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Abstract

Perturbation-based gait assessment has been used to quantify gait stability in older adults. However, knowledge on which
perturbation type is most suitable to identify poor gait stability is lacking. We evaluated the effects of ipsi- and contra-lateral
sway, belt acceleration and deceleration, and visual and auditory perturbations on medio-lateral (ML) and anterior-posterior (AP)
margins of stability (MoS) in young and older adults. We aimed to evaluate (1) which perturbation type disturbed the gait pattern
substantially, (2) how participants recovered, and (3) whether recovery responses could discriminate between young and older
adults. Nine young (25.1 £3.4 years) and nine older (70.1 +7.6 years) adults walked on the CAREN Extended (Motek BV,
The Netherlands). The perturbation effect was quantified by deviation in MoS over six post-perturbation steps compared to
baseline walking. Contra-lateral sway and deceleration perturbations resulted in the largest ML (1.9—4 times larger than other
types) and AP (1.6-5.6 times larger than other types) perturbation effects, respectively. After both perturbation types, participants
increased MoS by taking wider, shorter, and faster steps. No differences between young and older adults were found. We suggest
to evaluate the potential of using contra-lateral sway and deceleration perturbations for fall risk identification by including both
healthy and frail older adults.
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1 Introduction identify individuals at risk for falls is therefore of great impor-

tance[1]. Gait stability has been defined as “gait that does not lead

Gaitimpairments are among the mainrisk factors for falls in older
adults [1]. Since walking is one of the most common activities in
our everyday life, it is not surprising that most falls occur while
walking, due to trips or slips [2, 3]. Gait stability assessment to

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s11517-018-1855-7) contains supplementary
material, which is available to authorized users.

< S. Roeles
sanne.roeles @strath.ac.uk

Department of Biomedical Engineering, University of Strathclyde,
106 Rottenrow East, G4 ONW, Glasgow, UK

Department of Clinical Applications & Research, Motek BV,
Hogehilweg 18-C, 1101 CD Amsterdam, The Netherlands

Department of Human Movement Sciences, Faculty of Behavioural
and Movement Sciences, Vrije Universiteit, Amsterdam Movement
Sciences, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands

Department of Orthopedics, First Affiliated Hospital of Fujian
Medical University, Fuzhou City 350005, Fujian, China

to falls in spite of perturbations™ and requires fast and accurate
responses. However, the ability to respond adequately declines
with age due to changes in the central nervous system and muscle
properties [4]. Despite this knowledge, conventional balance and
gait assessments solely evaluate self-initiated tasks (e.g., sit-to-
stance transfers or turning). Such tasks allow for safe and con-
trolled movement execution within one’s limits of stability.
Recovering from gait perturbations, on the other hand, targets
fundamentally different stability components. Therefore, it has
emerged over the last few decades as a method to quantify gait
stability in research, but not yet in clinical practice [5-9].

The majority of gait perturbation studies have included
anterior-posterior (AP) perturbations using either moveable
platforms [10, 11], obstacles [12—14] in an overground walk-
way, slippery surfaces [15], break-and-release systems [16,
17], or sudden treadmill belt accelerations and decelerations
[18-21]. Additionally, medio-lateral (ML) perturbations have
been applied by means of sideways platform movement
[22-24] or waist-pulls [25-29]. Of less focus have been sen-
sory perturbations, such as visual oscillations [30, 31] or low
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light conditions and distracting sounds [32—34]. Despite the
growing body of work on the use of perturbations to evaluate
one’s ability to resist or recover from a perturbation, it remains
difficult to compare the wide range of applied methodologies
and determine which perturbation type is appropriate for gait
stability assessment.

