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Abstract

Germinal center follicular CD4+ T helper (GC Tfh) cells are critical for cognate B-cell help in 

humoral immune responses to pathogenic infections. Although Tfh cells are expanded or depleted 

in HIV/SIV-infected adults, the effects of pediatric HIV/SIV infection on Tfh cells remain unclear. 

Here we examined changes in lymphoid follicle formation in lymph nodes focusing on GC Tfh, B-

cell development and differentiation in SIV-infected neonatal rhesus macaques (Macaca mulatta) 

compared with age-matched cohorts. Our data showed that follicles and GC of normal infants 

rapidly formed in the first few weeks of age, in parallel with increasing GC Tfh cells in various 

lymphoid tissues. In contrast, germinal center development and GC Tfh cells were markedly 

impaired in SIV-infected infants. There was a very low frequency of GC Tfh cells throughout SIV 

infection in neonates and subsequent infants, accompanied by high viremia, reduction of B-cell 

proliferation/resting memory B-cells, and displayed proinflammatory unresponsiveness. These 

findings indicate neonatal HIV/SIV infection compromises the development of GC Tfh cells, 

likely contributing to ineffective antibody responses, high viremia, and eventually rapid disease 

progression to AIDS.
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Introduction

At birth, the newborn infant undergoes a rapid transition from the “sterile” environment of 

the womb to an external surrounding with abundant foreign antigens, and thus immune 

development and responses must be prepared to immediately cope with the plethora of 

foreign antigens suddenly encountered (1). Although neonatal and infant immune systems 

are thought to be functionally “immature” (1), it has been reported that broadly neutralizing 
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antibodies (bnAb) against HIV can develop quickly in infants (2). Further, our previous 

studies showed that CD4+ T cells in mucosal tissues of newborn macaques have a 

“memory” phenotype, and higher rates of proliferation than adults. These cells are the 

primary targets for early HIV/SIV replication in infants, which may be the reason infants 

have markedly higher and more sustained levels of viral replication than HIV-infected adults 

(3, 4).

In neonates, organized lymphoid tissues are not fully developed, and early immune 

protection initially relies on IgG antibodies of maternal origin, levels of which decline after 

birth, with a half-life of 21–30 days (5). Once exposed to antigens, naïve B cells are initially 

primed, and then migrate to the border of the T cell and B cell zones where they proliferate 

and form stable interactions with antigen-specific T cells to become fully activated (6, 7). A 

pool of antigen-specific B cells with the highest relative affinity then gain access to the 

newly forming germinal centers (GCs) (8–11), further proliferate, undergo random Ig 

somatic hypermutation (SHM), and rearrange and diversify their IgV genes, resulting in 

mutant GC B cell clones with a broad repertoire of potentially neutralizing antibodies (12, 

13), and generation of high-affinity antibody-secreting plasma cells and long-lived memory 

B cells (14–18). The germinal center (GC) reaction that occurs in organized lymphoid 

tissues including lymph nodes, spleen, and mucosa-associated lymphoid tissues are critical 

for developing effective humoral immune responses. Within mature GCs, signaling from GC 

Tfh cells, such as CD40, IL-4, IL-9, IL-21 and ICOS, play a pivotal role in the GC reaction 

during intermittent cognate engagements between GC B and Tfh cells (19–21). These GC 

Tfh and B cell interactions facilitate several re-iterative rounds of B cell mutation and 

selection, result in the terminal differentiation and generation of memory B cells and plasma 

cells secreting high affinity antibodies (15, 22).

Tfh cells provide help for cognate B-cell maturation, and promote potent primary antibody 

responses to infections (14, 23). Absence of Tfh cell help results in B-cell apoptosis, and 

prevents B cell differentiation and development of effective humoral immune responses (24). 

We previously reported that GC Tfh cells, defined as CXCR5+PD-1HIGH CD4+ T cells in 

GC of follicles in macaques (25), are expanded in asymptomatic stages of SIV infection, yet 

are depleted in adults with AIDS. These Tfh cells harbored within what has been referred to 

as “sanctuary sites” have also been reported to be major reservoirs of HIV (26–28), and 

infected Tfh cells have been linked with abnormal B-cell responses (29–33).

Notably, more rapid disease progression and higher mortality rates are observed among 

HIV/SIV infected infants than adults (34). However, the effects of SIV infection on Tfh cells 

in developing neonates are still unknown. Understanding aspects of the pathogenesis of HIV 

infection that are unique to neonates and young children are essential for optimizing 

prevention and treatment strategies for pediatric HIV patients.

Here, we examined the development of lymph node follicle formation in normal and SIV-

infected neonatal macaques. We monitored dynamics of GC Tfh cell development, and 

analyzed levels of viral loads and proinflammatory responses in plasma of SIV-infected 

neonates, compared with age-matched neonatal cohorts throughout neonatal development. 

