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Abstract We show that families of nonlinear gravity the-
ories formulated in a metric-affine approach and coupled to
a nonlinear theory of electrodynamics can be mapped into
general relativity (GR) coupled to another nonlinear the-
ory of electrodynamics. This allows to generate solutions
of the former from those of the latter using purely algebraic
transformations. This correspondence is explicitly illustrated
with the Eddington-inspired Born–Infeld theory of gravity,
for which we consider a family of nonlinear electrodynam-
ics and show that, under the map, preserve their algebraic
structure. For the particular case of Maxwell electrodynamics
coupled to Born–Infeld gravity we find, via this correspon-
dence, a Born–Infeld-type nonlinear electrodynamics on the
GR side. Solving the spherically symmetric electrovacuum
case for the latter, we show how the map provides directly
the right solutions for the former. This procedure opens a
new door to explore astrophysical and cosmological scenar-
ios in nonlinear gravity theories by exploiting the full power
of the analytical and numerical methods developed within
the framework of GR.

1 Introduction

The exploration of new gravitational physics beyond gen-
eral relativity (GR) has always been plagued by technical
difficulties. Even within GR, the highly nonlinear character
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of the equations of motion and their constrained structure
makes it difficult to address arbitrary dynamical situations
both, from an analytical and a numerical perspective. Fortu-
nately, important progress has been achieved on the numer-
ical side which currently allows to confront observational
data against model predictions with extraordinary confidence
[1–7]. A good example of this is represented by the recent
observation of gravitational waves and their consistent inter-
pretation in terms of binary mergers [8–12] (see [13] for
a fresh review). Using that technical capacity to explore the
predictions of theories beyond GR is not an easy task at all, as
it would involve a substantial investment of time and human
resources. The present work represents a further step into
bridging the gap between a wide family of modified theories
of gravity and the possibility of implementing well estab-
lished analytical and numerical methods developed within
the framework of GR for their analysis.

In a recent work [14], some of us showed that for Ricci-
based gravity theories (RBGs) in the metric-affine formula-
tion (no a priori relation imposed between the metric ten-
sor and the affine connection), there exists a correspondence
between the space of solutions of those theories and the space
of solutions of GR. This has important technical implications,
as one can define a problem in a given RBG theory, map it
into GR, where it can be solved by standardized analytical or
numerical methods, and then bring the obtained solution back
to the original RBG theory via purely algebraic transforma-
tions, thus avoiding the need for developing specific methods
for that particular RBG theory. In the present work we use
that approach to explore spherically symmetric electrovac-
uum configurations and illustrate how the method works. As
a test, we will recover some previously known solutions and
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will put forward the existence of certain symmetries between
GR and the Eddington-inspired Born–Infeld (EiBI) gravity
theory [15,16], which we use for concreteness and due to
its recent interest in the literature regarding astrophysics and
cosmology beyond GR (see [17] for a recent review on this
class of theories).

To proceed, we will first establish a correspondence
between anisotropic fluid matter in GR and a generic RBG
theory, particularizing it then to the EiBI model. This
approach is followed because spherically symmetric elec-
tric fields can be naturally interpreted as anisotropic fluids.
The previously obtained correspondence will thus allow us to
address the electrovacuum problem in a simplified manner.
This approach will put forward that, in general, the corre-
spondence between GR and a nonlinear (in curvature) grav-
ity theory induces specific nonlinearities in the matter sector
of the GR frame. In other words, if we consider EiBI grav-
ity coupled to Maxwell electrodynamics, the corresponding
matter theory in the GR representation turns out to be a non-
linear theory of electrodynamics (NED). In general, any NED
on the modified gravity side will be mapped into a differ-
ent NED on the GR representation. For the particular case
of EiBI gravity, we identify a family of NEDs which under
the mapping to GR change as a Möbius transformation. For
this family it is also possible to determine the set of NEDs
which remain invariant under the mapping. Understanding
this aspect will shed useful light on some properties of the
electrovacuum solutions of the EiBI gravity which were so
far not fully understood.

The existence of this correspondence is particularly useful
for the community working on astrophysical and cosmologi-
cal applications of nonlinear models of matter, specially those
in NEDs [18–33]. Indeed, in the latter case the GR solution is
known in closed, exact form. This allows to find explicit solu-
tions on the RBG side by solving algebraic equations rather
than differential ones using the method here presented. The
interest of this result is twofold. On the one hand, it breathes
new life into many of such NED models, in particular, into
those discarded on the GR side due to their lack of physical
meaning, as the NED counterpart on the RBG/EiBI side may
be of physical interest. On the other hand, by taking advan-
tage of the full capacity of the analytical and numerical meth-
ods developed within GR, one can now explore in detail new
astrophysical and cosmological applications of RBGs in less
symmetric scenarios with electromagnetic fields, something
previously hardly accessible due to the high nonlinearity of
the RBG field equations.

The article is organized as follows: in Sect. 2 we intro-
duce the main elements of the mapping first presented in
[14] for the RBG family of theories considered in this work,
and outline the properties of their field equations in the
Einstein frame. We proceed to describe how the mapping
works for anisotropic fluids, and then particularize it to the

EiBI gravity model. In Sect. 3 we identify the particular
class of anisotropic fluids electrovacuum fields correspond
to, and work out the mapping for the (very general) fam-
ily of Möbius-type NEDs. These results are particularized in
Sect. 4 to EiBI gravity coupled to Maxwell electrodynamics.
We find the corresponding solution identifying the associated
NED on the GR side by direct application of the mapping. We
conclude in Sect. 5 with a summary and some perspectives
for future research.