The effect of perturbations on the gait pattern can be quanti-
fied by the ability to control the centre of mass (CoM) move-
ment relative to the base of support (BoS) using measures like
stabilizing and destabilizing forces, feasible-stability-region, and
margins of stability (MoS) [35]. The latter is defined as the
difference between the extrapolated centre of mass (XCoM,;
i.e. CoM position corrected for its velocity) relative to the border
of the BoS. When the XCoM lies within the BoS one can be
considered stable. In contrast, when the XCoM exceeds the
border of the BoS, a corrective step needs to be taken to regain
balance and avoid a fall; hence, one can be considered unstable
[36]. In line with previous work, we quantified medio-lateral
(ML) and anterior-posterior (AP) MoS using the lateral and
backward border of the BoS, respectively [23]. As such, taking
wider steps (i.e. stepping more lateral to the XCoM) results in
larger ML MoS while faster and shorter steps (i.e. stepping more
behind the XCoM) results in larger AP MoS [23]. Stepping
responses to successfully recover from gait perturbations may
provide valuable input for the development of tailored fall pre-
vention training programs.

We developed a gait perturbation protocol, including six
different perturbation types: two ML platform perturbations,
two AP uni-lateral belt perturbations and two sensory (visual
and auditory) perturbations, and tested it on healthy young and
older adults. Our first aim was to evaluate which types of
external perturbations affect the gait pattern the most in terms
of ML and AP MoS, and as such, would be most suitable for
perturbation-based gait stability assessment. Secondly, we
identified how spatio-temporal adjustments were used to re-
cover ML and AP gait stability. Finally, we evaluated whether
these perturbation responses were sensitive to discriminate
between young and older adults. Resulting knowledge can
contribute to the design of an optimal experimental protocol
that would have the best predictive value in identifying older
adults at risk of falls (Table 1).

2 Methods
2.1 Participants

Nine young adults (6 men and 3 women, age 25.1 + 3.4 years,
height 1.76 £0.09 m, weight 76.6 + 15.1 kg) and nine healthy
older adults (2 men and 7 women, age 70.1 = 8.1 years, height
1.70£0.11 m, weight 77.9+10.5 kg) participated in this
study. Inclusion criteria were normal lower limb function
and being able to walk for 20 min. Exclusion criteria were
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Table 1 List of abbreviations used in this study

1D First (dominant) post-perturbation step

2ND Second (non-dominant) post-perturbation step
3D Third (dominant) post-perturbation step
4ND Fourth (non-dominant) post-perturbation step
5D Fifth (dominant) post-perturbation step

6ND Sixth (non-dominant) post-perturbation step
6S Total perturbation response

ANOVA Analysis of variances

AP Anterior-posterior

BoS Base of support

CoM Centre of mass

D Dominant

ML Medio-lateral

MoS Margins of stability

ND Non-dominant

NPD Non-dominant pre-perturbation step

PD Dominant pre-perturbation step

VT Vertical

XCoM Extrapolated centre of mass

neuromuscular deficits or weighing more than 135 kg. The
Biomedical Engineering departmental ethics committee at
the University of Strathclyde approved the protocol before
measurements were performed. All participants gave in-
formed consent prior to the measurement.

2.2 Equipment

Participants walked on the CAREN (Computer-Assisted
Rehabilitation Environment) Extended (Motek, Amsterdam,
The Netherlands) at the University of Strathclyde, which con-
sists of a six degree-of-freedom motion base with an instru-
mented dual-belt treadmill mounted on top, 12 infra-red Vicon
Bonita cameras (Vicon, Oxford, UK) operating at 100 Hz and
a virtual reality environment projected on a semi-cylindrical
screen and a surround sound system (Fig. 1). D-Flow software
(version 3.20.0) was used to control all hardware components
and to visualize the virtual environment [37]. The Human
Body Model (Motek, Amsterdam, The Netherlands) contain-
ing 47 markers was used to calculate the body CoM [38].
Participants wore a safety harness to arrest potential falls.

2.3 Protocol

First the participant’s dominant leg (preferred leg for kicking,
climbing a stair and recovery from a push) was determined.
Subsequently, comfortable walking speed was assessed by
first gradually increasing treadmill speed until the participant
had reached a comfortable speed. Speed was then further in-
creased until participants reported to be uncomfortable.
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Fig. 1 Photo of the experimental
setup: the CAREN (Computer-
Assisted Rehabilitation
ENvironment, Motek,
Amsterdam, The Netherlands)

Thereafter, speed was gradually decreased until a comfortable
speed was reached again. The treadmill speed was fixed to the
average of the two reported comfortable speeds [39] after
which a 3-min familiarization and a 2-min baseline trial were
completed.

