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Abstract
Immunotherapy based on checkpoint blockers has proven survival benefits in patients with melanoma and other malignan-
cies. Nevertheless, a significant proportion of treated patients remains refractory, suggesting that in combination with active 
immunizations, such as cancer vaccines, they could be helpful to improve response rates. During the last decade, we have 
used dendritic cell (DC) based vaccines where DCs loaded with an allogeneic heat-conditioned melanoma cell lysate were 
tested in a series of clinical trials. In these studies, 60% of stage IV melanoma DC-treated patients showed immunological 
responses correlating with improved survival. Further studies showed that an essential part of the clinical efficacy was associ-
ated with the use of conditioned lysates. Gallbladder cancer (GBC) is a high-incidence malignancy in South America. Here, 
we evaluated the feasibility of producing effective DCs using heat-conditioned cell lysates derived from gallbladder cancer 
cell lines (GBCCL). By characterizing nine different GBCCLs and several fresh tumor tissues, we found that they expressed 
some tumor-associated antigens such as CEA, MUC-1, CA19-9, Erb2, Survivin, and several carcinoembryonic antigens. 
Moreover, heat-shock treatment of GBCCLs induced calreticulin translocation and release of HMGB1 and ATP, both known 
to act as danger signals. Monocytes stimulated with combinations of conditioned lysates exhibited a potent increase of DC-
maturation markers. Furthermore, conditioned lysate-matured DCs were capable of strongly inducing CD4+ and CD8+ T 
cell activation, in both allogeneic and autologous cell co-cultures. Finally, in vitro stimulated CD8+ T cells recognize HLA-
matched GBCCLs. In summary, GBC cell lysate-loaded DCs may be considered for future immunotherapy approaches.
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M5-DCs	� Dendritic cells matured with M5 lysate
M8-DCs	� Dendritic cells matured with M8 lysate
mAbs	� Monoclonal antibodies
MHC	� Major histocompatibility complex
MUC-1	� Mucin-1
PBMC	� Peripheral blood mononuclear cells
rhGM-CSF	� Recombinant human granulocyte–mac-

rophage colony-stimulating factor
rhIL	� Recombinant human interleukin
TAAs	� Tumor associated antigens
Th1	� Type 1 T helper cells
Th2	� Type 2 T helper cells
TNF-α	� Tumor necrosis factorα
TRIMEL-DCs	� Dendritic cells matured with TRIMEL

Introduction

The recent use of immune-checkpoint blocker antibod-
ies has demonstrated durable clinical benefits in patients 
with melanoma, lung cancer and other solid tumors [3–9]. 
Despite this relevant clinical performance, a high percentage 
of treated patients remains refractory, strongly suggesting 
that the combination with active immunizations may be use-
ful to improve the response rates of those patients. In this 
context, cancer vaccines, particularly dendritic cell (DC)-
based vaccines, can be used as complementary treatments in 
cancer patients. Optimal delivery of a wide-ranging pool of 
tumor-associated antigens (TAAs) and the use of adequate 
adjuvants are shown to be crucial for vaccine success [10]. 
During the last decade, we have been able to produce thera-
peutic DCs using an allogeneic heat-conditioned melanoma 
cell lysate named TRIMEL. Sixty percent of advanced mela-
noma patients treated with these DCs showed a delayed type 
hypersensitivity reaction against TRIMEL, which correlated 
with a threefold prolonged survival [11]. This strategy pro-
vides a reproducible pool of almost all the potential mela-
noma-associated antigens, suitable for use in a wide range 
of patients independent of their major histocompatibility 
complex (MHC) haplotypes or the availability of autolo-
gous tumor tissue [12]. Moreover, we previously showed 
that TRIMEL contains some heat shock-induced damage-
associated molecular patterns (DAMPs), such as high mobil-
ity group box-1 (HMGB1) and calreticulin (eCRT), which 
mediate an optimal maturation, activation and antigen cross-
presentation of the monocyte-derived DCs, and thus enable 
them to activate antigen-specific T cells [13]. However, 
the development of an optimal allogeneic tumor cell lysate 
preparation for different tumor types is crucial to expand the 
use of these approaches for different cancers.

Gallbladder cancer (GBC) is the most common cancer of 
the biliary tree. Although GBC is infrequent in developed 
countries [14], in South America and particularly in Chile, 

this tumor constitutes a major health problem [14–17]. The 
underlying causes for the high risk of GBC in these areas are 
unclear, but several important risk factors probably contrib-
ute, including chronic inflammation caused by gallstones, 
high obesity rates and genetic susceptibility in women 
of indigenous Mapuche ancestry, in which the incidence 
increases to 27.3 cases per 100,000 [14, 16, 17].

