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Abstract

Background: The prediction of calmodulin-binding (CaM-binding) proteins plays a very important role in the fields
of biology and biochemistry, because the calmodulin protein binds and regulates a multitude of protein targets
affecting different cellular processes. Computational methods that can accurately identify CaM-binding proteins and
CaM-binding domains would accelerate research in calcium signaling and calmodulin function. Short-linear motifs
(SLiMs), on the other hand, have been effectively used as features for analyzing protein-protein interactions, though
their properties have not been utilized in the prediction of CaM-binding proteins.

Results: We propose a new method for the prediction of CaM-binding proteins based on both the total and average
scores of known and new SLiMs in protein sequences using a new scoring method called sliding window scoring
(SWS) as features for the prediction module. A dataset of 194 manually curated human CaM-binding proteins and 193
mitochondrial proteins have been obtained and used for testing the proposed model. The motif generation tool,
Multiple EM for Motif Elucidation (MEME), has been used to obtain new motifs from each of the positive and negative
datasets individually (the SM approach) and from the combined negative and positive datasets (the CM approach).
Moreover, the wrapper criterion with random forest for feature selection (FS) has been applied followed by
classification using different algorithms such as k-nearest neighbors (k-NN), support vector machines (SVM), naive
Bayes (NB) and random forest (RF).

Conclusions: Our proposed method shows very good prediction results and demonstrates how information
contained in SLiMs is highly relevant in predicting CaM-binding proteins. Further, three new CaM-binding motifs have
been computationally selected and biologically validated in this study, and which can be used for predicting
CaM-binding proteins.

Background
Calmodulin (CaM) is a calcium-binding protein that is
a major transducer of calcium signaling [1] and is a key
signaling molecule for multicellular organisms. It has no
enzymatic activity of its own but rather acts by binding
to and altering the activity on a panel of cellular protein
targets at a variety of motifs through binding mecha-
nisms. Its targets are structurally and functionally diverse
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and participate in a wide range of physiological func-
tions including immune response, muscle contraction and
memory formation. Identifying CaM target proteins and
CaM sites is an important and ongoing research prob-
lem because of the great diversity of conformations it uses
in its target interactions. This diversity cannot be cap-
tured by a single amino acid sequence motif, but instead
CaM-binding sites are commonly divided into four or
more motif classes with different sequence characteristics
[2]. Historically, CaM-binding sites have been catego-
rized into motifs based on biochemical criteria [3]. Motifs
can be either calcium-dependent or calcium-independent
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based on whether they interact with CaM at basal cel-
lular calcium concentrations (independent) or require
elevated calcium (dependent). The 1-10, 1-14 and 1-16
motifs are examples of calcium-dependent motifs and
are named to indicate the positions of key hydrophobic
residues involved in CaM interaction. Binding sites with
the IQ motif are calcium-independent. Figure 1 is typ-
ical of a calcium-dependent interaction where the two
halves of CaM bind to opposite sides of the target peptide
(the four calcium molecules are green spheres). However,
there is great diversity in how CaM can interact with
its targets, making the prediction of CaM-binding motifs
challenging. In addition, existing algorithms have diffi-
culties in identifying novel CaM-binding proteins. For
example, the Hidden Markov Model prediction tool in
the Calmodulin Target Database [2] is limited to the clas-
sic CaM-binding motifs and has no power to identify
novel ones.

On the other hand, short-linear motifs (SLiMs), patterns
of 3 to 10 amino acids in intrinsically disordered regions of
protein sequences, can encode functional aspects of pro-
teins and bind to important domains [4]. They also help
regulate many cellular processes, by being interaction sites
for other SLiMs in proteins. SLiM-mediated interactions

Fig. 1 Quaternary structure of calcium-dependent interaction.
Quaternary structure of CaM (green), visualized with ICM Browser[22],
along with its interacting binding domain from calcineurin (blue)

are often transient interactions or utilize additional inter-
action domains to co-operatively produce stable com-
plexes. Therefore, prediction and analysis of CaM-binding
proteins using SLiM profiles has the potential to develop
better models for calcium-regulated cellular processes
such as modulation and regulation of proliferation and
apoptosis [5].