The results showed that lymphoid follicles in organized lymphoid tissues of normal neonates 
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rapidly developed in the first few weeks after birth. However, in contrast to age-matched 

controls, SIV infection in newborns resulted in marked impairment of lymphoid follicle 

development, abrogation of germinal center development, and eventually, complete 

obliteration of normal lymphoid tissue architecture. We also show severely impaired GC 

development with significantly fewer numbers of GC Tfh cells, and impaired proliferation of 

B cells from lymph nodes of infants, accompanied by high viremia, yet decreased 

proinflammatory responses that are typical of primary infection in adults. These findings 

suggest SIV infection in newborn prevents GC Tfh cell development and differentiation, 

resulting in rapid impairment of humoral immune responses, which likely contributes to the 

accelerated disease progression in pediatric hosts.

Materials and Methods

Ethics statement

All animals in this study were housed at the Tulane National Primate Research Center in 

accordance with the Association for Assessment and Accreditation of Laboratory Animal 

Care International standards. All studies were reviewed and approved by the Tulane 

University Institutional Animal Care and Use Committee. Animal housing and studies were 

carried out in strict accordance with the recommendations in the Guide for the Care and Use 

of Laboratory Animals of the National Institutes of Health (NIH, AAALAC #000594) and 

with the recommendations of the Weatherall report; “The use of non-human primates in 

research”. All clinical procedures were carried out under the direction of a laboratory animal 

veterinarian. All procedures were performed under anesthesia using ketamine or tiletamine/

zolazepam, and all efforts were made to minimize stress, improve housing conditions, and to 

provide enrichment opportunities (e.g., objects to manipulate in cage, varied food 

supplements, foraging and task-oriented feeding methods, interaction with caregivers and 

research staff).

Animals and virus

In this study, total of 85 Indian-origin rhesus macaques (Macaca mulatta; RMs) were 

utilized to examine Tfh cells and other cell subsets from lymph nodes. The ages of infant 

macaques were characterized as previously reported (35) as: neonate (0–1 month); infant 

(1~6 months), juvenile (6 months~3yrs) and adult (> 3yrs). Infant animals were 

intravenously inoculated with SIVmac251 (100 TCID50) either at birth (n=28) or at 4-

months of age (n=6). Lymph nodes were collected at day 0, 3, 7, 14, 21, 28 and month 2–3 

post SIV infection. The animals grouped based on specific timepoints after early SIV 

infection, but chronically infected infants that developed illnesses attributed to AIDS were 

combined since all infected infants developed clinical signs within 2–3 months of infection. 

Tissues from SIV naive, age-matched neonates/infants (n=35) and adults (n=16, from 3–12 

years of age) were examined as controls. Numbers of animals and tissues used for individual 

experiments are provided in the figure legends.

Tissue collection and phenotyping

Blood and lymph nodes were collected at necropsy from uninfected controls, or in acute (7–

28 days), or AIDS animals with defined opportunistic infections and/or neoplasm/
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lymphoma. Lymph nodes were collected and fixed in formalin, frozen for 

immunohistochemistry to detect specific lymphocyte subsets in situ, and another section was 

processed into viable single cell suspensions for flow cytometry. Plasma was collected to 

monitor viral loads and cytokine/chemokine responses.

Flow cytometry for surface and intracellular antigens was performed on viable cell 

suspensions using standard protocols (36). Cells were stained with: CD3 (SP34), CD4 

(SK3), CD20 (2H7), CXCR5 (MU5UBEE, eBioscience), PD-1 (EH12.2H7, BioLegend), 

Ki67 (B56), IgD (Southern Biotech), CD27 (O323, BioLegend) and LIVE/DEAD Fixable 

Aqua Dead Cell Stain Kit (Invitrogen, Grand Island, NY). All antibodies and reagents were 

purchased from BD Biosciences Pharmingen (San Diego, CA) unless otherwise noted. 

Isotype-matched controls were included in all experiments. After staining, samples were 

resuspended in BD Stabilizing Fixative (BD Biosciences) and acquired on a FACS 

FORTESSA (Becton Dickinson, San Jose, CA). Data were analyzed with Flowjo software 

(Tree Star, Ashland, OR).

Multi-color confocal microscopy analysis and immunohistochemistry

Lymph node tissues were processed for immunohistochemistry as previously described (37). 