Early detection and diagnosis of GBC is complicated 
because the clinical symptoms are manifested in advanced 
stages. The average survival time for patients with advanced, 
non-resectable GBC varies from 4 to 14 months [17, 18]. 
The most effective treatment for this type of cancer is surgi-
cal removal of the primary tumor and areas of local exten-
sion. Unfortunately, less than 10% of patients have resectable 
tumors, and nearly 50% of them present metastasis at the 
time of diagnosis [19]. Even with surgery, most of the GBC 
patients progress to a metastatic stage, highlighting the need 
for novel adjuvant therapies, such as immunotherapy.

The purpose of this study was to investigate the immu-
nogenicity of several combinations of tumor lysates derived 
from different GBC cell lines (GBCCL) and their effect 
on monocyte differentiation and activation to DCs and 
their capacity to induce an in vitro T cell-mediated anti-
GBC response. In this respect, a major requirement for the 
potential clinical effectiveness of GBC lysate-loaded DCs 
is to investigate the presence of shared TAAs in GBCCL 
and in fresh tumor tissues. Our results suggest that human 
DCs matured with specific GBCCL heat shock-conditioned 
lysates are capable of inducing specific T cells activation 
against this tumor and can be considered for the develop-
ment of future immunotherapeutic approaches for GBC 
patients.

Materials and methods

Cell lines and cell lysates

GBCCL GBd1 (CVCL_H705), G415 (CVCL_8198), 
OCUG-1 (CVCL_3083), NOZ (CVCL_3079), TGBC-
1TKB (CVCL_1769; hereafter 1TKB), TGBC-2TKB 
(CVCL_3339; hereaf ter 2TKB), TGBC-14TKB 
(CVCL_3340; hereafter 14TKB) and TGBC-24TKB 
(CVCL_1770; hereafter 24TKB) were provided by Juan 
Carlos Roa (Department of Pathology, Pontificia Univer-
sidad Católica de Chile, Santiago, Chile). The GBCCL 
CAVE was established in our lab from a primary adenocar-
cinoma GBC tumor sample from a Chilean patient. NOZ, 
GBd1 and G415 cells were grown in RPMI 1640 culture 
medium (Corning, NY, USA), whereas OCUG-1, 1TKB, 
2TKB, 14TKB, 24TKB and CAVE were grown in DMEM 
culture medium (Corning, NY, USA). Culture media were 
supplemented with 10% fetal bovine serum (FBS), 10 U/
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mL penicillin and 10 mg/mL streptomycin (Corning, NY, 
USA). Cells were maintained at 37 °C under 5% CO2 and 
95% relative humidity.

Cell lysates were produced as previously described 
[13]. Briefly, for individual GBCCL lysates, 4 × 106 
cells/mL were heat shocked at 42 °C for 1 h, incubated 
for 2 h at 37 °C and then lysed. For GBCCL combined 
lysates, cells were mixed in equal amounts to achieve a 
final concentration of 4 × 106 cells/mL, and heat shocked 
as described before. The mixed cell lysates evaluated 
were made as follows: M1 (24TKB + GBd1 + G415); 
M 2  ( 2 T K B   +   2 4 T K B   +   G B d 1 ) ;  M 3 
(1TKB + 2TKB + 24TKB); M4 (OCUG1 + GBd1 + G415); 
M5 (2TKB + G415 + OCUG1); M6 (NOZ + OCUG 
1 + G415); M7 (1TKB + 14TKB + 24TKB); and M8 
(24TKB + OCUG1 + G415).

Antibodies

Monoclonal antibodies (mAbs) against human carcinoem-
bryonic antigen (CEA; clone COL-1), erbB2 (clone 3B5), 
and survivin (clone 8E2) were purchased from Thermo 
Fisher Scientific (Waltham, Massachusetts, USA). mAbs 
against human mucin-1 (MUC-1; clone HMFG1), cancer 
antigen 19-9 (CA19-9; clone SPM110) and calreticulin 
(clone FMC 75) were purchased from Abcam (Cambridge, 
USA). mAbs against human CD3 eFluor450 (clone SK7), 
human leukocyte antigen (HLA)-DR APC eFluor780 (clone 
LN3), CD83 PE Cy7 (clone HB15e), CD25 PerCP Cy5.5 
(clone BC96), CD69 PE (clone FN50) and interleukin (IL)-4 
PE Cy7 (clone 8D4-8) were purchased from eBioscience 
(San Diego, CA, USA). mAbs against human CD8 PE Cy7 
(clone SK1), C-C chemokine receptor type 7 (CCR7) PE 
(clone G043H7), CD4 APC Cy7 (clone RPA-T4), tumor 
necrosis factor (TNF)-α PerCP (clone Mab11) and interferon 
(IFN)-γ AlexaFluor 647 (clone 4S.B3) were purchased from 
BioLegend (San Diego, CA, USA). Polyclonal goat anti-
mouse IgG antibody was purchased from eBioscience. mAbs 
against human HLA-ABC (clone G46-2.6), CD80 BV421 
(clone L307.4), CD86 BB515 (clone 2331), C-X-C motif 
chemokine receptor (CXCR)3 APC (clone 1C6/CXCR3) 
and CXCR4 APC (clone 12G5) were purchased from BD 
Pharmingen (San Diego, CA, USA).

