

cpSRP43/LHCP
 43/LHCP LS 0.17/1.5 Liang et al. (2016)
 43/LHCP + 54M 0.26
 43/LHCP FA 0.14–0.3 Jaru-Ampornpan et al. (2010)
 43/L18 ITC 0.322 Gao et al. (2015)
 43/L18 + RRKRp10 0.107
 43/L18 ITC 1.17 Stengel et al. (2008)
 43/L11 FA 0.022 Liang et al. (2016)
 43/L11 + Alb3 C-terminus 0.011

cpSRP43/cpSRP54
 43/54 MST 0.05 Ziehe et al. (2016)
 43/54 FCS 0.095 Gao et al. (2015)
 43/54M SPR 0.0025 Hermkes et al. (2006)

cpSRP54/cpFtsY
 54/FtsY - PG FRET 2.34 Chandrasekar and Shan (2017)
 54/FtsY + PG 0.13
 54/FtsY* FRET 0.77 Chandrasekar et al. (2017)
 54NG/FtsY* 12
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the finding that liposomes stimulate the basal GTP hydroly-
sis rate of cpFtsY (Marty et al. 2009).

Although knowledge of the dynamics of the transport 
machinery is rather limited, some of the mechanisms 
(besides regulation of the GTPase cycle) involved in coor-
dinating the order of events have recently been elucidated. 
A central role is assigned to cpSRP43 because it shows high 
interdomain dynamics, a feature that probably enables it to 
undergo flexible interactions with its several binding part-
ners (Gao et al. 2015) (Fig. 2b). The binding of cpSRP54 
to cpSRP43 reduces the flexibility of cpSRP43 (Gao 
et al. 2015) and induces a conformational change (Liang 
et al. 2016) that results in an enhanced binding affinity of 
cpSRP43 to LHCP (three to sixfold) (Gao et al. 2015; Liang 
et al. 2016). The affinity between the activated cpSRP43 and 
the L18 motif of LHCP was determined to be in the range of 
100–300 nM (Gao et al. 2015; Liang et al. 2016) (Table 2). 
The release of LHCP from cpSRP is triggered upon interac-
tion of cpSRP43 with the insertase Alb3, as it was shown 
that the addition of recombinant Alb3 C-terminus dissoci-
ates soluble cpSRP43/LHCP complexes (Lewis et al. 2010; 
Liang et al. 2016) and that this effect is coupled to the pres-
ence of the cpSRP43 binding motifs II and IV in Alb3 C-ter-
minus (Liang et al. 2016). Furthermore, it was observed that 
Alb3 C-terminus weakens the interaction between cpSRP43 
and the RRKR10p peptide, leading to the hypothesis that 
this might contribute to the release and transfer of LHCP to 
the insertase (Falk et al. 2010; Horn et al. 2015).

The thylakoid membrane as the site 
of cpSRP‑dependent LHCP insertion 
and pigment loading

Approximately 30 years ago, it was demonstrated in in vitro 
experiments that LHCP is inserted into thylakoid membranes 
but not into envelope membranes (Cline 1986). In later stud-
ies, the in vitro insertion assay of LHCP into thylakoids has 
been extended and successfully used by several groups to 
study the molecular details of this pathway (see above and 
Kuttkat et al. 1995). The thylakoid membrane as the site of 
cpSRP-dependent LHCP insertion is further supported by 
the exclusive localization of the Alb3 translocase in thyla-
koid membrane (Gerdes et al. 2006). In vivo data support 
the important role of cpSRP-dependent LHCP transport; the 
ffc/chaos double-knockout mutant, which lacks cpSRP54 
and cpSRP43, showed pale green leaves due to the loss of 
85% of its chlorophyll as well as a strong decrease in the 
levels of most LHCPs and greatly reduced number of thy-
lakoids (Amin et al. 1999; Hutin et al. 2002). For a detailed 
summary of the phenotypes of cpSRP pathway mutants, we 
refer to previous review articles (Schünemann 2004; Henry 
et al. 2007; Richter et al. 2010). The biogenesis of stable 