In brief, tissues were fixed in formalin, embedded in paraffin, sectioned and stained as 

below. Other sections were snap frozen in optimum cutting temperature compound (OCT) 

and 7 μm frozen sections were stained using unconjugated primary antibodies including 

CD20, PD-1, and CD68, followed by appropriate secondary antibodies conjugated to the 

fluorescent dyes Alexa 488 (green), Alexa 568 (red) or Alexa 633 (blue) (Molecular Probes, 

Eugene, OR). Confocal microscopy was performed using a Leica TCS SP2 confocal 

microscope equipped with three lasers (Leica Microsystems, Exton, PA). Individual optical 

slices representing 0.2 μm and 32 to 62 optical slices were collected at 512 × 512 pixel 

resolution. NIH Image (version 1.63, Bethesda, MD) and Adobe Photoshop CS5 (San Jose, 

CA) were used to assign colors to the channels collected. To detect PD-1+, CD20+, or 

CD68+ cells in lymph nodes by immunohistochemistry, paraffin-embedded sections were 

deparaffinized, and antigens were unmasked using high-temperature antigen retrieval by 

heating slides in a steam bath chamber (Flavor Scenter Steamer Plus; Black and Decker, 

Hunt Valley, MD) with 0.01 M citrate buffer pH 6.0 for 20 minutes. Slides were then cooled, 

washed twice in phosphate-buffered saline (PBS), and blocked with peroxidase blocking 

reagent (Dako, Glostrup, Denmark) for 10 minutes, washed again in PBS, and further 

blocked with serum-free protein block (Dako) for 30 minutes. Sections were then incubated 

with the purified anti-PD-1, CD20, or CD68 Ab for 1 hour at room temperature, washed 

(PBS), and developed using a Vectastain ABC peroxidase kit (Vector Laboratories, 

Burlingame, CA) and 3,3-diaminobenzidine DAB (Biocare Medical, Concord, CA).

Detection of SIV-infected cells in lymph nodes

To identify numbers and distribution of productively-infected cells in lymph nodes of 

chronically SIV-infected macaques, a nonradioactive in situ hybridization for viral RNA was 

performed on formalin-fixed, paraffin-embedded sections of mesenteric lymph nodes as 

previously described (35). Briefly, 5-μm sections were cut and adhered to silanized glass 

slides. After deparaffinization in xylene, rehydration in PBS, and antigen retrieval with 
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steam, sections were acetylated and hybridized with digoxigenin-labeled antisense SIV 

riboprobes (Lofstrand Labs, Gaithersburg, MD) encompassing essentially the entire SIV 

genome. Labeled cells were visualized using fluorescent dyes Alexa 568 (red)-conjugated 

sheep anti-digoxigenin antibodies. The plasma viral load and cell-associated viral RNA and 

DNA were measured as we previously described (26). In brief, total RNA or DNA was 

extracted from plasma or GC Tfh cells sorted from lymph nodes. Reverse transcription (RT) 

was performed to synthesize cDNA from RNA samples using the commercial kit (Cat. # 

18080044. ThermoFisher Scientific). Amplification and detection of SIV DNA/RNA were 

determined by TaqMan real-time PCR (ABI 7900HT sequence detection system, Life 

Techologies) targeting conservative region of SIV gag with SIV-specific primer and probe 

(38). Program was run with a 40 cycles at 95°C for 15 seconds and 60°C for 1 minute. Viral 

copy numbers were determined by plotting Cycle quantification (Cq) values obtained from 

unknown (i.e. test) samples against the exogenous calibration curves generated from known 

amounts of RNA or DNA standard, and finally normalized by known copies of spiked RNA 

or cell numbers.

Plasma cytokines/chemokines quantification, viral p27 antigen and anti-SIV gp120 
measurement

Proinflammatory cytokines in plasma were measured by Luminex 200 sytems (Bio-Rad Inc., 

Hercules, CA, USA) according to the manufacturer’s instructions. Prior to assays, plasma 

samples were thawed and centrifuged. Cytokine levels were measured using the 

ProcartaPlex NHP cytokine/GF37plex (Invitrogen) according to manufacturer’s instructions. 

The reactions in microtiter plates were read on a Bioplex-200 system instrument and results 

were calculated using BioPlex software version 6 (BioRad, Hercules, CA). Plasma p27 and 

anti-SIV gp120 were measured with standard ELISA (p27 ELISA kit, Zeptometrix Corp., 

Buffalo, NY; native SIV gp120, ABL, Rockville, MD).

Statistics

Statistical analyses were performed using a non-parametric Mann-Whitney t test (two tailed) 

and GraphPad Prism 4.0 software (GraphPad Software, SanDiego, CA). The data are 

presented as the mean +/− standard error of the mean (s.e.m.) and P values <0.05 were 

considered statistically significant.

Results

B-cell follicle formation and GC Tfh cell development in lymph nodes of neonatal 
macaques with age

In developing neonates, lymphoid follicles and germinal center structures are essentially 

absent at birth, but these structures rapidly develop within the first month of life, as indicated 

by detection of CD20+ B cell follicles and well organized lymphoid follicle and distinct GC 

formation clearly visible within the first few weeks of age. Accordingly, very few PD-1high 

cells were detected in lymph nodes at birth, consistent with the absence of GC at this stage 

(Fig. 1A). However, Tfh cells rapidly increase in follicles with age in normal infants (Figs. 