The perturbation protocol contained six perturbation types
all triggered at non-dominant heel strike [40]: (1) ipsilateral
sway consisting of a 5-cm platform translation in approxi-
mately 0.7 s (maximum acceleration of 2.04 m/s?) to the
non-dominant side, (2) contralateral sway which was identical
to the ipsilateral sway perturbation but to the dominant side,
(3) unilateral belt acceleration of the non-dominant side to
160% of the comfortable walking speed in approximately
0.4 s (maximum acceleration of 2.43 to 5.13 m/s?), (4) unilat-
eral belt deceleration which was identical to the acceleration
perturbation but with a minimum speed of 40% of the com-
fortable walking speed, (5) a visual perturbation by rapidly
darkening the room for 5 s to <1 Ix, and (6) an auditory
perturbation in the form of a 0.5-s lasting air horn at 82 dB
(Fig. 2).

The protocol consisted of six trials, each consisting of one
perturbation type which was repeated four times. The six trials
were presented in random order. Ipsi- and contralateral sway
trials always started with a ipsilateral and contralateral sway
perturbation, respectively. The remaining perturbations were
paired and presented in a pseudo-random order. This was nec-
essary because the maximum platform excursion was 15 cm to
each side.

2.4 Data analyses

2.4.1 Outcome measures

All data were analysed using custom-written Matlab scripts
(version 2015a; The Mathworks, Natick, MA, USA). First,

marker data was filtered using a 6-Hz-second-order bidirec-
tional Butterworth filter. Heel strike events were determined

using the local maxima in the AP position of the heel marker
relative to the pelvis [40].

Three spatio-temporal gait parameters were calculated: step
time, step length, and step width. Step time, step length, and step
width were defined as the elapsed time, AP distance and ML
distance between two consecutive heel strikes, respectively.

Gait stability was quantified by the MoS, as determined by
the distance between the border of the BoS and the XCoM.
The XCoM was estimated by the CoM position plus its ve-

locity divided by \/g_/l in which g is the acceleration of grav-
ity and / the average greater trochanter markers’ height times
1.34 [36]. The ML lateral malleolus marker position of the
leading foot quantified the ML border of the BoS whereas
the AP heel marker position was used to define the AP border
(Fig. 3). Thereby, negative ML and AP MoS values indicated
instability in the lateral and backward direction, respectively.

Baseline values for spatio-temporal parameters and MoS
were calculated and averaged over 100 consecutive dominant
(BD) and 100 consecutive non-dominant (BND) steps.
Additionally, local dynamic stability of ML, AP, and vertical
(VT) trunk velocity over the same 100 strides was calculated
as described in Bruijn et al. (2009) and used to evaluate un-
perturbed gait stability. Local dynamic stability reflects the
ability to cope with small internal perturbations (e.g. variabil-
ity in neuromuscular control) rather than external perturba-
tions and has been used to detect age-related decline in steady
state gait stability [41-43]. Lower local dynamic stability
values imply more stable gait.

For the perturbation trials, spatio-temporal parameters and
MoS were calculated for six steps pre- and six post-
perturbation steps. To quantify which perturbation type affect-
ed the gait pattern the most, the difference of the six post-
perturbation steps (1D, 2ND, 3D, 4ND, 5D, 6ND) with re-
spect to BD and BND steps was calculated as:

65 — é g VBUPG+ (-1)%2))?
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Fig. 2 Perturbation profiles over
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Fig. 3 Schematic representation of margins of stability (MoS) for the
right side in the medio-lateral (ML) and anterior-posterior (AP) direction
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where 6S is the deviation from baseline walking, B is baseline
step for the /™ side (with i = I representing the dominant side
and /=2 representing the non-dominant side) and P is the
post-perturbation step for jth stride. We hereby captured the
overall deviation from steady state walking while ignoring
differences in recovery over subsequent steps. For example,
a large initial deviation in step width but quick recovery to
baseline values may result in similar 6S values as compared to
a small initial deviation but slow return to baseline values.
Gait stability and stepping strategies in response to
the perturbations were analysed by comparing average
dominant pre-perturbation steps (PD) to dominant post-
perturbation steps (i.e. 1D, 3D, 5D) and average non-
dominant pre-perturbation steps (NPD) to non-dominant
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post-perturbation steps (i.e. 2ND, 4ND, 6ND). All per-
turbation measures were averaged over the last three
perturbations of each perturbation trial.