Recent studies have focused on the discovery of new
SLiMs for the prediction of protein interactions [6–8].
Some commonly used SLiM tools are SLiMFinder [9],
SLiMSearch [10], Minimotif Miner (MnM) [11], and
MEME (Multiple EM for Motif Elucidation) [12]. MEME
can discover SLiMs through an unsupervised approach
and turns out to be a very efficient and successful algo-
rithm for discovering new SLiMs with different num-
bers of occurrences in a set of protein sequences. It
discovers motifs by optimizing the statistical parameters
of the model using the Expectation Maximization (EM)
algorithm, and a statistical sequence model to determine
the positions and the width of the motif sites in the
sequences [13].

In one of our recent works [14], a computational
model was proposed for prediction and analysis of CaM-
binding proteins using SLiM profiles. We used new SLiMs
derived from MEME as features for prediction. Two
different approaches were used to discover new motifs
using MEME: (a) find SLiMs from each of the posi-
tive and negative datasets separately (SM) and (b) find
SLiMs from the combined positive and negative datasets
(CM). For each protein and for each SLiM, we scored
the SLiM using a new scoring function, the Sliding Win-
dow Scoring (SWS), which is based on the number of
sites containing the SLiM in the protein. The exper-
imental results indicated that the classification using
the SLiMs obtained from CM generally achieve better
performance.

This paper is an extension of the work presented in [14]
by employing known CaM-binding motifs for prediction
of CaM-binding proteins and comparing the prediction
results with the new discovered motifs from MEME.
Predictions of CaM-binding proteins had been per-
formed using k-nearest neighbors (k-NN), support vector
machines (SVM), Naive Bayes (NB) and random forest
(RF) classifiers available in the Waikato Environment for
Knowledge Analysis (WEKA). The experimental results
confirm that the new discovered motifs are relevant and
crucial to predict CaM-binding proteins. Moreover, it has
been demonstrated that prediction results are improved
by applying feature selection approaches and identifying
more relevant and discriminative features, while remov-
ing redundant and noisy ones for the most subsets of
features. Furthermore, biological analysis performed on
three computationally selected motifs (SLiMs #2, #43, and
#52) have confirmed certain structural characteristics and
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properties which allows these three motifs to discriminate
CaM-binding proteins.

Methods
Our proposed model to predict CaM-binding proteins is
illustrated in the Fig. 2. First, the FASTA sequences of all
the CaM and non CaM-binding proteins in the dataset
have been downloaded from the Uniprot database [15].
Second, we use MEME to extract new SLiMs to be used
as predictive features. Third, given each protein we scored
each SLiM feature using our novel SWS scoring meth-
ods (to be introduced in this section) and then applied
feature selection methods to obtain subsets of the most
relevant and distinguishing predictive features. Finally,
we applied SVM, RF, and NB classifiers on the CM and
SM datasets, by using only the selected SLiM features.
Detailed discussion of the dataset, scoring methods, fea-
ture selection methods and classifiers is provided in this
section.

Datasets
Our manually curated dataset contains 194 human CaM-
binding proteins collected from the Calmodulin Tar-
get Database [2] used as the positive dataset, and 193
mitochondrial proteins (mt-proteins) obtained from the
Uniprot database as the negative dataset. Mt-proteins

were chosen as a negative dataset because no major bio-
chemical function has been demonstrated for CaM in
the mitochondria suggesting that the number of CaM-
interacting proteins that are localized in the mitochon-
dria is small relative to other sub-cellular locations. Gene
Ontology (GO) cellular component annotations were
used to identify mt-proteins so that our negative dataset
includes proteins encoded in both the mitochondrial and
nuclear genomes. To construct the list, we downloaded
7433 proteins that were under the cellular component
term “Mitochondrion” (GO:0005739). After filtering out
non-reviewed proteins and any proteins with “Golgi” or
“Nucleus” annotations, 886 proteins were obtained, which
are strictly mitochondrial as far as GO annotations are
concerned. From those remaining mt-proteins, 193 pro-
teins, which contain a few if any CaM-binding regions,
were selected manually as the negative dataset, yielding a
balanced dataset. The final dataset used in this study is
included in Additional file 1.