2 Main elements of the mapping

2.1 Ricci-based gravity theories

Consider the set of theories of gravity defined by

S = 1

2κ2

∫
d4x

√−gLG
[
gμν, Rμν(�)

] + Sm[gμν, ψm],
(1)

where κ2 is a constant with suitable dimensions, g is the
determinant of the spacetime metric gμν , the scalar func-
tion LG

[
gμν, Rμν(�)

]
is built out of traces of the object

Mμ
ν ≡ gμαRαν , where the (symmetrized) Ricci tensor is

defined as Rμν(�) ≡ Rα
μαν(�), where � ≡ �λ

μν is the
affine connection.1 Here Sm = ∫

d4x
√−gLm(gμν, ψm) is

the (minimally coupled) matter action, which is assumed to
depend only on the spacetime metric and on the matter fields,
collectively labelled by ψm . For the sake of this work we shall
dub this family of theories as Ricci-Based Gravities (RBGs).
RBGs are able to encompass a large variety of gravitational
models such as (besides GR itself), f (R), f (R, RμνRμν),
or Born–Infeld inspired theories of gravity [17], all of which
have attracted a great deal of interest in the recent literature
[34–37].

As we are working in the metric-affine (or Palatini) formal-
ism, the field equations are obtained by independent variation
of the action Eq. (1) with respect to metric and affine con-
nection. The corresponding equations can be conveniently
written under the form [17,38]

Gμ
ν(q) = κ2

|�̂|1/2

[
Tμ

ν − δμ
ν

(LG + T
2

)]
. (2)

where Gμ
ν(q) ≡ qμαRαν(q) − 1

2δμ
νR(q) is the Einstein

tensor of an auxiliary metric qμν . This new metric fulfills
the compatibility condition with the independent connection,

1 In these theories, when the matter is represented by bosonic fields, the
torsion (antisymmetric part of the connection) turns out to be a gauge
degree of freedom and can be set to zero without physical consequences
[17,38].
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i.e., ∇�
μ qαβ = 0 (thus �λ

μν is given by the Christoffel sym-
bols of qμν), while non-metricity is present for the space-
time metric, Qμαβ ≡ ∇�

μgαβ �= 0. In the above expression

the indices of the stress-energy tensor Tμν = −2√−g
δ(

√−gLm )

δgμν

are raised with the space-time metric, Tμ
ν ≡ gμαTαν , so that

T ≡ gμνTμν denotes its trace. It is worth noting that the aux-
iliary metric qμν admits a nice interpretation in terms of an
analogy between some condensed matter systems and grav-
itational physics [39–42] in which the nonmetricity tensor
arises due to the existence of point-like defects in the under-
lying microscopic structure. In that analogy, gμν describes
the physical (defected) geometry, while qμν represents an
idealized structure without defects (vanishing nonmetricity).

Written in the form Eq. (2), the resulting field equations
represent a set of second-order, Einstein-like equations for
the metric qμν , where the right-hand side depends on the
matter fields and, possibly, on gμν . This is particularly useful
from both a conceptual and an operational point of view,
since in RBGs the relation between the auxiliary, qμν , and
spacetime, gμν , metrics can always be written as

qμν = gμα�α
ν . (3)

The deformation matrix �α
ν (hereafter vertical bars will

denote its determinant) depends on the particular RBG cho-
sen but, likewise LG , it can always be written on-shell as
a function of the stress-energy tensor, Tμ

ν (and possibly
on gμν as well). It should be pointed out that this qμν-
representation of the field equations highlights the fact that
gravitational waves will propagate upon the background
defined by qμν , rather than the one defined by gμν (see [43]
for an explanation in the case of Born–Infeld-type theories
of gravity, and [44,45] for some related phenomenology).

An appealing feature of metric-affine theories as follows
from the discussion above is that in vacuum, Tμ

ν = 0, the
deformation matrix becomes the identity. Accordingly, one
has qμν = gμν (modulo a trivial re-scaling) and the field
equations (2) of RBGs yield GR, possibly with a cosmologi-
cal constant term depending on the form of LG . This implies
that metric-affine RBGs, as defined by Eq. (1) do not propa-
gate extra degrees of freedom beyond the standard two polar-
izations of the gravitational field travelling at the speed of
light (same as in GR). In turn, this allows these theories to suc-
cessfully pass both solar system experiments [46–48],2 and
the recent gravitational wave observations from the LIGO-
VIRGO collaboration related to equality of speed of propa-
gation of gravitational and electromagnetic waves [8], as well
as the absence of additional polarization modes [9], results
which have either ruled out or placed strong constraints upon

2 For constraints of these theories from particle physics scattering
experiments, improving the solar system constraints by a few orders
of magnitude (depending on the particular RBG), see [49].

other proposals of gravitational schemes to extend GR [50–
55].

We stress that while the left-hand side of Eq. (2) is a
well defined function of the metric qμν , the right-hand side
depends nonlinearly on the matter fields and gμν via the func-
tions LG and |�̂|. Though the dependence on gμν can be
explicitly solved in favour of qμν in specific cases, such as
in homogeneous and isotropic cosmological models and in
spherically symmetric scenarios, it is unclear that this can
be done in more general and less symmetric configurations.
In fact, from a numerical perspective, the inversion of that
relation is likely to be computationally very expensive. Addi-
tional efforts are thus necessary to bring the above equations
into a form that can be systematically worked out. Such is
the purpose of this paper.