2.5 Statistical analyses

All statistical analyses were performed using SPSS version 23
(SPSS Inc., Chicago, IL, US). Gait parameters were tested for
normality using a Shapiro-Wilk test. Differences between young
and older adults in steady-state gait stability (i.e. local dynamic
stability) were analysed using independent ¢ tests. To evaluate
whether dominant and non-dominant gait parameters differed at
baseline, a mixed-model analysis of variances (ANOVA) was
used (within factors: two sides; between factor: group). To exam-
ine which types of gait perturbations affect the gait pattern the
mostin terms of ML and AP MoS, mixed-model ANOVAs (with-
in: six perturbation types; between: group) were applied for the
total perturbation response (i.e. 6S). Post hoc pairwise compari-
sons were then used to find the perturbation types that affected gait
stability the most for ML and AP directions. Subsequently, recov-
ery from the perturbation was evaluated by analysing individual
post-perturbation steps (i.e. 1D-6ND). The data dictated that par-
ticipants pro-actively adapted their gait in anticipation of subse-
quent perturbations. Therefore, we first examined how partici-
pants adapted their gait by comparing baseline walking to pre-
perturbation steps for all gait parameters using mixed-model
ANOVAs (within: baseline and pre-perturbation step; between:
group). Thereafter, to examine how participants recovered from
the perturbations in terms of spatio-temporal parameters and ML
and AP MoS, mixed-model ANOVAs (within: two pre-
perturbation and six post-perturbation steps; between: group)
for the individual steps were used. A Greenhouse-Geisser correc-
tion was used when the assumption of sphericity was violated.
Post hoc paired-samples ¢ tests with a Bonferroni correction for
each perturbation type were used to investigate whether post-
perturbation steps differed from pre-perturbation steps. The level
of significance was set at 0.05.

3 Results

All participants completed the protocol without falling. Mean
comfortable walking speed (Y 1.26+0.17 m/s, O 1.17 %
0.23 m/s) did not significantly (z=0.888, p=0.388) differ
between young and older adults.

3.1 Baseline walking

Except for a larger dominant than non-dominant ML MoS
(t=5.702, p<0.001) in both younger and older participants,
the mixed-model ANOVA did not reveal any main or interac-
tion effects when comparing dominant and non-dominant
steps. Local dynamic stability was not significantly different

between young and older adults in any direction (ML p =
0.835; AP p=0.164; VT p=0.516. See Table 2).

3.2 Which perturbation type affected the gait pattern
the most?

The gait pattern was differently affected by the different per-
turbation types, without group or interaction effects (Main
effects of perturbation for 6S ML MoS F=76.023, p<
0.001, and for 6S AP MoS F'=85.281, p<0.001). Post hoc
pairwise comparisons revealed that 6S ML MoS in response
to the contralateral sway perturbation was significantly larger
compared to all other perturbation types meaning that ML
MoS deviated most from baseline waking after the contralat-
eral sway perturbation (mean difference 0.103—0.159 m; all at
p<0.001) (Fig. 4a). Similarly, 6S AP MoS was significantly
larger for the deceleration perturbation compared to all other
perturbation types (mean difference 0.287-0.430 m; all at p <
0.001) (Fig. 4b). Based on the significant effects of contralat-
eral sway and deceleration on 6S ML and AP MoS respec-
tively, these perturbation types were further investigated.

3.3 How did participants adapt their gait
in between perturbations?

Step width significantly increased prior to the contralateral
sway perturbation compared to baseline walking for the dom-
inant side (BD 0.120 + 0.045, PD 0.127 £ 0.053 m, F'=4.830,
p=0.043) and a trend toward a significant increase was found
for the non-dominant side (BD 0.120+0.045, PD 0.127 +
0.053 m, F=4.150, p=0.059).