Scoring the sites
In this paper, two different scoring methods are proposed.
The SWS_PPM method is used to score the newly dis-
covered motifs from MEME, while the SWS_RE method
is mainly employed to score the previously known CaM-
binding motifs using regular expressions.

Fig. 2 Diagram of the proposed computational model. After extracting the FASTA sequences of all the proteins in the dataset and scoring the
motifs (features), using one of the SWS methods and selecting the best ones, predictions have been performed using a classification method
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The SWS_PPM method
Once the SLiM sets are obtained, MEME outputs
files that contain the patterns for the SLiMs, sites
found in the protein sequences and their positions,
and the probability matrix of the features of each
SLiM.

MEME outputs its results as interactive HTML, XML
and text files. The patterns of SLiMs as well as the
sequences that contain the sites of SLiMs are in the HTML
file. The regular expressions of SLiMs and the weights
of different amino acids in each SLiM are in the XML
and text files. The Position-Specific Probability Matrix
(PSPM) of each motif can be found in the text file. Figure 3
shows SLiM #57 found in the dataset obtained by CM
output by MEME with the sites found in the sequences
and the corresponding protein names. Table 1 shows
the PSPM of this SLiM. The columns represent the 20
amino acids, while the rows correspond to the positions
in the corresponding site; each entry value in the matrix
is the probability that a given amino-acid appears at that
particular position in the site. From Fig. 3, we observe that
the regular expression of this SLiM is “LTEY[IC]QGPC”,
and the sites of this SLiM appear in the proteins:
Q14643, Q14571, Q14573, P21827, Q92736, and Q15413.
Furthermore, the site can be found either as LTEYIQGPC
or LTEYCQGPC in those proteins. From Table 1 we
observe that in the first position, the probability score of

Table 1 Position-specific probability matrix of SLiM #57

Position A C D E F G H I K L M N P Q R S T V W Y

1 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0

3 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0

5 0 0.5 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0

7 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0

9 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

amino acid L is 1.0 and others are 0; hence, L is the only
amino acid in this position. The same logic applies for the
other positions except for position No. 5 where the prob-
ability scores of amino acids C and I are both 0.5; hence,
either can appear at the 5th position in this SLiM. They
have the same size in the pattern shown in Fig. 3. The sizes
of different amino acids in the same position depend on
their probability scores, the greater the score is the longer
the site is.

We did not consider only the sites in the sequences
found by MEME. In contrast, we considered every
possible sub-sequence (l-mer) in a sequence as a potential

Fig. 3 SLiM #57 found by CM. SLiM #57 found in the dataset obtained by CM output by MEME with the sites found in the sequences and the
corresponding protein names
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site for a motif of the training set. Each sequence is divided
into overlapping l-mers. We designed the SWS_PPM
probability matrix (PSPM) representation of a motif.
Figure 4 shows an example of SWS_PPM based on SLiM
#57 along with its position-specific probability matrix. Let
us consider l-mer a in a protein sequence A of length
L. We divide the sequence into all possible overlapping
l-mers of length W (i.e., potential sites), where l = W is
the length of each SLiM, delivering a total of {L − W + 1}
l-mers. Then, Eq. (1) is used to calculate the information
contained in l-mer a, given a PSPM X of a SLiM m of
length W :

P(a| X) =
W∑

i=1
P(ai), (1)

where P(ai) is the probability of the amino acid at position
i in a. Only potential sites whose values P(a|X) ≥ 60% are
considered true sites and thus retained. Equation (2) adds
up the scores of all the true sites as the score of SLiM m
given protein sequence A of length L, as follows:

P(m| A) =
L−W+1∑

i=1
P(a| X). (2)