In order to show that the Einstein frame representation of
the field Eq. (2) can be written without making any reference
to the metric gμν , one must consider that there exists a new
matter source coupled to qμν such that the right-hand side of
that equation can be written in the standard Einstein form

Gμ
ν(q) = κ2T̄μ

ν , (4)

where T̄μ
ν ≡ qμα T̄αν represents the stress-energy tensor

of a new set of matter fields of the same kind as the origi-
nal ones, i.e., fluids turn into fluids, scalar fields into scalar
fields, and so on. There is a simple reason to establish this
correspondence. Since the Einstein tensor on the left-hand
side is conserved by virtue of the contracted Bianchi identity,
∇q

μGμ
ν(q) = 0, the right-hand side must also be conserved

on-shell. Since the right-hand side represents a certain kind
of matter with deformations induced by the nonlinear grav-
ity theory, in order to be conserved under the action of ∇q

μ it
should be possible to express it in the form of the same kind
of matter source (fluid, scalar, vector, …), coupled to qμν

in a way that guarantees its conservation. The simplest such
a choice is, evidently, the form of a standard stress-energy
tensor, which is the one we assume here. The equation above
thus supports the convenience of the qμν-representation of
the field equations, which allows to transfer the problem of
generating solutions in RBGs from solving differential field
equations to algebraic ones (albeit non-linear, in general).

Following the above discussion, in order to establish a
direct map between the spaces of solutions of RBGs and
GR, by comparison between Eqs. (2) and (4), one must have

T̄μ
ν = 1

|�̂|1/2

[
Tμ

ν − δμ
ν

(
LG + T

2

)]
, (5)

which relates the effective stress-energy tensor generated by
the matter coupled to the RBG, Tμ

ν , with the one cou-
pled to GR, T̄μ

ν . Note that this map works irrespective
of assumptions on symmetries of the problem or particu-
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lar ansatze for the solutions. As we will see later, a canon-
ical matter Lagrangian (linear in the kinetic term) coupled
to a given RBG generates, via the map, a noncanonical mat-
ter Lagrangian (nonlinear in the kinetic term) from the GR
perspective. Thus, should one start with a canonical matter
Lagrangian, the price to pay when going from a nonlinear
gravity theory to its linear realization (GR) is to transfer the
nonlinearities from the gravity sector to the matter sector.
This will become apparent in the next sections.

2.2 Anisotropic fluids

For the sake of generality, let us consider RBGs in the action
Eq. (1) coupled to an anisotropic fluid of the form

Tμ
ν = (ρ + p⊥)uμuν + p⊥δμ

ν + (pr − p⊥)χμχν , (6)

where normalized timelike gμνuμuν = −1 and spacelike
gμνχ

μχν = +1 vectors have been introduced, while ρ is the
fluid energy density, pr its pressure in the direction of χμ,
and p⊥(r) its tangential pressure, in the direction orthogonal
to χμ. Note that, in comoving coordinates, this fluid can be
conveniently written as

Tμ
ν = diag(−ρ, pr , p⊥, p⊥) . (7)

(obviously standard perfect fluids are just a particular case
of this stress-energy tensor with p⊥ = pr ). To work out the
mapping in this case, consistently with the algebraic structure
of this anisotropic fluid, we propose an ansatz for the matrix
�μ

ν of Eq. (3) under the general form

�μ
ν = αδμ

ν + βuμuν + γχμχν , (8)

where the explicit expressions of the functions {α, β, γ }
(which, in general, will depend on {ρ, pr , p⊥}) can only be
specified once a particular RBG model is chosen. This form
for the matrix �μ

ν is natural given that it is associated to a
nonlinear function of Tμ

ν . Indeed, a power series expansion
of �μ

ν in terms of Tμ
ν leads to the structure Eq. (8) due to

the orthogonality of the vectors uμ and χν , which prevents
the existence of crossed terms.

Introducing these expressions into the RBG field Eq. (2)
we get

Gμ
ν(q) = κ2

|�̂|1/2

[(ρ − pr
2

− LG

)
δμ

ν

+(ρ + p⊥)uμuν + (pr − p⊥)χμχν

]
. (9)

Assuming now the existence of another anisotropic fluid on
the GR side, defined also by Eq. (6), but with new functions

{ρq , pqr , pq⊥}, i.e.,
T̄μ

ν = (ρq + pq⊥)vμvν + pq⊥δμ
ν + (pqr − pq⊥)ξμξν ,

(10)

for new timelike, qμνv
μvν = −1, and spacelike, qμνξ

μξν =
+1 vectors, then the mapping Eq. (5) become

pq⊥ = 1

|�̂|1/2

[
ρ − pr

2
− LG

]
(11)

ρq + pq⊥ = ρ + p⊥
|�̂|1/2

(12)

pqr − pq⊥ = pr − p⊥
|�̂|1/2

. (13)

These equations provide a unique correspondence between
the two sets of scalars {ρ, pr , p⊥} and {ρq , pqr , pq⊥} once
the RBG LagrangianLG is given. Together with the relations
uμuν = vμvν and χμχν = ξμξν , this correspondence allows
to write �μ

ν in Eq. (8) in terms of the solution obtained in
GR. Finally, the application of Eq. (3) allows to find the
spacetime metric gμν which resolves the problem of RBGs
coupled to an anisotropic fluid. In Sect. 4 we will give an
explicit example of this procedure.

