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Abstract

MADE1.0 is a public natural language processing challenge aiming to extract medication and 

adverse drug events from Electronic Health Records. This work presents NER and RI systems 

developed by UArizona team for the MADE1.0 competition. We propose a neural NER system for 

medical named entity recognition using both local and context features for each individual word 

and a simple but effective SVM-based pairwise relation classification system for identifying 

relations between medical entities and attributes. Our system achieves 81.56%, 83.18%, and 

59.85% F1 score in the three tasks of MADE1.0 challenge, respectively, ranked amongst the top 

three teams for Task 2 and 3.
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1. Introduction

Adverse drug events (ADEs) are dangerous problems which may lead to unexpected 

outcome and death in severe cases. According to the report from Agency of Healthcare 

Research and Quality, ADEs are the main type of nonsurgical adverse event occurring in 

hospitals in the United States, with an estimated 1.6 million events in 2010(Agency for 

Health care Research and Quality). Patients hospitalized with an ADE have an increased 

length of stay, higher costs, and increased risk of in-hospital death compared with those not 

experiencing an ADE (Poudel et al., 2017). It is commonly accepted that the progress in 

pharmacovigilance depends on the analysis of ADE-related information from different data 

sources, especially from electronic health records (EHRs). Employing natural language 

processing (NLP) techniques on electronic health records (EHRs) provides an effective way 

of real-time pharmacovigilance and drug safety surveillance.

The shared task MADE1.0 hosted by University of Massachusetts Medical School aims to 

promote advanced techniques to detect medication and ADEs from EHRs. They annotated 

1092 EHR notes with medications, as well as relations to their corresponding attributes, 

indications and adverse events in Bioc format. MADE1.0 challenge defines three tasks: Task 

1 Named entity recognition (NER), Task 2 Relation identification (RI), and Task 3 

Integrated task (IT). Similar to the three tasks in MADE1.0 challenge, ADEs extraction is 

always decomposed into two subtasks, NER and RI. In biomedical named entity recognition 

tasks, deep learning has yielded numerous state-of-the-art results. Such deep learning 
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systems include Bi-directional Long Short Term Memory and Conditional Random Field 

(LSTM-CRF) model in Jagannatha and Yu (2016b), and a hybrid system integrating 

character-based bi-directional LSTM into the word-level LSTM-CRF model (Gridach, 

2017). To mitigate the limited data issue, Lee et al. (2017) transfer a neural network (NN) 

model trained on a large labeled dataset (MIMIC) to another dataset with a limited number 

of labels which improves the state-of-the-art results on i2b2 2014 and i2b2 2016 datasets. 

The relation identification task in ADE extraction usually involves identifying complex nary 

relations, for instance, drugs can have multiple adverse effects simultaneously. In the i2b2 

2010 shared task, the No.1 ranked system used an SVM classifier to approach the relation 

identification task as a pairwise relation classification problem (Roberts et al., 2010). Instead 

of using pairwise relation classifiers, McDonald et al. (2005) propose to create a graph from 

pairs of entities that are likely to be related, and then score maximal cliques in that graph as 

potential complex relation instances. Several recent works adopt the non-pipeline approach, 

using joint models to solve the two subtasks simultaneously (Riedel and McCallum, 2011; 

McClosky et al., 2012).

To address the MADE1.0 ADE NLP challenge, we design two independent systems for 

task1 and task2, respectively. The integrated task is approached by running the two systems 

sequentially, using the output of the former as input to the latter. The paper is organized as 

follows: we first present how we preprocess the documents in Section 2, and then explain the 

NER model for task 1 in Section 3. The RI system is explained in Section 4, and results and 

analysis are presented in Section 5.

2. Text Preprocessing

Text preprocessing is one of the most important step for information extraction, Akkasi et al. 

(2016) specifically show the effects of tokenization on the final performance of an NER 

system on chemical and biomedical text. Effects of encoding techniques on NER 

performance was highlighed in Cho et al. (2013). We first use the NLTK sentence tokenizer 

(Bird and Loper, 2004) to segment the paragraphs into sentences and then use the NLTK 

regexp tokenizer (Bird and Loper, 2004) to tokenize sentences into words.

Our preprocessing code for segmenting sentences into tokens included specific rules for 

certain cases such as 2mg, 5days, nontender,Noncontributory, etc., where each token is 

further segmented, for example, 2mg is segmented into 2 and mg, and Noncontributory is 

splitted into Non and contributory. We do not use any external resources for segmentation 

but results may vary with changes in segmentation technique as highlighted by Akkasi et al. 