Equation (2) implies that the more likely that a is a site,
the larger the information content is. Thus, in order to
erase this effect, we also divide the total information con-
tent by the number of true sites (given SLiM m) found in
the protein sequence, N � L − W + 1, since we removed
all potential sites with values P(a|X) ≥ 60%:

P̂(m| A) = 1
N

×
L−W+1∑

i=1
P(a| X). (3)

For each protein pi, we compute the P(m| A) and
P̂(m| A) values for each SLiM m obtained from both SM
and CM datasets. Given the set of n SLiMs, m1, m2, . . . ,
mn, we transform each protein Ai into two feature vectors
Si = (si1, si2, . . . , sin) and Ti = (ti1, ti2, . . . , tin); where, sij =
P(mj|Ai) and where, tij = P̂(mj|Ai), respectively, given
protein Ai. The corresponding matrices that we obtain
are called the S-score matrix and T-score matrix. This
transformation is applied to each protein in the negative
data and the positive data in the training set, given all the
SLiMs obtained from both the SM and CM approaches.

The SWS_RE method
Similar to the SWS_PPM scoring method, we consider
every possible l-mer in a sequence as a potential site for a

Fig. 4 Example of the SWS_PPM method based on SLiM #57 along with its PSPM. An example of SWS_PPM based on SLiM #57 along with its
position-specific probability matrix. We considered every possible sub-sequence in a sequence as a potential site for a motif of the training set. Each
time we move the SLiM window to score the site using the scores of amino acids based on its PSPM. At the end of each sequence we add up all
scores of sites together as the score of the SLiM on this protein sequence
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Fig. 5 Example of the SWS_RE method based on SLiM # 1. An example of SWS_RE based on SLiM #1 found in the dataset obtained by CM output by
MEME. We considered every possible sub-sequence in a sequence as a potential site for a motif of the training set. We then move the SLiM window
and use regular expression to check if the SLiM pattern matches each site. Then we do not consider the potential site as a site; otherwise, we score
the site. At the end of each sequence we add up all scores of sites together as the score of the SLiM for this protein sequence

motif of the training set, and score each l-mer using a new
scoring method, called SWS_RE, which is based on the
regular expression representation of the motif. Figure 5
shows an example of the SWS_RE scoring process using
SLiM #1 along with its score. Let us consider l-mer a in
a protein sequence A of length L. We divide the sequence
into all possible overlapping l-mers of length W, where
l = W is the length of each SLiM, which gives a total
of {L − W + 1} l-mers. We then use the SLiM’s regular
expression to check if the SLiM pattern matches each
l-mer. If the SLiM pattern does not match a given
l-mer, then the l-mer is not considered to be a true site,
otherwise l-mer is a true site. When the l-mer is a true
site, we use Eq. (1) to calculate the information con-
tained in l-mer a, given the regular expression pattern

X of a SLiM m of size l = W , and a SLiM m of
length W.

Unlike in the SWS_PPM method, here, we define the
value of P(ai) using regular expression X as follows: the
score of position i is 1/(number of amino-acids at position
i). For example, given a SLiM pattern “[IL]QxW” of length
W = 4, if the l-mer is a true site that matches this SLiM,
then the first amino-acid a1 can only be “I” or “L”, and
hence, P(a1) = 1/2 = 0.5. P(a2), P(a3), and P(a4) will
be set to one each. Once the scores for all possible l-mers
in protein sequence A are obtained, we use Eq. (2) to add
up all the scores of the l-mers as the score of SLiM m for
sequence A.

Then, we calculate P(m| A) for all the SLiMs obtained
from CM for each protein sequence, and transform each
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protein sequence Ai into a feature vector Si = (si1, si2, . . . ,
sin); where, sij = P(mj|Ai) given Ai.

Classification
There are a variety of classification methods, of which
SVM, RF and k-NN and NB are four of the most well-
known ones, and which are used in this study.