Flow cytometry

The surface expression of MUC-1, erbB2, survivin, CA19-9, 
CEA, and eCRT was analyzed by flow cytometry. Intracel-
lular staining was performed with the Foxp3/Transcription 
Factor Fixation/Permeabilization Concentrate and Diluent 
kit (eBioscience). Live/dead kit (Thermo Fisher) was used 
for live/dead cell discrimination. Flow cytometry was con-
ducted on a FACSVerse flow cytometer (BD Biosciences) 

and data analysis was performed using the FlowJo software 
(Tree Star, Inc., Ashland, OR, USA).

Reverse transcription polymerase chain reaction 
(RT‑PCR)

Total RNA was extracted from cells using TriPure reagent 
(Roche) and used to determine the expression and relative 
level of the Melanoma-associated antigen (MAGE), G anti-
gen (GAGE) and B melanoma antigen (BAGE) in GBCCL. 
cDNAs were synthesized with M-MLV Reverse Tran-
scriptase (Life Technologies). PCR was performed using 
cDNA template in the MasterCycler (Eppendorf), accord-
ing to the manufacturer’s instructions. The sequences of the 
used primers are available under request.

Immunohistochemistry

Sections of 3 µm thickness from paraffin-embedded GBC 
tissues were mounted on slides, rehydrated and antigen 
retrieval was performed by heat in Tris–EDTA pH 9.0 or 
citrate buffer pH 6.0 depending on the Ab used. Primary 
Abs were used according to manufacturer’s instructions 
(CEA dilution 1:200, clone COL-1, Thermo Scientific; 
MUC-1 dilution 1:200, clone HMFG1, Abcam; erbB2 dilu-
tion 1:200, clone 3B5, Thermo Scientific; CA19-9 dilution 
1:50, clone SPM110, Abcam; and survivin dilution 1:50, 
clone 8E2, Thermo Scientific). The slides were incubated 
with primary Abs in a moist chamber overnight at 4 °C. 
After incubation with primary Abs, slides were washed with 
TBS before incubation with labeled secondary Abs for 1 h at 
4 °C. Sections were subsequently incubated with ABC solu-
tion for 30 min (ABC Vectastain Kit Elite PK6200, Vector 
Laboratories), washed with three changes of TBS, incubated 
with Dako-Chromogen solution and washed with deionized 
water. Background staining was performed with Mayer’s 
hematoxylin, sections were dehydrated through ascending 
alcohols to xylene and mounted. Negative control slides 
omitting the primary Ab were included in all batches. An 
expert pathologist evaluated the expressions of CEA, MUC-
1, c-erbB2, CA19-9 and survivin in GBC tissues.

Enzyme‑linked immunosorbent assay (ELISA)

The concentration of HMGB1 in 100 µL of supernatants 
from control and heat shocked GBCCL (4 × 106 cells/mL) 
were measured by ELISA using a specific HMGB1 ELISA 
kit according to the manufacturer’s instructions (Cloud-
Clone Corp.). 450 nm optical densities were measured in a 
Sunrise absorbance reader (Tecan).
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ATP determination

The concentration of ATP in supernatants from control and 
heat shocked GBCCL (4 × 106 cells/mL) was measured by 
the Luciferase-Based ATP Determination Kit (Life Tech-
nologies) according to the manufacturer’s instructions. 
Luminescence was measured in a TopCount luminescence 
counter (PerkinElmer).

DC generation

Adherent monocytes isolated from peripheral blood mono-
nuclear cells (PBMC) of healthy donors from the Centro 
Metropolitano de Sangre y Tejidos, Hospital Metropoli-
tano (Santiago, Chile) were cultured in serum-free AIM-V 
medium (Invitrogen) for 22 h with 500 U/mL recombinant 
human IL-4 (rhIL-4; US-Biological) and 800 U/mL recom-
binant human granulocyte–macrophage colony-stimulating 
factor (rhGM-CSF; Sheering Plough) and then stimulated 
for 24 h with 100 µg/mL of GBCCL lysates, TRIMEL (TRI-
MEL-DCs) or with medium [activated monocytes (AM)] as 
previously described [20].