(2016). Further, to make the most of pre-trained word embedding resources, we lowercase 

the words for finding its corresponding word embeddings, but for extracting the characters 

and affix feature, words are taken in their original form without lowercasing so that the word 

shape information is kept. The words not found in the word embedding vocabulary are 

assigned the word embedding of the unknown token (assigned as UNK). To further reduce 

the vocabulary size, the numerical characters and words are replaced by a single token 

named NUM.
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3. NER System

NER is a type of sequence tagging task where each piece of a medical entity is assigned a 

label that identifies the medical entity that it evokes. We express such labels using the BIO 

tagging system, where B stands for the beginning of an annotation, I for the inside, and O 

for outside any annotation. We do not consider the multi-label cases where a single word is 

assigned to more than 1 tag in this version of the NER system since less than 1.0% of the 

entities in the entire training dataset have the same offset.

3.1. Neural Architecture

RNNs are the state-of-the-art on sequence tagging tasks (Lample et al., 2016; Graves et al., 

2013), thanks to their ability to make predictions conditioned on long distance features, so 

we also adopt them here. Since many medical entities have special morphological and 

orthographic information, we want input representations that are sensitive to the spelling of 

words. As such, our NER system uses the base model of Lample et al. (2016) where we 

exploit both word context features and word composition with characters using RNNs. In 

this work, we use LSTM recurrent units in our RNN model, since LSTMs are capable of 

learning long-term dependencies as well as solving the vanishing gradient problem.

Figure 1 describes the architecture of our model. It first converts the input into features that 

feed into embedding layers. In the embedding layer, each feature is mapped to a dense 

vector, and such dense vectors including embeddings for the prefix, suffix, the word itself, 

and the character-level representation, are then concatenated to form the final representation 

of the word. The vector representation of each individual word from the embedding layer is 

then fed into a bi-directional LSTM layer to allow access to both past (left) and future (right) 

context information. The output of the Bi-LSTM is then given to a CRF layer which outputs 

one label for each input. The reason for using a CRF layer is that it considers the 

correlations between labels in neighborhoods and jointly decode the best chain of labels for 

a given input sequence.

3.2. Input Representation

The input vector representation is generated by concatenating a word embedding, prefix 

embedding, suffix embedding, and character-level word representation:

• Word Embedding: we use the skip-gram word embeddings trained through a 

shallow neural network provided by the shared task organizers (Jagannatha and 

Yu, 2016b,a).

• Prefix and Suffix embedding: we utilize the sub-word affixes from the start and 

at the end of the word to explicitly provide sub-word information. Yadav et al. 

(2018) show that what the model learns about affixes is complementary to a 

recurrent layer over characters, and the usage of affix features in the model 

improves the performance for the NER task. We select n-gram prefixes and 

suffixes of words having frequency above a specific threshold to approximate 

frequent prefixes and suffixes as morphemes of a language.
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• Character-level word representation: we use a Bi-LSTM based feature extractor 

to produce character-level word representations, as shown in Figure 2. Characters 

of a word are fed into an embedding layer to generate a representation for each 

character, and the output of the embedding layer is then fed as the input to a Bi-

LSTM layer to generate a word-level representation.

Both character and affix embeddings are randomly initialized.

3.3. Network Training

We use the following hyper-parameters: the embedding size of the character, word, prefix, 

and suffix features are 50, 300, 30 and 30, respectively; the size of the LSTM units in the 

character-level word representation feature extractor is set to 25; to avoid overfitting, we use 

dropout with probability 0.60 for the NER embedding layer (applied after concatenating 

word embedding, character-level word representation and affix embeddings); we trained the 

model with Stochastic Gradient Descent (SGD) on mini-batches of size 50, and set the 

learning rate, and learning decay rate as 0.10, and 0.99, respectively. We implement our 

model in tensorflow and run the model on the El-Gato supercomputer at the University of 

Arizona, and the model is trained for 150 epochs on the entire training dataset.

4. RI System

Given the NER annotations, the RI system aims to extract 7 well-defined relations between 

Medical Attributes and their relevant Medical Entities. Note that the medical entity and its 

associated attribute may not appear in the same sentence or even paragraph, and that each 

medical attribute may link to zero or more medical entities. Considering the facts in the 

dataset, we build a simple but effective system to approach the task as 7 independent 

pairwise relation classification problems, one for each relation type.

4.1. Generate Entity-Attribute Pairs

For each medical attribute, we obtain a set of medical entity candidates that may participate 

in a relation using the rules that 1) medical entities appear within a 3-entity window of 

medical attributes, for example, all Drug entities appearing within a 3-Drug window of the 

attribute Frequency would be considered as candidates; 2) the distance in number of 

characters between the attribute and entity candidate is smaller than 1000. The generation of 

the entity-attribute pairs is liberal, covering more than 97% of the positive pairs, while still 

filtering out infrequent negative ones, thus mitigating the imbalanced class issues of the 

entity-attribute pairs.

4.2. Features

The relation classifiers use 4 types of features to predict binary output for each entity-

attribute pair:

• Position: the position of the entity candidate with respect to the attribute among 

the entire entity candidates of the attribute, where the position of medical 

attribute is set to 0. The position of the entity candidate ranges from −3 to +3.