Support vector machine
SVMs are well known machine learning techniques used
for classification and regression. The aim of the SVM is to
find the hyperplane that ideally separates the feature space
into two regions (classes). As this kind of hyperplane is
not unique, the SVM chooses the hyperplane that gives
the maximum margin from that hyperplane to the support
vectors. The classification by using the SVM is usually
inaccurate when using a linear classifier, because in gen-
eral, the data are not linearly separable. Thus, the use
of kernels is crucial in implicitly mapping the data onto
a higher dimensional space in which the classification is
more accurate. The effectiveness of the SVM depends
on the selection of the kernel, the selection parameters
and the soft margin [16]. There are a number of differ-
ent kernels that can be used in SVMs such as polynomial,
radial basis function (RBF), sigmoid, and many others. In
addition, sequential minimal optimization (SMO) is a fast
SVM learning algorithm that has been widely applied in
the training phase of a SVM classifier as one possible way
to solve the underlying quadratic optimization problem.
In this work, the SMO module of WEKA with a normal-
ized polynomial kernel, default parameter settings, and
3-fold cross-validation is used to perform classification via
the SVM [17].

Random forest
RF is a classifier that uses an ensemble (i.e., forest) of
decision tree predictors such that each tree depends on
the values of a random vector sampled independently and
with the same distribution for all trees in the forest. RF
achieves excellent predictive performance among current
classification algorithms. It also has an effective method
for estimating missing data and maintains accuracy when
a large proportion of the data is missing [18]. In this
study, the RandomForest module of WEKA with default
parameters is used [17].

k-Nearest neighbor
The k-NN rule is among the simplest of all machine
learning methods and is a type of instance-based/lazy
learning method. To find the class of a test sample, first,
the distances between the test sample and each training
sample should be calculated and sorted. Then, the most
frequent class label in the first k training samples (nearest
neighbors) is assigned to the test sample. One of the main

Table 2 Classification results for the score matrices with SLiMs
obtained from SM using 3-fold cross validation

Dataset for
classification

#
features

Classifier Accuracy (%) MCC ROC
Area

S score matrix SVM-Polynomial 72.6 0.45 0.73

100 RF 73.1 0.46 0.81

k-NN (k = 1) 80.6 0.61 0.81

T score matrix SVM-Polynomial 55.0 0.11 0.55

100 RF 68.5 0.38 0.77

k-NN (k = 1) 59.7 0.27 0.60

challenges of this method is to determine the best number
of neighbors. In this study, the IBK module of WEKA with
Euclidean distance is used [17].

Naive Bayes
One of the simplest probabilistic classifiers is NB.
Assuming independence of the features, the class of each
test sample can be found by applying Bayes’ theorem.
The basic mechanism of NB is rather simple. The reader is
referred to [19] for more details. In this study, the NaiveBayes
module of WEKA with default parameters is used [17].

Feature selection
Applying feature selection methods before running a clas-
sifier is important in order to reduce the dimensionality
of the data by discarding redundant and/or irrelevant
features, and, thus, reducing the prediction time, while
improving the classification performance.

In this paper, we applied the wrapper approach with
RF for feature selection followed by classification using
different algorithms. Wrapper methods embed the model
hypothesis search within the feature subset search. In this
context, a search procedure in the space of possible feature
subsets is defined, and various subsets of features are
generated and evaluated. The evaluation of a specific sub-
set of features is obtained by training and testing a specific

Table 3 Classification results for the score matrices with SLiMs
obtained from CM using 3-fold cross validation

Dataset for
classification

#
features

Classifier Accuracy (%) MCC ROC
Area

S score matrix

SVM-Polynomial
(c = 1, g = 0)

72.6 0.45 0.73

100 RF 74.7 0.49 0.74

k-NN (k = 1) 78.3 0.57 0.78

T score matrix

SVM-Polynomial
(c = 1, g = 0)

57.6 0.21 0.58

100 RF 69.3 0.40 0.77

k-NN (k = 1) 58.1 0.26 0.58
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classification model, rendering this approach tailored to a
specific classification algorithm [20].

Also, feature selection via the Chi square test is another,
very commonly used method [21]. This method evaluates
the relevance of a feature with respect to a class by com-
puting the value of the Chi square statistic. In this study,
the ChiSquaredAttributeEval module of WEKA is used to
obtain the scored feature vector.