DC/T cell co‑cultures

For allogeneic cell co-cultures, CD3+ T cells from healthy 
donors were sorted with a FACSAria II sorter (BD Bio-
sciences) and co-cultured for 5 days with TRIMEL-DCs or 
DCs matured with GBCCL lysates at a 20:1 ratio in RPMI 
1640 medium supplemented with 10% FBS and 150 UI/
mL rhIL-2 (Proleukin). For autologous co-cultures, sorted 
CD3+ T cells from HLA-A2+ healthy donors were co-cul-
tured with AM, TRIMEL-DCs or DCs matured with the M2 
lysate (M2-DCs) for 14 days at a 10:1 ratio in RPMI 1640 
medium supplemented with 10% FBS and 150 UI/mL rhIL-
2. T cells were re-stimulated at day 7 with freshly prepared 
DCs maintaining the cell:cell ratio. Surface expression of 
CD25, CD69, CXCR3 and CXCR4 was analyzed in CD4+ 
and CD8+ T cells by flow cytometry. For intracellular IFN-γ, 
TNF-α and IL-4 staining, 1 × 106 T cells were cultured for 
4 h at 37 °C in RPMI 1640 medium with 10% FBS contain-
ing 1 µg/mL ionomycin, 0.15 µM phorbol myristate acetate 
(PMA), and 3 µg/mL brefeldin A. T cell proliferation was 
studied using carboxyfluorescein succinimidyl ester (CFSE) 
dilution analysis.

IFN‑γ ELISpot

Autologous CD8+ T cells activated with AM, TRIMEL-DCs 
or M2-DCs were sorted and co-cultured with 1 × 104 target 
cells: HLA-A2+ GBCCL (GBd1, TGBC-2TKB, CAVE), 
HLA-A2+ melanoma cell line (Mel1) or K562 for 16 h at 
different effector/target ratios. IFN-γ release was tested by 

an ELISpot assay according to the manufacturer’s instruc-
tions (ELISPOT Ready-SET-Go, eBioscience) as previously 
described [20].

Statistical analysis

Statistical analysis was achieved using GraphPad Prism 
software version 6.0 (GraphPad Software, San Diego, 
CA, USA). Student’s t test was used to determine differ-
ences between treatments and results are presented as 
mean ± standard deviation (SD). p values < 0.05 were con-
sidered significant.

Results

GBCCL express relevant tumor‑associated antigens 
present in GBC tissues

To select a GBCCL suitable for the production of cell lysates 
as a source of multiple tumor antigens, the levels of expres-
sion of 10 of the most common and relevant TAAs (sur-
vivin, MUC-1, CEA, erbB2, CA19-9, MAGE-1, MAGE- 2, 
MAGE-3, GAGE-1/2 and BAGE) were determined in eight 
publicly available GBCCL (GBd1, G415, OCUG-1, NOZ, 
1TKB, 2TKB, 14TKB and 24TKB) and in one GBCCL 
established in our lab (CAVE). The protein levels of sur-
vivin, MUC-1, CEA, erbB2 and CA19-9 were determined by 
flow cytometry, whereas the expression of MAGEs, GAGEs 
and BAGE was evaluated at the RNA level by RT-PCR. The 
nine GBCCL showed diverse levels and patterns of antigen 
expression and none of them expressed all ten antigens, but 
all expressed at least two of them (Fig. 1a–c). The expression 
of erbB2 was detected in all the cell lines analyzed, whereas 
the 2TKB cells expressed only the antigens GAGE1/2 and 
BAGE. The cell lines with the broader pattern of antigen 
expression were 2TKB and 1TKB, which express 8 and 7 
of the 10 antigens, respectively (Fig. 1c). Additionally, sur-
vivin, MUC-1, CEA, erbB2 and CA19-9 antigens were also 
detected in a significant number of tumor samples from GBC 
patients (Fig. 1d), suggesting that these were suitable antigen 
targets for immunotherapy approaches.

Heat shock induces the production of DAMPs 
in GBCCL

For the last 15 years, we have been developing a DC-based 
immunotherapy that improves the long-term survival of 
patients with advanced melanoma [11]. In our approach, a 
lysate derived from a mix of three heat shock-conditioned 
allogeneic melanoma cells (Mel1, Mel2, and Mel3), named 
TRIMEL, has been used as a source of both TAAs and 
DAMPs. Heat shock-induced DAMPs, particularly plasma 
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membrane translocated eCRT and released HMGB1, medi-
ate an optimal antigen presenting cell (APC) maturation and 
antigen cross-presentation, providing a unique strategy to 
obtain efficient tumor antigen-presenting cells with a mature 
DC-like phenotype [13].