AP MoS prior to the deceleration perturbation was signifi-
cantly larger (i.e. more stable in the backward direction) com-
pared to baseline walking for the non-dominant side (BD 0.166
+0.043, PD 0.181£0.041 m, F'=11.709, p=0.004) and near
significant for the dominant side (BD 0.162+0.047, PD 0.171
+0.044 m, F=4.231, p=0.059). Step width was significantly
increased prior to the perturbation compared to baseline walking
for both the dominant (BD 0.128 £0.038, PD 0.141 +0.044 m,
F=12.492, p=0.003) and non-dominant (BD 0.129 £0.038,
PD 0.143 £0.043 m, F=10.119, p=0.007) side.

3.4 How were spatio-temporal adjustments used
to recover ML and AP gait stability?

Mixed-model ANOVAs for the contralateral sway perturba-
tion revealed significant main effects of Steps on all gait pa-
rameters while no significant Group or Group x Steps inter-
action effects were found. Post hoc analyses showed that step
width and ML MoS were reduced at step 1D (Fig. 5 and
Supplementary Material Table S1). Step width and ML MoS
increased during step 2ND though ML MoS values remained
smaller than at baseline. Thereafter, both parameters increased
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Table 2
<0.05 are printed in italics

Mean + SD of baseline gait parameter for the dominant (BD) and non-dominant (BND) steps in young and older adults. Significant effects at p

Parameter Young adults  Older adults ~ Main effect (sides) Between subjects effect (Group) Interaction effect (Steps x Group)
Mean + SD Mean + SD F )2 F )2 F P

ML MoS[m] D  0.065+0.012 0.061+0.013 37.339 <0.00] 1218 0.286 0.388 0.542
ND 0.053+£0.006 0.047 £0.013

AP MosS [m] D  0.169+0.047 0.142+0.052 2.888 0.109 1.729 0.207 1.009 0.330
ND 0.175+0.044 0.143 £0.045

Step time [s] D  0544+0.046 0.555+0.033 0.015 0.905 0.285 0.600 0.113 0.741
ND 0.545+0.043 0.554+£0.032

Step length [m] D 0.680 =0.066 0.656 =0.125 2.483 0.134 0.430 0.521 2.113 0.165
ND 0.692+0.066 0.656=+0.113

Step width[m] D 0.126£0.032 0.113 £0.056 1.539 0.233 0.356 0.559 0.293 0.596
ND 0.126 £0.032 0.113 +0.056

LDSym - 1.829+£0.294 1.798 +0.334 - - - - - -

LDSAp - 1.585+£0.263 1.404 +0.262 - - - - - -

LDSyt - 1.826 £ 0.428 1.701 + 0.366 - - - - - -

and remained larger compared to baseline walking. In other
words, ML stability was initially compromised by the contra-
lateral sway perturbation but was restored to values greater
compared to baseline walking during the subsequent recovery
steps. Step length (1D to 6ND) and step time (2ND to 5D)
decreased, while AP MoS (2ND to 6D) increased meaning
that participants became more stable in the backward direc-
tion. Figure 6 shows the relation between gait stability and
spatio-temporal parameters for a typical response contralateral
sway perturbation response.

Mixed-model ANOVAs for the deceleration perturbation re-
vealed significant main effects for all Steps on all gait parameters,
while no significant Group or Group X Steps interaction effects
were found. Posthoc analyses revealed areduction to negative AP
MosS (i.e. instability in the backward direction) at step 2ND (Fig. 7
and Supplementary Material Table S1). During step 3D to 5D, AP
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Fig. 4 Mean and standard deviations of the overall perturbation effect 6S
(see text for details) for medio-lateral (ML) and anterior-posterior (AP)
margins of stability (MoS) after the ipsi-lateral sway (Swyl), contra-
lateral sway (SwyC), acceleration (Acc), deceleration (Dec), visual
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MoS was increased to values larger than those at base-
line. A significant reduction in step time was found
during step 3D and 4ND, whereas step lengths reduced
during step 1D, 2ND, 4D and 6ND. Moreover, both ML
MoS (step 3D and 4ND) and step width (1D, 3D and
4ND) increased. Figure 8 shows the relation between
gait stability and spatio-temporal parameters for a typi-
cal deceleration perturbation response. Results on the
analyses of the other perturbation types can be found
in the Supplementary Material (Table S1 and Fig. S2).