Results and discussion
To test our proposed method and perform an in-depth
analysis of the strength of SLiMs as the prediction
properties, four different classification methods including
SVM, k-NN, RF and NB, and different feature selection
methods including Chi2 and the wrapper RF method have
been used on our datasets using WEKA ver. 3.7.11 [17].

The performances of the prediction methods are com-
pared in terms of their areas under the receiving operating
characteristics (ROC) curve, accuracies, and Matthews
correlation coefficient (MCC) which are computed as
follows:

Accuracy = TP + TN
TP + FP + TN + FN

, (4)

MCC = TP ∗ TN − FP ∗ FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

,

(5)

where TP and TN are the total numbers of true positive
(CaM-binding proteins) and true negative (mt-proteins),

respectively, and N = TP + FP + TN + FN is the total
number of proteins in the dataset.

Analysis of prediction properties using cross validation
approach
The classification results for the score matrices with
SLiMs obtained from the SM and CM datasets using
SWS_PPM method following 3-fold cross validation are
shown in Tables 2 and 3, respectively.

From the tables, it is noticeable that (a) k-NN on the
S score matrix yields the highest classification accuracy
of 80.6 and 78.3% for the SLiMs obtained from SM and
CM, respectively; (b) the S score matrix is a better sub-
set of features than the T score matrix for both SM and
CM; (c) using the motifs from the combined negative
and positive datasets (CM dataset) yielded better results
than the motifs obtained from each of the positive and
negative datasets individual (SM dataset) in most of the
experiments.

Analysis of prediction properties using the holdout
approach
Besides the cross-validation approach, a classifier can
also be evaluated using the holdout approach (percent-
age split), in which a certain percentage of the dataset is
used to train and the rest used for testing. As another
experiment, independent random seeds from 1 to 10 in
WEKA have been used to produce a percentage split of
the score matrices with SLiMs obtained from the SM and
CM datasets into 90% for training and 10% for the test set.
After employing SVM, RF and k-NN classifiers on each
split, the median, minimum, maximum, and first and third

Fig. 6 Box plot obtained from SM. Classification results for the score matrices with SLiMs obtained from SM using the holdout approach
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Fig. 7 Box plot obtained from CM. Classification results for the score matrices with SLiMs obtained from CM using the holdout approach

quartile values have been calculated and visualized on the
box plots (Figs. 6-7). Similar to the results presented in
Tables 2 and 3, it is clear from the box plots that the S
score matrix is a better subset of features than the T score
matrix for both SM and CM.

Analysis of feature selection
As another experiment, the wrapper approach with RF
was applied to score and rank the features, while SVM,
RF and k-NN were employed for classification. The per-
formances of the classifiers using different numbers of
selected features for S and T score matrices obtained from
SM and CM, are shown in Tables 4 and 5, respectively.
For the SLiMs obtained from SM, the subset obtained
using feature selection contains seven features for the S
score matrix, and nine features for the T score matrix.

Table 4 Classification results for the score matrices with SLiMs
obtained from SM using FS

Dataset for
classification

#
features

Classifier Accuracy (%) MCC ROC
Area

S score matrix SVM-Polynomial
(c = 1, g = 0)

66.1 0.33 0.66

7 RF 77.8 0.56 0.83

k-NN (k = 1) 77.0 0.54 0.77

T score matrix SVM-Polynomial
(c = 1, g = 0)

53.0 0.09 0.53

9 RF 69.3 0.38 0.75

k-NN (k = 1) 66.4 0.33 0.66

As for the SLiMs obtained from CM, the subset obtained
from FS contains eleven features for the S score matrix,
and seven features for the T score matrix. Similarly, from
Tables 4 and 5, it is clear that RF on the S score matrix yield
the highest classification accuracy of 77.8% and 80.1% for
the SLiMs obtained from SM and CM, respectively. Also,
it is observable that the classification using the SLiMs
obtained from CM yields better performance than using
the SLiMs obtained from SM.