Here, we evaluated the production of three common 
DAMPs (released HMGB1 and ATP, and translocated 
eCRT) in GBCCL subjected to heat shock. Heat shock 
treatment induced HMGB1 and ATP release in four of the 
eight cell lines evaluated (14TKB, G415, GBd1 and NOZ for 
ATP; and 2TKB, 24TKB, G415 and OCUG1 for HMGB1) 
(Fig. 2a, b). Additionally, three GBCCL translocated eCRT 
to the plasma membrane in response to heat shock (2TKB, 
GBd1 and OCUG1) (Fig. 2c, d). The levels of heat shock-
induced DAMPs in GBCCL were similar that those induced 

in the melanoma cell lines Mel1, Mel2 and Mel3, which 
were used as positive controls.

Heat shock‑conditioned GBCCL lysate mixtures, 
but not lysates from individual cell lines, induce 
differentiation of activated monocytes into mature 
DCs

As previously reported [13, 20], the addition of TRIMEL to 
IL-4/GM-CSF-activated monocytes (AM) mediated up to 
threefold induction of surface markers associated with DC 
maturation such as HLA-DR, CD80 and CD86 (Fig. 3a). 
However, heat shock-conditioned lysates prepared from 
each of the GBCCL did not induce a significant increase in 
the expression of these markers in stimulated AM (Fig. 3a). 

Fig. 1   Tumor associated antigen expression in GBCCL and GBC 
fresh tumor samples. a Representative histograms for CA19-9, MUC-
1, CEA, erbB2 and survivin expression in GBCCL evaluated by 
flow cytometry. Grey histograms indicate isotype control staining. b 
mRNA expression profiles for MAGE 1, 2, 3, GAGE 1/2 and BAGE 
in the GBCCL analyzed by RT-PCR. Actin was used as a housekeep-

ing gene control. c Summary of tumor associated antigen expression 
in GBCCL. Green and red refers to positive or negative expression, 
respectively. ND not determined. d Representative photomicrographs 
of immunohistochemical staining for CA19-9, MUC-1, CEA, erbB2 
and survivin in paraffin-embedded tumor biopsies obtained from 
Chilean GBC patients (scale bar, 40 µm)
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Given that the combination of different molecular factors 
present in each cell line may synergistically contribute to the 
DC stimulatory activity of the conditioned lysates as in TRI-
MEL, we produced eight different heat shock-conditioned 
lysates (M1-M8) combining three different GBCCL in each 
lysate. The cell lines composing each mixture lysate are 
described in the Methods section and were chosen accord-
ing to their tumor antigen expression and presence of heat 
shock-inducible DAMPs. Unlike individual cell lysates, 
GBCCL mixture lysates significantly induced the expres-
sion of CD80, CD86 and HLA-DR in DCs (Fig. 3b). We 
extended the analysis to three additional markers: HLA-
ABC, CD83 and CCR7 for four of these mixtures of GBCCL 
lysates: M2, M3, M5 and M8 (Fig. 3c), which were selected 
considering the antigen expression and DAMP production 
of the composing cells and the DC stimulatory activity of 
the lysate. The addition of M2, M3, M5, M8 or TRIMEL 
lysates mediated the induction of these maturation markers 
in DCs (Fig. 3c).

DCs matured with GBCCL lysates induced 
the activation of allogeneic CD4+ and CD8+ T cells

To determine GBCCL lysates with major potential to induce 
mature DCs, we investigated the capacity of DCs matured 

with the GBCCL lysates M2, M3, M5 and M8 (named 
M2-DCs, M3-DCs, M5-DCs and M8-DCs, respectively) 
or with TRIMEL (TRIMEL-DCs, as a positive control) to 
activate allogeneic T cells. After 5 days of DC/T cell co-
cultures, we evaluated the surface expression of the lympho-
cyte activation markers CD25 and CD69 and the chemokine 
receptors CXCR3 and CXCR4 on CD4+ and CD8+ T cells. 
All the DCs tested induced increased levels of CD25 and 
CD69 in both subsets (Fig. 4a). Moreover, all DCs were 
able to induce the expression of both receptors CXCR3 
and CXCR4 in CD4+ T cells (Fig. 4a) whereas only the 
chemokine receptor CXCR3 was induced in CD8+ T cells 
co-cultured with all the DC types (Fig. 4a). Additionally, 
our results demonstrated that both CD4+ and CD8+ T cells 
co-cultured with allogeneic DCs loaded with GBCCL heat 
shock-conditioned lysates expressed high levels of the Th1 
cytokines IFN-γ and TNF-α, whereas co-cultured CD8+ 
but not CD4+ T cells expressed the Th2 polarizing cytokine 
IL-4 (Fig. 4b–d). Finally, all the DCs evaluated induced the 
proliferation of both CD4+ and CD8+ allogeneic T cells 
(Fig. 4e).