2.3 Eddington-inspired Born–Infeld gravity

To work out an explicit and illustrative scenario for the above
mapping on RBGs, let us consider here the case of the so-
called Eddington-inspired Born–Infeld (EiBI) gravity, which
has recently attracted a great deal of interest in the literature
[15,16,56–62]. Its action can be conveniently expressed as

SEi B I = 1

κ2ε

∫
d4x

[√−q − λ
√−g

]
, (14)

where q is the determinant of the metric qμν ≡ gμν +
εRμν(�), and the parameter λ is related to the effective cos-
mological constant of the theory as�e f f = λ−1

εκ2 . The (length-
squared) parameter ε controls the deviations from GR, such
that for fields |Rμν | � ε−1, then GR + �e f f is recovered.
A full account of this theory, its extensions and applications
can be found in the recent review [17]. In this case, the defor-
mation matrix �μ

ν appearing in Eq. (3) is determined by the
relation [17]

|�̂|1/2(�μ
ν)

−1 = λδμ
ν − κ2εTμ

ν , (15)

which clearly shows its dependence on the matter sources
alone.

Thus, considering in this case an anisotropic fluid given by
Eq. (6) and an ansatz of the form Eq. (8) for the deformation
matrix �μ

ν , after a bit of algebra Eq. (15) tells us that
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α = (λ − p̃⊥)(λ − p̃r )1/2

(λ + ρ̃)1/2 (16)

β = (λ − p̃⊥)(λ + ρ̃)1/2

(λ − p̃r )1/2 (17)

γ = (λ + ρ̃)1/2(λ − p̃r )
1/2 , (18)

where ρ̃ ≡ εκ2ρ, p̃r ≡ εκ2 pr , and p̃⊥ ≡ εκ2 p⊥ are the
fluid functions on the RBG frame. Inserting this result into
the fluid mapping Eqs. (11), (12), (13), and after some algebra
we are led to the result

λ + ρ̃ =

√√√√√1 +
[
p̃q⊥ + (ρ̃q+ p̃qr )

2

]

1 +
[
p̃q⊥ − (ρ̃q+ p̃qr )

2

] 1[
1 + ( p̃qr −ρ̃q )

2

] (19)

λ − p̃r =

√√√√√1 +
[
p̃q⊥ − (ρ̃q+ p̃qr )

2

]

1 +
[
p̃q⊥ + (ρ̃q+ p̃qr )

2

] 1[
1 + ( p̃qr −ρ̃q )

2

] (20)

λ − p̃⊥ = 1√
1 +

[
p̃q⊥ + (ρ̃q+ p̃qr )

2

]√
1 +

[
p̃q⊥ − (ρ̃q+ p̃qr )

2

] ,

(21)

where ρ̃q ≡ εκ2ρq , p̃qr ≡ εκ2 pqr , and p̃q⊥ ≡ εκ2 pq⊥ are the
fluid functions on the GR frame. These relations establish the
explicit correspondence between the fluid functions on the
GR side (q−superindex) and those on the EiBI side. In the
next section we will provide an illustrative example of how
this correspondence works by considering the case of NEDs,
which naturally admit an anisotropic fluid description.

3 NEDs as anisotropic fluids

3.1 General description

Nonlinear electrodynamics theories are described by actions
of the form3

Sm = 1

8π

∫
d4x

√−g ϕ(X) , (22)

where ϕ(X) is some function of the field invariant X =
− 1

2 FμνFμν (with Fμν = ∂μAν − ∂ν Aμ the field strength
tensor, and Fμν = gμαgνβFαβ ) characterizing the particular
model. The stress-energy tensor derived from Eq. (22) reads

Tμ
ν = − 1

4π

[
ϕX F

μ
αF

α
ν − ϕ(X)

2
δμ

ν

]
, (23)

3 For simplicity we shall not consider here functions of the second field
invariant FμνF∗μν , where F∗μν = 1

2 εμναβFαβ is the dual of the field
strength tensor Fμν .

where ϕX ≡ dϕ/dX . The corresponding field equations for
the NED field take the form

∂μ(
√−g ϕX F

μν) = 0 . (24)

For static spherically symmetric configurations this leads to
a single nonzero component in the radial direction, which
satisfies ϕXr2√−gtt grr Ftr = Q, with Q an integration
constant identified as the electric charge of the field. Given
that the invariant X takes the form X = −gtt grr (Ftr )2, the
field equations lead to Xϕ2

X = Q2/r4, which allows to alge-
braically solve for X = X (r) once a function ϕ(X) is speci-
fied. As a result, Eq. (23) can be written as

Tμ
ν = 1

8π
diag (ϕ − 2XϕX , ϕ − 2XϕX , ϕ, ϕ) . (25)

A glance at Eq. (7) puts forward that NEDs can indeed be
seen as anisotropic fluids satisfying the relations −ρ = ϕ −
2XϕX , pr = −ρ, and p⊥ = ϕ. Since these relations imply
that X = X (ρ), we can interpret p⊥ as p⊥ = K (ρ), where
K (ρ) characterizes a particular fluid model in much the same
way as ϕ(X) specifies a given NED.