Moreover, comparing the classification results obtained
by using the feature selection method (Tables 4 and 5)
with no feature selection (Tables 2 and 3) demonstrate
the strength of the feature selection method in selecting
more powerful and discriminating features for classifica-
tion for the most subsets of features. However, the maxi-
mum decrease of 6% on the classification performance is

Table 5 Classification results for the score matrices with SLiMs
obtained from CM using FS

Dataset for
classification

#
features

Classifier Accuracy (%) MCC ROC
Area

S score matrix SVM-Polynomial
(c = 1, g = 0)

62.0 0.24 0.62

11 RF 80.1 0.60 0.85

k-NN (k = 1) 78.6 0.57 0.79

T score matrix SVM-Polynomial
(c = 1, g = 0)

60.2 0.21 0.60

9 RF 70.5 0.415 0.80

k-NN (k = 1) 68.7 0.38 0.69
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Table 6 Canonical CaM-binding motifs obtained from [3]

Motifs Sequence

1-10 [FILVW]xxxxxxxx[FILVW]

1-5-10 [FILVW]xxx[FAILVW]xxxx[FILVW]

Basic 1-5-10 [RK][RK][RK][FAILVW]xxx[FILVW]xxxx[FILVW]

1-12 [FILVW]xxxxxxxxxx[FILVW]

1-14 [FILVW]xxxxxxxxxxxx[FILVW]

1-8-14 [FILVW]xxxxxx[FAILVW]xxxxx[FILVW]

1-5-8-14 [FILVW]xxx[FAILVW]xx[FAILVW]xxxxx[FILVW]

Basic 1-8-14 [RK][RK][RK][FILVW]xxxxxx[FAILVW]xxxxx[FILVW]

1-16 [FILVW]xxxxxxxxxxxxxx[FILVW]

IQ [FILV]Qxxx[RK]Gxxx[RK]xx[FILVWY]

IQ-like [FILV]Qxxx[RK]xxxxxxxx

IQ-2A [IVL]QxxxRxxxx[VL][KR]xW

IQ-2B [IL]QxxCxxxxKxRxW

IQ unconventional [IVL]QxxxRxxxx[RK]xx[FILVWY]

still acceptable because the classification performed faster
using a smaller number of features.

Comparison with the previously known motifs
In this part, the classification results of CaM-binding
proteins using the motifs discovered in this study have
been compared with other studies. As mentioned ear-
lier, CaM-binding sites have been previously categorized
into motifs based on biochemical criteria in [3]. In this
experiment, the classification results of SVM, NB and
RF using 14 previously-known canonical CaM-binding
motifs (Table 6) and 100 new discovered SLiMs from
MEME following 10-fold cross validation have been com-
pared. The results are shown in Table 7. To score the
features, the SWS_RE method has been employed because
there is no way to find the PSPM table of the known
motifs.

From Table 7, it is clear that SVM yields the highest
classification accuracy of 71.58% for the SLiMs obtained
from MEME, while the best accuracy using known
motifs is 70.80% using the RF classifier. Although the
reported accuracies using the new motifs obtained from

Table 7 Classification results using known and new CaM-binding
motifs, 10-fold cross validation and SWS_RE scoring method

Dataset for classification # features Classifier Accuracy (%)

Known SLiMs SVM 49.09

14 RF 70.80

NB 70.03

New SLiMs SVM 71.58

100 RF 71.32

NB 71.06

Table 8 Classification results for the score matrices with 3 and
100 SLiMs obtained from CM using the SWS_PPM scoring method

Classification method 3 Features 100 features

NB 74.72 70.8

RF 74.42 74.7

k-NN (k = 3) 77.77 74.45

MEME are not much higher than using the 14 previously
known CaM-binding motifs, it is still acceptable and valu-
able because it leads to newly discovered CaM-binding
motifs.

Biological analysis on the selected SLiMs
As another experiment, ten new motifs were selected from
the ranked motifs produced by different feature selection
methods including Chi square and wrapper methods.
Then, only three of these ten motifs, SLiMs #2, #43 and
#52, were finally selected by employing the recursive back-
ward elimination technique.