Based on these results, we selected M2-DCs (loaded 
with heat shock-conditioned lysate from 2TKB, 24TKB and 
GBd1 GBCCL) for further experiments. The cell lines com-
posing the M2 lysate were adenocarcinoma cell lines (the 

Fig. 2   Heat shock conditioning induces DAMP production in 
GBCCL. The levels of ATP (a) or HMGB1 (b) were evaluated in the 
supernatants from heat shock-treated or control cells. c Representa-
tive histograms showing the extracellular expression levels of trans-
located calreticulin (eCRT) in heat shock-treated (dark grey) or con-
trol (light grey) melanoma and GBC cells. White histograms indicate 

isotype control staining. The percentage of eCRT positive (eCRT​pos) 
for each condition is shown. d Statistical analysis of eCRT transloca-
tion induced by heat shock in GBCCL. Bars represent averages and 
standard deviations of three (b–d) or five-seven (a) measurements of 
three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001
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most common histology of GBC) and combined they could 
provide a complete panel of TAAs and DAMPs (Figs. 1c, 2).

T cells activated by autologous M2‑DCs recognize 
HLA‑A2‑matched GBCCL

Given that the heat shock-conditioned M2 lysate poten-
tially contains a large number of GBC tumor-antigenic 
epitopes for priming T cell responses, we investigated 
whether CD8+ tumor-specific IFN-γ-secreting T cells 
were also being elicited in vitro by autologous HLA-A2+ 
M2-DCs. First we observed that M2-DCs were able to 
activate autologous CD4+ and CD8+ T cells, measured 
by the percentage of T cells expressing CD25 and CD69 
after 14 days of co-culture (Fig. 5a, b). Then, CD8+ T 
cells were isolated after co-culture by cell-sorting and 

challenged with two HLA-A2+ GBCCL present in the M2 
lysate (2TKB and GBd1), a HLA-A2+ GBCCL that was 
not included in the M2 lysate (CAVE), a HLA-A2+ mela-
noma cell line (Mel1), or with K562 cells as a negative 
control. After challenging with 2TKB, GBd1 or CAVE 
cells, M2-DC-activated CD8+ T cells released signifi-
cantly higher levels of IFN-γ than CD8+ T cells unstimu-
lated or co-cultured with AM or TRIMEL-DCs (Fig. 5c). 
The NK cell-sensitive cell line K562 did not induce IFN-γ 
release by the activated CD8+ T cells. Additionally, we 
observed that there was an important cross-recognition 
of melanoma cells by T cells activated with M2-DCs 
(Fig. 5c). Similarly, T cells activated with TRIMEL-DCs 
were able to cross-recognize GBC cells, which may be 
indicative of shared antigens between both kinds of tumor 
cells.

Fig. 3   Heat shock-conditioned GBCCL lysate mixtures, but not 
lysates from individual cell lines, induce differentiation of activated 
monocytes into mature DCs. Surface expression of HLA-DR, CD80, 
CD86 (a, b), and HLA-ABC, CD83, and CCR7 (c) were evaluated 
by flow cytometry on activated monocytes (AM) incubated or not for 
24 h with 100 µg/mL of heat shock-conditioned tumor lysates gener-
ated from individual GBCCL (a) or mixtures (M1-M8) of three dif-
ferent GBCCL (b, c). Bars represent the average and SD of the fold 

induction of the integrated MFI (iMFI: % positive cells × geoMFI of 
positive cells) for each marker relative to AM from at least three inde-
pendent experiments. Evaluated cell lysates mix were made as fol-
lows: M1 (24TKB + GBd1 + G415); M2 (2TKB + 24TKB + GBd1); 
M3 (1TKB + 2TKB + 24TKB); M4 (OCUG1 + GBd1 + G415); 
M5 (2TKB + G415 + OCUG1); M6 (NOZ + OCUG 1 + G415); M7 
(1TKB + 14TKB + 24TKB); and M8 (24TKB + OCUG1 + G415). 
*p < 0.05; **p < 0.01; ***p < 0.001
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Discussion

Exploration of new active immunotherapies as complements 
to the relatively recent approaches grounded on blockade 
of immune checkpoint molecules, such as cytotoxic T-lym-
phocyte antigen 4 (CTLA-4), programmed death (PD)-1 and 
PD-ligand-1 (PD-L1), may constitute a feasible possibility 
for improvement of clinical response rates. Particularly, DC-
based cancer vaccines again become an interesting alterna-
tive because of their relative effectiveness in activating cell-
mediated immune responses and lack of severe side effects 
in patients [21]. In this context, whole tumor cell lysates are 
excellent sources for the delivery of a wide range of TAAs 

that will generate MHC class I/II T cell epitopes for induc-
ing the activation of CD4+ T helper and CD8+ cytotoxic T 
cells simultaneously, and therefore, a more integral immune 
response.