3.2 NEDs mapped into NEDs

By imposing on the left-hand side of Eqs. (19) and (20) the
NED condition (on the RBG frame) pr = −ρ, and divid-
ing the two equations, one finds that the NED condition (on
the GR frame) pqr = −ρq is automatically recovered. This
implies that NEDs on the RBG and GR frames naturally
map into each other. Note that this property was not obvi-
ous a priori given the highly nonlinear character of the map-
ping between theories. Denoting from now on the two sets of
densities and pressures with explicit labels “GR” and “BI”,
respectively, to be as clear as possible, from Eqs. (19), (20)
and (21) one finds that the map between fluids induced by
the EiBI → GR transformation takes the form (recall that
tildes denote an implicit εκ2 factor)

ρ̃ BI = λρ̃ GR − (λ − 1)

1 − ρ̃ GR

(26)

K̃ BI = λK̃ GR + (λ − 1)

1 + K̃ GR

, (27)

where K̃ GR and K̃ BI specify the corresponding fluid/NED
models on the GR and BI sides, respectively. From the
above expressions (26) and (27) it is clear that starting from
Maxwell electrodynamics in any of the frames will generate
a NED in the other one. The structure of the transformations
above, in fact, indicates that any Möbius-type NED of the
form

K̃ GR(ρ̃ GR) = a GR + b GRρ̃ GR

c GR + d GRρ̃ GR

, (28)
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with constant coefficients {a GR, b GR, c GR, d GR} will turn into
another Möbius-type NED with new coefficients
{a BI, b BI, c BI, d BI}. To be precise, using Eqs. (26) and (27)
this structure is transferred into the BI side as

K̃ BI(ρ̃ BI) = a BI + b BIρ̃ BI

c BI + d BIρ̃ BI

, (29)

with the following correspondences between coefficients

a BI = (λ − 1)[(λ − 1)d GR + λ(b GR + c GR)] + λ2a GR

b BI = (λ − 1)(c GR + d GR) + λ(a GR + b GR)

c BI = (λ − 1)(b GR + d GR) + λ(a GR + c GR)

d BI = a GR + b GR + c GR + d GR . (30)

This result yields the intriguing property that the determinant
of the two Möbius transformations coincide, i.e., det(K̃ GR) =
det(K̃ BI) = a GRd GR−b GRc GR. This puts forward an underlying
global conformal symmetry in the mapping between the EiBI
theory and GR.

The Möbius-type NED structure above is very general
and encompasses most of the models known in the liter-
ature. For this family of models one finds, in particular,
that the subset that remains invariant under the mapping
is not empty. Defining this set as those models for which
{a BI = a GR, b BI = b GR, c BI = c GR, d BI = d GR}, one finds two
families of solutions depending on the value of λ. If λ = 1,
then a GR = 0 and c GR = −b GR, with b GR and d GR free parame-
ters. Ifλ �= 1 then c GR = −(a GR+b GR) andd GR = a GR/(λ−1).
Note that Maxwell electrodynamics K (ρ) = ρ is not in this
subset (but K (ρ) = −ρ is, though it lacks physical interest).

From now on we shall focus on asymptotically flat solu-
tions, λ = 1, for which Eq. (29) becomes

K̃ BI(ρ̃ BI) = a GR + (a GR + b GR)ρ̃ BI

(a GR + c GR) + (a GR + b GR + c GRd GR)ρ̃ BI

. (31)

The above equations and considerations allow to reconstruct
the NED model on each side of the BI/GR correspondence.
Focusing our attention upon electrostatic, spherically sym-
metric configurations, the stress-energy tensor Eq. (23) on
the GR side reads

T̄μ
ν = 1

8π
diag(� − 2Z�Z ,� − 2Z�Z ,�,�) , (32)

where Z is the electromagnetic field invariant of a NED with
Lagrangian density �(Z) coupled to qμν , i.e., the invari-
ant Z = − 1

2 BμνBμν is associated to the field strength
Bμν = ∂μBν − ∂νBμ and Bμν = qμαqνβBαβ . Identifying
the stress-energy tensor Eq. (32) with that corresponding to
the anisotropic fluid Eq. (7) yields the two relations ρ̃ GR =
2Z�̂Z −�̂ and K̃ GR = �̂, where �̂ ≡ εκ2�/(8π). Inserting

the second relation into Eq. (28) yields ρ̃ GR = a GR−c GR�̂

−b GR+d GR�̂
,

and plugging this result back into the first relation one finds
the result

−
(

b GR − d GR�̂

a GR − (b GR + c GR)�̂ + d GR�̂2

)
d�̂ = dZ

2Z
, (33)

which can be readily integrated as

(−b GR + c GR) arctan
[−b GR−c GR+2d GR�̂

D1/2

]

D1/2

+1

2
log[a GR − (b GR + c GR)�̂ + d GR�̂

2] = 1

2
log

[
Z

Z0

]
,

(34)

(provided that D ≡ 4a GRd GR − (b GR + c GR)
2 > 0), where

Z0 is an integration constant. The above expression allows
for a resolution of the function �̂(Z) of the GR side, once
the corresponding function on the EiBI side, as given by the
coefficients {a BI, b BI, c BI, d BI}, is specified. As for the invari-
ant subset of NEDs with λ = 1, a BI = 0, and c GR = −b GR,
the above result is singular. Direct integration of Eq. (33) in
that case yields the analytical expression