4 Discussion

We developed a gait perturbation protocol containing two plat-
form, two belt, and two sensory perturbations. Our main aim

b
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young adults whereas white dots represent older adults. Significantly
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type in italic
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Fig. 5 Mean and standard
deviations of anterior-posterior
(AP) and medio-lateral (ML)
margins of stability (MoS), step
length, width and time for steps
for the contra-lateral sway
(SwyC) perturbations. Black dots
represent for values young adults
whereas white dots represent
older adults. Significant differ-
ences between pre-perturbation
(PD and PND) and post-
perturbation (1D to 6ND) steps
are indicated with *
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was to evaluate which perturbation type affected stability the
most in young and older adults. We found little differences in
our groups of participants. However, the results showed that all
mechanical perturbations effectively altered the gait pattern in
both young and older adults while the sensory perturbations did
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Fig. 6 A schematic representation of a typical response (black) to a contra-
lateral sway perturbation as compared to baseline walking (gray). Squares
represent ML (step width) and AP (step length) foot placement whereas the
line density is an indication of the time elapsed (step time) between consec-
utive steps. Margins of stability in the ML and AP direction are indicated by
the diamonds. The perturbation was triggered at step OND

not affect the gait pattern. The contralateral sway and decelera-
tion perturbation appeared most challenging. Visual and audito-
ry perturbations did not affect the gait pattern. This is in line with
previous work, which showed that low light conditions did not
affect spatio-temporal parameters [33, 34]. To our knowledge,
auditory perturbations by means of acoustic startles have not
been investigated previously.

The contralateral sway perturbation (i.e. platform movement
to the right at left heel strike or the left at right heel strike)
induced BoS movement towards the XCoM and thus ML
MoS decreased. Consequently, the majority of the participants
were required to take a cross-step to prevent falling. Following
the initial perturbation response, ML MoS was recovered by
taking faster, shorter and wider steps. Due to the adaptations in
step length and step time, AP MoS increased as well [23].
Likewise, the deceleration perturbation reduced the distance be-
tween the border of the BoS and the XCoM in the backward
direction and thus AP MoS initially decreased. Again, stability
was recovered by taking faster, shorter, and wider steps.
Previous work from Hof and colleagues (2010) reported com-
parable perturbation responses after ML waist-pushes. By defi-
nition, a BoS perturbation is expected to have a similar effect on
ML MoS as a CoM perturbation in the opposite direction.
Indeed, Hof and colleagues’ (2010) waist-pushes to the left at
left heel strike were more challenging as compared to left pushes
at right heel strike. The fact that acceleration perturbations ap-
peared less challenging as compared to decelerations has been
demonstrated previously in younger adults but to our knowl-
edge not in older adults [19]. Ilmane and colleagues (2015)
showed that the initial effect of the acceleration perturbations
was larger compared to the deceleration, but recovery from the

@ Springer
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deceleration perturbations took much longer (up to four steps
compared to one for the acceleration perturbation). The reduc-
tion in XCoM induced by the deceleration perturbation is extra
challenging as one needs to maintain forward velocity to keep
up with the treadmill speed.