One method to determine the potential usefulness of 
DC-based immunotherapy in GBC patients is to explore the 
immunogenicity of GBC tumors by measuring the impact 
of T cell subpopulation infiltration at tumor sites and to cor-
relate this with the overall survival of patients. Tumor-infil-
trating immune cells constitute an accepted manifestation of 
the host immune response against cancer. Likewise, a rela-
tionship between tumor-infiltrating immune cells and GBC 
prognosis has been suggested. In fact, recent published data 

Fig. 4   Activation of allogeneic T cells by monocyte-derived DCs 
matured with different heat shock-conditioned GBC lysates. Purified 
CD3+ T cells were co-cultured for 5 days with allogeneic TRIMEL-, 
M2-, M3-, M5-, M8-DCs or without DCs. The surface expression 
of CD25, CD69, CXCR3 and CXCR4 (a), the intracellular levels of 
IFN-γ, TNF-α and IL-4 (b–d), and proliferation (e) were evaluated 
in the CD4+ and CD8+ T cells populations by flow cytometry. a, d 
Bars represent the average and SD from five independent experi-
ments of the % of T cells positive for each marker, with the excep-

tion of CXCR3 and CXCR4 data that are shown as fold induction of 
the MFI relative to unstimulated T cells. Representative dot plots of 
IFN-γ and TNF-α production in allogeneic CD4+ (b) and CD8+ (c) 
T cells co-cultured with M2-DCs. e The percentage and SD of prolif-
erating T cells are showed on the left of each histograms. Evaluated 
cell lysates mix were made as follows: M2 (2TKB + 24TKB + GBd1); 
M3 (1TKB + 2TKB + 24TKB); M5 (2TKB + G415 + OCUG1); and 
M8 (24TKB + OCUG1 + G415). *p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001 (comparison versus unstimulated T cells)
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from our and other groups showed that CD8+ T cell infil-
tration at different disease stages correlates with improved 
survival of GBC patients [22–24]. In one study, in which 
45 tumor samples from GBC patients and 65 benign gall-
bladder tissues were examined, increased frequencies of 
CD4+, CD8+ T cells and DCs were observed in GBC sam-
ples, which significantly correlated with prolonged patient 
survival [23]. In a more recent study, Oguro and cowork-
ers [25] analyzed 211 GBC samples and found that a lower 
density of tumor-infiltrating CD8+ cells and higher ratios 
between Foxp3+/CD4+, B and T lymphocyte attenuator/

CD8+, and casitas-B-lineage lymphoma protein-b/CD8+ 
were significantly associated with shorter overall survival 
in GBC patients. Moreover, in a cohort of 80 Chilean GBC 
patients, we observed that a greater infiltration of CD8+ T 
cells in cancer tissue was associated with a favorable prog-
nostic biomarker for both early and advanced stage patients 
[24]. Altogether, these observations strongly indicate that a 
natural host CD8+ T cell-mediated immune response against 
GBC increases patient survival. These findings encourage 
the design and development of adjuvant immunotherapeutic 
approaches against GBC.

Fig. 5   T cells activated by autologous monocyte-derived DCs loaded 
with a heat shock conditioned GBC lysate recognize HLA-A2-
matched GBCCL. a–c Purified CD3+ T cells were co-cultured for 
14  days with autologous HLA-A2+ AM, TRIMEL-DCs, M2-DCs 
or cultured alone. The surface expression of CD25, CD69, CXCR3 
and CXCR4 (a, b) were evaluated in the CD4+ (a) and CD8+ (b) T 
cells populations by flow cytometry. Bars represent the average and 
SD from at least three independent experiments of the % of T cells 
positive for each marker, with the exception of CXCR3 and CXCR4 
data that are shown as fold induction of the MFI relative to unstimu-