�̂(Z) = − b GR

d GRProductLog

[
− b GR

d GR

√
Z
Z0

] (35)

which is well defined provided that b GR/d GR < 0.
The mapping presented in this work is particularly trans-

parent for those models where the GR solution is known in
closed, analytical form. This is precisely the case for spher-
ically symmetric, electrovacuum solutions out of NEDs.
Indeed, in this case, for asymptotically flat solutions with a
Maxwell fall-off at infinity, XMaxwell = Q2/r4, the general
solution is given by [63]

ds2
GR = −C(x)dt2 + dx2

C(x)
+ x2d�2 (36)

C(x) = 1 − 2M(x)

x
(37)

M(x) = M0 + κ2

2

∫ ∞

x
x2T t

t (x)dx (38)

where d�2 = dθ2 +sin2(θ)dφ2 is the angular element in the
two-spheres, M0 is Schwarzschild mass, and T t

t = −ρ GR.
This expression leads to an immediate computation of the
metric function when a given model is specified, allowing to
generate the plethora of solutions already known for many
NED models satisfying the conditions above.
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4 An example: Maxwell electrodynamics

To illustrate the method explained in the previous section,
here we shall derive the solution for the case of Maxwell elec-
trodynamics coupled to EiBI gravity. Maxwell Lagrangian
corresponds to ϕ(X) = X , which leads simply to K BI = ρ BI.
Assuming asymptotically flat solutions (λ = 1), the fluid
mapping Eqs. (26) and (27) yield the corresponding func-
tions on the GR side as

ρ̃ GR = ρ̃ BI

1 + ρ̃ BI

(39)

K̃ GR = ρ̃ GR

1 − 2ρ̃ GR

, (40)

To avoid overcharging the notation, in what comes next
we will drop the label “GR” and thus all functions will be
implicitly assumed to be computed on the GR side (unless
explicitly stated). From the matter conservation equation,
∇(g)

μ Tμν = 0, in a static spherically symmetric background
Eq. (36), one finds that for a NED-type fluid this equation
can be expressed as

dρ

dx
+ 2[ρ + K (ρ)]

x
= 0 , (41)

and can be suitably rearranged as

x2 = x2
0 exp

[
−

∫ ρ dρ′

ρ′ + K (ρ′)

]
. (42)

where x0 is an integration constant. Inserting the expression
(40) into the above equation and performing the integral one
arrives to the result

ρ(1 − εκ2ρ) = x4
0

x4 . (43)

Imposing on this relation the asymptotic Maxwell limit,
ρ(x) −→

x→∞ Q2/(8πx4), allows to fix the constant x4
0 =

Q2/(8π), so that the quadratic equation above is solved as
(choosing the branch with asymptotic Maxwell limit)

ρ =
1 −

√
1 − εκ2Q2

2πx4

2εκ2 . (44)

From Eq. (38) this implies that

Mx = κ2x2

2
ρ = x2

4ε

⎛
⎝1 −

√
1 − εκ2Q2

2πx4

⎞
⎠ . (45)

where Mx ≡ dM/dx .
It is instructive to find the explicit form of the NED

Lagrangian density generating this expression. Indeed, from

the general solution (34) particularized to this case, and by
demanding the recovery of Maxwell electrodynamics for
small fields, one gets

�̂(Z) = 1

2

(
−1 +

√
1 + 4Z

Z0

)
, (46)

which also fixes the value of the integration constant Z0

as Z−1
0 = εκ2/(8π). The square-root structure of this

Lagrangian density is actually the same as that of Born–Infeld
electrodynamics [18], defined by the Lagrangian density4

LBI = 2β2

(
1 −

√
1 − X

β2

)
, (47)

(where β is Born–Infeld parameter) originally introduced to
bound both the electric field and the self-energy of a point-
like charge. Indeed, solving the NED equations in this case,
∇μ(�Z Bμν) = 0, which for static, spherically symmetric
solutions read x2�Z Z1/2 = Q, we obtain the field invariant

Z(x) = Q2

x4

1(
1 − εκ2

2π
Q2

x4

) , (48)

For the correct Born–Infeld electrodynamics branch, ε < 0,
this expression yields a bounded electric field at the center,
Z(x = 0) = β2 = |2π/(εκ2)|, which is to be expected
from the known behaviour of this model. In addition, start-
ing from the NED stress-energy tensor Eq. (32) and after
a bit of algebra, one arrives at the same equation for the
energy density Eq. (44) as obtained by direct application of
our method, which confirms the consistence of the approach.
The integration of that equation throughout all space reveals
that the boundness of the field invariant is transferred into the
boundness of the total energy of the electromagnetic field, as
it should be expected.5

The next step of the mapping is to generate the solution
for the metric functions on the EiBI gravity side starting from
its GR counterpart above. In order to make contact with rele-
vant previous literature, we will focus on the negative, Born–
Infeld branch. For convenience, we introduce a length scale
as ε = −2l2ε < 0, define the charge radius r2

Q ≡ κ2Q2/(4π),

and introduce another length scale r4
c ≡ l2ε r

2
Q , which allows

4 From the definitions introduced so far this identification is exact pro-
vided that β2 = −2π/(εκ2), i.e., for the negative branch of ε. For
the positive branch of ε > 0 this Lagrangian flips the sign inside the
square-root and a global sign out of it as compared to Born–Infeld elec-
trodynamics.
5 In the branch ε > 0 the field invariant diverges instead at a radius
x4
� = εκ2Q2/(2π), but both the energy density and the total energy

turn out to be finite as well.
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to use the dimensionless variable y = x/rc, in terms of which
the mass function Eq. (45) reads