The classification results of NB, RF and k-NN with 10-
fold cross validation using these three SLiMs as well as the
original 100 discovered new motifs are shown in Table 8.
In this experiment, the SWS_PPM method is used for
scoring the features. From the table, it is clear that the
accuracy of k-NN increased from 74.45 to 77.77% and
NB from 70.80 to 74.42% by using only the three selected
motifs of 2, 43 and 52 instead of the original 100 motifs.
The computational results indicate that SLiMs #2, #43 and
#52 are the most relevant and discriminative motifs for
prediction of CaM-binding proteins.

Motif amino acid composition for these three SLiMs
were examined considering motif positions that have
more than 50% occupancy for a single amino acid or
amino acid class. Canonical calcium dependent CaM-
binding motifs are rich in basic and hydrophobic amino
acids. Although not compulsory for interaction with
calmodulin, motifs that are rich in basic and hydrophobic
amino acids are of interest as they are in accordance with
most literature regarding calcium dependent calmodulin
interactions. SLiMs #2 and #43 each have a combination of
basic and hydrophobic residues that are typical of calcium
dependent CaM-binding domains: three basic and three
hydrophobic positions for SLiM #2 and one basic and two

Table 9 Biological analysis of selected motifs, wherea indicates
the number of positions with at least 50% occupancy for the
amino acid type

Motif # Protein class # Proteins Basic residuesa Hydrophobic residuesa

2 Kinases 10 3 3

43 N/A 9 1 2

52 N/A 17 0 4
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Fig. 8 SLiM #2 found by CM. SLiM #2 found in the dataset obtained by CM output by MEME

Fig. 9 SLiM #43 found by CM. SLiM #43 found in the dataset obtained by CM output by MEME

Fig. 10 SLiM #52 found by CM. SLiM #52 found in the dataset obtained by CM output by MEME
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hydrophobic positions for SLiM #43 (Table 9, Figs. 8, 9 and
10). SLiM #52 has no basic positions but four hydrophobic
ones. Motifs that occur in diverse proteins are also biolog-
ically interesting as they may represent a general feature
of CaM-binding proteins rather than a feature specific to a
protein subset. SLiM #2 occurs in a set of 17 Kinases while
SLiMs #43 and #52 occur in 9 and 10 proteins respectively
with no obvious unifying protein class. Since these motifs
were relevant in classifying CaM-binding proteins, they
may represent novel CaM-binding or interaction sites or
motifs that are otherwise characteristic of CaM-binding
proteins.

Conclusions
We propose a method for prediction of calmodulin-
binding proteins using short-linear motifs. Our method
shows very good results and demonstrates that infor-
mation contained in SLiMs is highly relevant for accu-
rate prediction of CaM-binding proteins and differentiate
them from mitochondrial proteins. The SWS method is
useful for scoring the sites and obtaining the datasets
for classification. Most of the classifiers perform better
on the total scores without dividing by the frequency
of the SLiMs. The classification experiments yield good
results on the datasets with SLiMs obtained from both
of the SM and CM approaches. The 80.6% classifica-
tion accuracy using k-NN as the classifier on the total
scores obtained from SM is the highest accuracy among
all of the experiments. Moreover, the performance of
the classifiers improved for most subsets of features
by using fewer informative features (SLiMs) selected
by the wrapper approach with RF. Also, our biological
analysis confirms that selected SLiMs #2, #43 and #52
may represent novel CaM-binding or interaction sites or
motifs that are otherwise characteristic of CaM-binding
proteins.

Further investigation will help understand the func-
tional significance of these three selected motifs obtained
by MEME to calmodulin-target interactions. Also, pos-
sible extension to this work is to investigate the SWS
approach on prediction of other types of protein-protein
interactions. Another extension to this work is to com-
bine structural and SLiM data in order to achieve a better
insight of the location of the motifs on the interface, role
on the interaction and other aspects.

Additional file

Additional file 1: Dataset. Dataset of 194 human CaM-binding proteins
and 193 Mitochondrial proteins used in this study. (PDF 36 kb)
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