lated T cells. *p < 0.05; **p < 0.01; ***p < 0.001 (comparison versus 
unstimulated T cells). c Sorted CD8+ T cells were challenged for 16 h 
with the HLA-A2+ GBCCL 2TKB, GBd1, CAVE, the melanoma 
cell line Mel1 or K562 cells. IFN-γ release was measured by ELIS-
POT at different effector:target ratios as indicated. Data represent the 
average and SD of at least three independent experiments. *p < 0.05; 
***p < 0.001; ****p < 0.0001 (comparison M2-DC versus TRIMEL-
DCs stimulated T cells). M2 refer to the mixture made from three dif-
ferent GBCCL
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The aforementioned GBC T cell infiltration might be 
orchestrated by the chemokine receptor CXCR4, given 
that its ligand, C-X-C motif ligand-12 (CXCL12), is fre-
quently overexpressed in GBC [26]. Likewise, the expres-
sion of CXCR3 by lymphocytes can mediate its migration 
to GBC tumor beds [27]. These data suggest that the induc-
tion of these chemokine receptors in T cells by therapeutic 
DCs would be beneficial for the DC-mediated anti-tumor 
responses in vaccinated patients.

The potential use of immunotherapeutic approaches for 
GBC has only recently become a subject of intensive inves-
tigation. In fact, current immunotherapies against GBC 
have been focused on the use of peptide-based vaccines or 
peptide-loaded DCs [21, 28]. These strategies have shown 
modest clinical improvements, likely due to induced toler-
ance by dominant single tumor peptides or by the selection 
of antigen loss variants in established tumors. In contrast, a 
study where DC loaded with autologous tumor cell lysates 
combined with activated T cell transfer were used as an adju-
vant treatment in operated patients with advanced intrahe-
patic cholangiocarcinoma, reported improved post-operative 
progression-free and overall survival compared to patients 
receiving surgery alone [29].

The optimal delivery of tumor antigens is one of the most 
important factors for the success of DC-based anti-cancer 
vaccines. With this in mind, lysates from allogeneic tumor 
cells, whole tumor cells, tumor mRNA, and antigenic pep-
tides, have all been tested as tumor vaccines. Autologous 
whole tumor antigens offer an unparalleled advantage as it 
allows DCs to process and present a broad range of TAAs 
to stimulate strong, polyclonal and long-term memory 
CD4+ and CD8+ T cell responses, potentially preventing 
tumor immune escape. Moreover, this strategy is suitable 
for all cancer patients regardless of their HLA haplotype. 
However, not all cancer patients have surgically removable 
tumors, and therefore, a useful and promising alternative is 
the preparation of allogeneic cancer cell lysates that have 
demonstrated to provide a standardized applicable source 
of tumor-specific antigens in patients with non-resectable 
tumors [30]. Importantly, the method used for inducing cell 
death or protein chemical modifications during whole tumor 
lysate preparation could impact the immunogenicity and effi-
cacy of the therapy (Table 1). Current immunogenic treat-
ment modalities used for pre-conditioning tumor cell lysates 
include ultraviolet irradiation, oxidation-inducing modalities 
and heat shock treatments [31]. In the present study, we gen-
erated heat shock-conditioned tumor lysate for GBC (M2), 
which have some important characteristics that suggest its 
potential as an antigen source for DC vaccines: (1) it con-
tains a broad panel of TAAs, also expressed in tumors from 
GBC patients, (2) it includes different molecules that could 
act as DAMPs (released HMGB1, ATP and eCRT), (3) it 
promotes a rapid and efficient differentiation of monocytes 

to mature DCs, and (4) DCs generated with this lysate are 
able to induce the activation of T cells that specifically rec-
ognize tumor cells.

In general, in vivo tumor antigen presentation by immu-
notherapeutic DCs might drive the development of tumor-
specific adaptive immune responses, whereas cytotoxic 
CD8+ T cells recognize and attack tumor cells through rec-
ognition of TAA peptides associated to MHC class I. There-
fore, T-cell cytotoxicity depends on MHC class I expression 
on tumor cell surface. It has been frequently observed that 
tumor cells lost MHC class I expression, and therefore, the 
efficacy of DC-mediated immunotherapies may be reduced. 
In line with this hypothesis, it has been shown that reduced 
MHC class I expression in biliary tract cancers, including 
GBC, was linked to shortened overall patient survival [48]. 
However, in the majority of cases the loss of MHC class I is 
partial, affecting only some isotypes, and thus an important 
portion of cancer patients could benefit from DC-mediated 
immunotherapy. Moreover, it is very important to incorpo-
rate strategies to recover MHC class I expression in tumors 
to improve immunotherapy effect [49]. In conclusion, we 
propose that GBC cell lysate-loaded DCs may be considered 
for future immunotherapy approaches alone or in combi-
nation with currently used immune checkpoint molecule-
blocking therapies.
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