My = r3
c

8l2ε
y2

(√
1 + 4

y4 − 1

)
. (49)

By integrating this expression one has fully specified the GR
line element according to the set of Eqs. (36), (37) and (38).
However, we do not need to follow that path. Instead, we note
that the mapping from this GR solution to the EiBI theory
involves the deformation matrix �μ

ν introduced in Eq. (15).
Due to this equation, the structure in 2×2 blocks of the stress-
energy tensor Tμ

ν is transferred into a similar structure for
this matrix as (using the anisotropic fluid representation)

�μ
ν =

(
�1 Î 0̂

0̂ �2 Î

)
, (50)

with �1 = λ − ρ̃ BI and �2 = λ + ρ̃ BI, where Î and 0̂ are
the 2×2 identity and zero matrices, respectively. Using Eqs.
(26) and (44), the dependence of �μ

ν on the dimensionless
radial variable y is completely specified, leading to

ρ̃ BI = y2 − √
y2 + 4

y2 + √
y2 + 4

. (51)

Writing now the line element associated to gμν as6

ds2
BI = −A(r)dt2 + B−1(r)dx2 + r2(x)d�2 , (52)

and using the fundamental relation between metrics, Eq. (3),
an explicit expression for gμα is automatic. Focusing first
on the spherical sector and using the dimensionless variable
z = r/rc, we find

y2 = z2�2 = z2(1 + ρ̃ BI) , (53)

which leads explicitly to

z2 = y2 + √
4 + y2

2
. (54)

Now, taking a derivative on the relation above yieldsdy/dz =
�1/�

1/2
2 and, replacing in the GR-expression (45), yields the

result

Mz = δ1
�1

4z2�
1/2
2

= δ1
z4 + 1

4z4
√
z4 − 1

, (55)

6 Though in spherically symmetric systems the gauge can always be
fixed to have only two independent functions, nonetheless we shall use
this form of the line element for the sake of this computation.

where we have isolated all the constants of the problem into

the parameter δ1 ≡
√
r3
Q/ lε . To complete the correspondence

one just needs, in addition to the relation between radial coor-
dinates (53), to work out the relation (3) in the temporal and
radial sectors, to cast the line element (52) into the convenient
form

ds2 = −C(y)

�1
dt2 + dy2

�1C(y)
+ z2(y)d�2 (56)

where from (37) and (53) one hasC(y) = 1−2M(z)/(z�1/2
1 ),

with the mass function defined in (55). This finally closes the
problem.

The line element (56) with the expressions (54) and (55)
exactly match those found in previous works [64,65] (see
also the discussion of [66] for the proper interpretation of
this line element) by direct integration of the differential
equations of EiBI gravity coupled to a Maxwell field. The
derivation here only involved the resolution of the GR equa-
tions coupled to a specific NED (which turned out to corre-
spond to Born–Infeld electrodynamics) and then some purely
algebraic manipulations. The analysis of the structure of this
line element reveals the existence of geometries replacing
the point-like central singularity by a wormhole, which pro-
vides geodesically complete solutions with a non-singular
character regarding the paths of physical observers and the
scattering of waves [67]. The presence of the wormhole struc-
ture is inferred from the analysis of Eq. (54), which implies
that z(y) has a minimum at y = 0, where it bounces off.
The bottom line of this result is that, starting from a known
GR solution corresponding to some nonlinear matter field,
the mapping allows to find the corresponding solution on the
RBG side (EiBI in this example) coupled to another nonlinear
field. Moreover, it illustrates how this is achieved by solving
purely algebraic equations rather than differential ones.

4.1 Solving an old puzzle

The above correspondence allows to explain one striking
result that went unexplained in the original publications
[65,68], were the above non-singular solutions were first
found. In such publications it was considered the case of
quadratic gravity defined by a Lagrangian density LG =
R + lP (R2 + aRμνRμν), where lP ≡ √

h̄G/c3 is Planck’s
length and a a dimensionless constant, coupled to an electro-
magnetic Maxwell field. It was noted there that, when setting
δ1 = δc, where the constant δc ≈ 0.57206 arises in the inte-
gration of the mass function (55), then a family of solutions
with the mass spectrum

M = nBI

(
Nq

Nc

)3/2

mP , (57)
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is found, where Nq = q/e is the number of charges (and
e is proton’s charge), mP = √

h̄G/c is Planck’s mass, and
Nc
q = √

2/αem (with αem the fine-structure constant), defines
a critical charge. The puzzle about this result lies on the
fact that, despite starting with Maxwell electrodynamics, the
constant nBI = π3/2/(3�[3/4])2 ≈ 1.23605 appearing in
(57) is a number which arises in the computation of the total
energy of the electrostatic solutions of Born–Infeld electro-
dynamics, derived from (47) as εBI = 4πnBI q3/2β1/2. Now,
the mass spectrum (57) defines a set of objects with pecu-
liar properties as compared to those with masses above or
below this value (see [65,68] for details), in that in this case
curvature divergences go away everywhere.7 The underlying
reason of why a specific number so tightly related to Born–
Infeld electrodynamics appears in the context of quadratic
gravity coupled to Maxwell electrodynamics triggered addi-
tional research.