LHC complexes in the thylakoid membrane requires assem-
bly with pigments (Kuttkat et al. 1995, 1997; Plumley and 
Schmidt 1995; Tanaka and Tanaka 2011). Because the solu-
ble LHCP/cpSRP transit complex forms in the absence of 
pigments and in vitro experiments have demonstrated that 
inserted LHCP is complexed with pigments and assembled 
in trimers (Kuttkat et al. 1995), it is very likely that pigment 
loading occurs at the site of insertion in the thylakoid mem-
brane. This is consistent with the finding that the chlorophyll 
(chl) b-deficient Arabidopsis thaliana cao-1 mutant can effi-
ciently import LHCPs, while stable assembly with PSII is 
affected (Nick et al. 2013). Furthermore, studies using a chl 
b-deficient Chlamydomonas reinhardtii mutant point to an 
interconnection between pigment synthesis and LHCP bio-
genesis that occurs at the thylakoid membrane (Plumley and 
Schmidt 1995). However, Reinbothe et al. (2006) observed 
severely impaired LHCP import into chloroplasts from a chl 
b-deficient mutant of Arabidopsis thaliana (Reinbothe et al. 
2006), and studies with Chlamydomonas reinhardtii mutants 
showed that the absence of chl b led to an accumulation of 
LHCPs in the cytosol and the vacuole (Park and Hoober 
1997). Based on that evidence, a model of LHCII assembly 
was hypothesized in which chl b is incorporated into LHCP 
in the envelope membrane during import. Non-pigment-
loaded LHCP would reenter the cytosol for degradation 
(Hoober et al. 2007). The transfer of the pigment-loaded 
LHCII from the envelope to the thylakoid was hypothesized 
to be mediated by vesicles. Indeed, in recent years, there 
has been increasing evidence for the presence of a vesicle 
transport system in chloroplasts. However, the question 
of whether or not proteins are transported in addition to 
lipids has not yet clearly been answered (Karim et al. 2014; 
Karim and Aronsson 2014; Lindquist et al. 2016). Tanz et al. 
(2012) suggested a vesicle-based transport of LHCPs pre-
dominantly in cotyledons. As described above, the ffc/chaos 
mutant shows a severely compromised phenotype but still 
contains residual levels of LHCPs, indicating that at least 
some members of the LHCP family can be transported in a 
cpSRP43/54-independent manner in these plants. Consider-
ing that the upregulation of stromal chaperones such as ClpC 
plays a role in compensating for the absence of cpSRP54 in 
ffc mutants (Rutschow et al. 2008) and that yeast mutants 
compensate for the loss of the SRP-pathway by a reduced 
growth rate and induction of heat shock proteins (Mutka 
and Walter 2001), it is likely that the cpSRP double mutant 
uses similar strategies to adapt to the loss of cpSRP. Taken 
together, the model of vesicle-mediated transport of (pig-
ment-loaded) LHCP remains speculative, at least for chlo-
roplasts of higher plants, whereas the current in vitro and in 
vivo data indicate that cpSRP-dependent LHCP transport, 
which includes insertion and pigment loading at the thyla-
koid membrane, plays a primary role in LHCP biogenesis 
in higher plants.
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Conclusions

In the last decades, considerable progress has been made 
in understanding the molecular details of cpSRP/Alb3-
dependent LHCP transport to the thylakoid membrane. 
However, several central issues need to be investigated in 
the future to get a more complete picture of LHCP trans-
port. To further decipher this mechanism, it is important to 
get more structural information about single components 
and protein complexes. Here, it will be especially chal-
lenging to elucidate the structure of the transit complex, 
the Alb3 insertase, and finally the docking complex. In 
addition, little is known about the spatiotemporal coordi-
nation of LHCP transport, insertion, and pigment delivery/
assembly.
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