5

4.5

¢ menD
'.‘:::\'_Z‘I4ND
3D -“/
.;IZND
1D -/‘
*mOND

4-

w
w o
: :

AP position [m]
o o

—_
- w
T T

0.5

-0.3 -0.2 -0.1 0 0.1
ML position [m]

Fig. 8 A schematic representation of a typical response (black) to a de-
celeration perturbation as compared to baseline walking (gray). Squares
represent ML (step width) and AP (step length) foot placement whereas
the line density is an indication of the time elapsed (step time) between
consecutive steps. Margins of stability in the ML and AP direction are
indicated by the diamonds. The perturbation was triggered at step OND
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While contralateral sway and deceleration perturbations
evoked the largest responses, this does not necessarily mean that
ipsilateral and acceleration perturbations should not be included
in perturbation-based gait assessment. However, by applying
more challenging perturbations, the (in)ability to adequately re-
cover may be more profound and hence the perturbation re-
sponse may be more sensitive to discriminate between fallers
and non-fallers. The question whether the contralateral sway or
deceleration perturbation is most challenging is more difficult to
answer. Deviation from baseline (6S) was more than twice as
large for the deceleration (0.52 +0.12 m) compared to the con-
tralateral sway perturbation (0.22 +0.03 m). However, the fact
that an ML change in position was induced by the sway pertur-
bation as opposed to an AP change in velocity by the deceleration
perturbation limits direct comparison. In a recent study, McIntosh
etal. (2016) used ML and AP overground platform perturbations
in young and older adults and found that contralateral sway per-
turbations were most challenging, followed by ipsilateral sway
and then forward-backward perturbations. However, they quan-
tified perturbation response by CoM displacement and velocity,
while ignoring its relation to the BoS. Hence, it is unknown to
what extent stability was affected. Additionally, whether ML or
AP perturbations are more challenging may be patient-specific as
a result of individual risk factors for falls such as decline in
muscle strength or ineffective stepping strategies [1]. Therefore,
including both contralateral sway and deceleration perturbations
in gait stability assessment might give a more complete represen-
tation of one’s ability to resist or recover from a gait perturbation.

Successful recovery from a perturbation is determined by
the combination of stability prior and in response to the per-
turbation. By proactively increasing gait stability, one might
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reduce the effect of the perturbation and minimize risk of
falling [44-46]. Although we did not aim to evaluate such
adaptations, the data revealed that participants proactively
adapted their gait pattern. Gait adaptations were perturbation
type specific but did not differ between age groups. Of interest
would be to investigate whether more frail elderly show sim-
ilar proactive gait adaptations and whether these adaptions are
indicative of fall risk.

In contrast to our expectations based on previous studies [6,
7,44, 47], we did not find any differences in perturbation effects
and recovery responses between young and older adults. This
may be explained by the fact that most of our older adults were
recruited through fitness classes and therefore very fit and
healthy. This potential selection bias was confirmed by the
non-significant differences in steady state local dynamic stabil-
ity during baseline walking, which is known to decrease with
age [41-43]. Furthermore, differences between young and older
adults in upper body movement were not included in our anal-
yses. Previous work shows, for example, that arm movement
strategies following trip perturbations are affected by ageing
[48]. However, such differences should have been reflected in
our gait stability measures, including full body CoM movement,
which did not differ. Moreover, the perturbation intensities may
have been too low to provoke responses close to the individuals’
boundaries. For example, McIntosh and colleagues (2016) used
15 cm ML platform excursions to discriminate between young
and older adults as opposed to 5 cm in this study. Decelerations
of 8 m/s® (as opposed to our 2.43-5.13 m/s?) were used to
distinguish fallers from non-fallers [49]. The perturbation inten-
sities in this study were chosen such that a fall would not be
induced, which we believe is preferable in clinical practice, but
higher intensities might be required to reveal subtle group dif-
ferences. Additionally, within this fit group more sensitive out-
come measures may have been required to discriminate between
young and older adults. For example, evaluation of trunk kine-
matics may have been of added value [50].

5 Conclusion

No differences between young and older adults were found in
the recovery response to medio-lateral platform, anterior-
posterior belt, and sensory perturbations. However, our results
revealed that contralateral sway and deceleration perturbations
show most potential in disturbing the gait pattern in young and
healthy older adults. Therefore, including these specific per-
turbation types in perturbation-based gait assessment may be
preferred over ipsilateral sway, acceleration, visual or auditory
perturbations. Further investigation including comparison be-
tween older adults with and without history of falls and pos-
sibly at higher intensities is required to see if and how
perturbation-based gait assessment can be used to identify fall
risk in the elderly population.
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