A first element to resolve this puzzle was provided in Ref.
[64]. There it was found that, for fields whose stress-energy
tensor have the same algebraic structure as that of an electro-
static, spherically symmetric field, the corresponding solu-
tions of quadratic gravity and those of EiBI gravity (14) are
exactly the same. Indeed, if we set again ε = −2lε then the
mass (57) in EiBI theory reads

M = nBI

(
Nq

Nc

)3/2

mP

(
lP
lε

)1/2

, (58)

so a new term on the ratio lP/ lε is picked up. We see again
the re-appearance of Born–Infeld number, nBI , in this case.
Now, the explicit example of the mapping above provides
the second element to resolve this puzzle. Indeed, if we com-
pute the total energy associated to the Born–Infeld NED field
defined by (46), using (44) we find

ε = 4π

∫ ∞

0
dxx2ρ(x) = nBI q

3/2(8l2ε )−1/4 , (59)

and we see that this is exactly the total energy of the mat-
ter Born–Infeld field, modulo some suitable identification
between the respective length scales on the matter, β2, and
gravity, l2ε , sides (see footnote 4 above). The bottom line of
this discussion is that, via the correspondence described in
the present work, the nonlinear properties of the matter fields
coupled to GR are somewhat transferred to the gravitational
sector on the RBG side of the mapping which, for the case of
the puzzle described here, involves two stages: GR + Born–
Infeld NED → quadratic gravity + Maxwell → EiBI gravity
+ Maxwell, making the Born–Infeld NED number nBI to

7 Nonetheless, subsequent research has shown that, regardless of
whether curvature divergences are present or not, any electrovacuum
solution in EiBI/quadratic gravity is non-singular, see [67,69] for
details.

emerge on the RBG side, as well as the square-root structure
of the respective Lagrangian densities.

5 Conclusion and perspectives

In this work we have introduced a correspondence between
the space of solutions of Ricci-based theories of gravity for-
mulated in the metric-affine approach, and that of General
Relativity. This is possible thanks to the formulation of the
RBG field equations in the Einstein frame in terms of an aux-
iliary metric, with the matter fields sourcing the right-hand
side of such equations via nonlinear contributions. The exis-
tence of this mapping is independent of any assumption on
symmetries of the scenario and/or the solutions under con-
sideration, being instead completely general.

We have illustrated this mapping by explicitly formulating
it for anisotropic fluids, showing the correspondence between
the spaces of solutions of Eddington-inspired Born–Infeld
gravity and GR coupled to different shapes of this same
matter source. Moreover, we have used this correspondence
together with the fact that spherically symmetric, non-linear,
electric fields can be seen as a particular kind of anisotropic
fluid, to construct the EiBI electrovacuum solutions in terms
of the corresponding solutions in the GR frame. We also
showed that there exists a family of NEDs, with the form of
a Möbius transformation which, under the map that relates
GR and EiBI, maintains the structure of the NED. This sug-
gests that these mappings between theories may hide new
symmetries that are to be explored.

As an explicit application of the map, we found that when
EiBI is coupled to Maxwell electrodynamics, the correspond-
ing matter theory on the GR side is a specific NED with a
square-root structure, which for the negative branch of the
EiBI parameter exactly coincides with that of Born–Infeld
theory of electrodynamics. This allowed us to fully recon-
struct known solutions in the literature of EiBI gravity, using
the mapping instead of solving differential field equations
and, as a bonus, to solve an old puzzle related to the appear-
ance of a specific number associated to the Born–Infeld NED,
in the gravitational sector of EiBI gravity coupled to Maxwell
electrodynamics. This explicit example illustrates how the
mapping introduced in this work may breath new life into
nonlinear matter models in the framework of GR regardless
of their intrinsic physical interest, since their counterpart on
the RBG side may admit a natural motivation. Though this
work has focused on EiBI gravity, it is applicable to any
other RBG, for instance, f (R) theories [70,71], following a
similar procedure as the one described here.

The method presented here opens a new door to attack
realistic astrophysical and cosmological scenarios in RBGs,
which were previously unaccessible due to the difficulty to
explicitly resolving the field equations (2) and inverting the
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relation (3) between metrics. From this starting point, regu-
lar solutions, gravitational waves, signatures of horizonless
compact objects, less symmetric cosmological settings, and
so on, in RBG theories, can now be tackled from a differ-
ent perspective using the full capability of the analytical and
numerical methods developed within the GR framework.

In this sense, there are several specific cases of interest for
which this method can prove its power. We underline here the
case of the axisymmetric solutions of the RBG field equa-
tions. This is a problem of enormous interest from both a
theoretical and phenomenological perspective and, as such,
different attempts to find explicit solutions in modified the-
ories of gravity have been proposed in the literature (like the
Janis-Newman algorithm [72–75]). Having obtained in this
work the electrovacuum, static, spherically solution of the
EiBI gravity by using the mapping, the next step would be to
find the counterpart of the Kerr-Newman solution in several
RBGs following a similar approach [76]. This would allow us
to directly explore normal modes, perturbations of all kinds,
black hole shadows, the existence of echoes in gravitational
wave emission,…, and look for observational discriminators
with respect to GR predictions, something hardly accessible
by other means within the context of these theories.

From a more technical point of view, the study of more
general setups involving time-dependent electromagnetic
fields without a correspondence with fluids is an open prob-
lem that we hope to address in the future. Similarly, the exten-
sion of the analysis presented here to other matter sources of
interest for astrophysics and cosmology, such as scalar or
non-abelian fields, will also be discussed in detail elsewhere.
Work along several of the lines above is currently underway.
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