• Distance: the distance in number of characters and words between the entity pair.
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• Bag of Words: all words within a 10-word window before and after the entity and 

attribute, plus the entity and attribute texts. We retained as features only the 903 

words that appeared in such context windows with frequencies ≥500 across the 

entire dataset. Thus, for each entity pair we generated 903 bag-of-word features: 

the counts of how many times each unique word appears in the context.

• Bag of Entities: the counts of all annotation types between the entity and 

attribute.

4.3. Learning Model

For each entity-attribute relation classifier, we trained a support vector machine using C-

Support Vector Classifier (Chang and Lin, 2011) in scikitlearn python package. We 

experimented with multiple kernels and selected the radial basis function with the kernel 

coefficient, γ, and the penalty parameter, C, set to their defaults. We tuned the class weight 

for each relation classifier for the best performance in 5-fold cross validation. Other 

parameters were set to their defaults.

5. Results & Discussion

Training and evaluation of UArizona system utilizes the 1092 de-identified EHR notes from 

21 cancer patients provided by the task organizers. The results of Task-1 NER on the test 

dataset are reported in Table 1. We find that for drug entity attributes Drug (drug name), 

Frequency, Route, Dosage, and Duration, our model works much better than the remaining 

medical entities. For example, the model obtains 87.55% F1 score for Drug identification in 

strict evaluation, which is the second highest score among all other entities, while for the 

ADE and Indication (called the medical symptom entities), the model only gets 55.07% and 

60.23% F1 in strict evaluation. The performance differences between these two different 

entity types could be attributed to the annotation distributions in the dataset, i.e., there are 

much more drug entity attributes than medical symptom entities, and the tokens annotated as 

medical symptom entities are much more diversified than tokens annotated as drug entity 

attributes. It is also notable that the identification score 81.93% for entity SSLIF is much 

higher than other medical symptom entities ADE and Indication, since ADE only refers to 

the medical signs or symptoms resulting from the normal use of a drug and Indication only 

refers to the symptoms being actively treated, without using external knowledge like medical 

ontology, it is difficult for the model to make the inferences by using the word context and 

local features alone.

Table 2 shows the results of Task-2 RI and Task-3 IT on the test dataset. Since the organizers 

did not release the complete test dataset, we can only report the F1 score for task 2 and 3 

here. By using the RI system alone on the gold identified entities, the system achieves the 

overall F1 of 83.18%. And when integrating both NER and RI systems for task-3, our 

system obtains 59.85% F1 score. At the step of generating entity-attribute pairs in RI 

system, we narrow down the scope by adding constraints such as distance rule, which could 

increase the precision, but also ignore the long-term dependency, and thus resulting in low 

performance for extracting adverse and reason relations.
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6. Conclusion and Future Work

Our system is currently amongst the top three teams for Task 2 and 3 in the MADE 1.0 

challenge, but there are still many improvements that can be made. Notably, we do not use 

any external resources except the pre-trained word embedding in our system, we believe that 

by using existing knowledge resources, such as SNOMED-CT, our system could be more 

robust and accurate on this ADEs task. We also plan to expand our use of neural models to 

the RI task, and implement a joint model to extract both entities and relations 

simultaneously.
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Figure 1: 
NER model architecture diagram taken from Yadav et al. (2018). The input is asprin or 
heparin. At the feature layer, asp is the prefix, rin is the suffix, C(asprin) is a vector 

representation generated from characters of asprin. If the word doesn’t have any subword 

information, both prefix and suffix are set as∅.
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Figure 2: 
The Bidirectional-LSTM neural network for extracting character-level representations of 

words. The input of the neural network is characters of the asprin, and the output at the last 

step of the Bi-LSTM layer is used as the character-level representations of word.
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Table 1:

Task −1 NER results: Precision (P), recall (R), and F1 of our models on MADE1.0 test dataset using official 

evaluation script provided by the organizers. Strict evaluation includes exact match of entity boundaries and 

character offset along with exact match of entity type, while relaxed evaluation is conducted at word level.

Entity type Strict Scores Approximate/Relaxed scores

R P F1 R P F1

Drug 87.06 88.05 87.55 89.53 92.90 91.18

Indication 58.33 62.25 60.23 58.32 62.96 60.55

Frequency 82.85 87.08 84.91 83.09 90.95 86.85

Severity 74.91 77.52 76.19 80.15 87.96 83.87

Dose 84.02 85.73 84.87 94.80 93.19 93.99

Duration 76.69 78.46 77.57 75.81 81.08 78.36

Route 92.29 92.76 92.53 78.54 81.31 79.90

ADE 42.23 79.13 55.07 41.23 80.11 54.44

SSLIF 82.11 81.74 81.93 82.77 82.80 82.79

Overall 80.42 82.73 81.56 81.34 84.64 82.95
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Table 2:

Task 2 RI and Task 3 IT results: F1 of our models on MADE1.0 test dataset.

Task F1

Task 2 RI 83.18

Task 3 IT 59.85
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