1B and1C), accompanied by lymphoid follicle formation, and persistent elevation of 

CXCL13 in plasma through 21 days after birth (Fig. 1D). As shown in Fig. 1E, GC Tfh 
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(CXCR5+PD-1high CD4+ T) cells in lymph nodes were rare in newborn lymph nodes 

(~0.25%), but rapidly increased within 1–4 weeks of age, and reached “normal” adult levels 

(2~6%) after the first month. Similar changes were observed in other lymphoid tissues such 

as the spleen and gut associated lymphoid tissues (colon) of normal infants. These data 

suggest that fully functional lymphoid tissues are rapidly established within the first few 

weeks of normal neonatal development.

Sustained viremia and virus-infected cells in lymph nodes of SIV-infected neonatal 
macaques

High sustained plasma viral loads are observed in infants infected with SIV at birth, 

compared with SIV-infected adults in which plasma viral loads “peak” 12–14 days post SIV 

infection, and then decline to a lower viral “set point” within 2–3 months of infection (4, 39, 

40). To explore the effects of immune development on viremia and virus control in SIV-

infected neonates, we compared plasma viral loads and SIV RNA+ cells in lymph nodes of 

infants infected with SIV within 24 hours of birth, to those infected at 4-months of age. In 

contrast to infants infected with the identical stock and dose at 4-months of age, marked 

numbers of SIV RNA+ cells in lymph nodes were detected in lymph nodes of neonates 

infected at birth, as SIV-infected cells emerged at 7 dpi, and their numbers continually 

expanded throughout the entire lymph node through the development of AIDS, including in 

the follicles, interfollicular region, paracortex, and medulla (Fig. 2A). Measurements of 

proviral DNA and SIV RNA in sorted GC Tfh cells from SIV-infected infants at day 21 post 

SIV infection showed these cells were heavily infected, and the levels of SIV-DNA and -

RNA in GC Tfh in the infants infected at birth are equivalent to those infected in adults (Fig. 

2D), verifying that lymphoid tissues are also major sites for HIV/SIV infection and 

replication in infants (41). These infants also had sustained high viremia, with no apparent 

“set point”, compared with infants infected at 4 months of age or adults post SIV infection, 

in which a clear peak of SIV RNA and p27 antigens occurs in plasma around day 14, 

followed by a decline and establishment of a lower viral “set point”, similar to SIV infection 

in adults (42, 43) (Fig. 2B and2C). This age-dependent difference in viremia demonstrated 

that even 4 month-old infants demonstrate better virologic control compared to newborns, 

suggesting the pediatric immune system rapidly develops to generate effective immune 

responses soon after birth (44). Thus, establishment of functional pediatric immune 

responses in the first few weeks of neonatal development may be critical for protection from 

infection by vaccination.

Impairment of GC Tfh cell development, B-cell proliferation and differentiation in SIV-
infected neonatal macaques

As shown in Fig.1, lymphoid follicles were rapidly formed in lymph nodes of normal 

developing neonates in the first few weeks of birth, accompanied by increased numbers of 

PD-1high cells. To investigate the effects of SIV infection on GC Tfh cells of neonates, we 

compared the dynamics of CXCR5+PD-1high CD4+ T-cells (GC Tfh), CD20+ B-cells, B-

cell proliferation and B-cell differentiation in lymph nodes of SIV-infected and age-matched 

normal neonates. Immunohistochemistry demonstrated that in normal (uninfected) infants, 

CD20+ B cells in lymph nodes rapidly increased with age, and aggregated to form distinct 

follicles, containing progressively increasing numbers of PD-1+ cells in the center of 
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follicles which were clearly distinguishable by 7 days of age (Fig. 3A). In stark contrast, 

PD-1+ cell populations were essentially absent in lymph nodes of any SIV-infected 

neonates, accompanied by severely impaired lymphoid follicle development (Figs. 3A and 

B). Histological assessments clearly showed that follicle structure formation was disrupted 

in all SIV-infected infants (Fig. 3C). In normal developing infants, 80% of lymphoid 

follicles were secondary, having prominent germinal centers with light and dark zones, and a 

thick paracortex densely packed with small lymphocytes in the lymph nodes of SIV naïve 

infants by 21 to 90 days of age (Fig. 3C). In contrast, numbers of follicles were markedly 

decreased in age-matched infants post SIV infection, and identifiable follicles completely 

lacked germinal center formation (Fig. 3D). In all infants that were euthanized after 30 days 

of infection, there was severe to complete disruption of lymph node follicular architecture. 

Most infants euthanized due to disease progression had massive T and B cell depletion, 

disruption of follicular architecture, and hypocellular, dilated medullary sinuses (sinus 

ectasia) and thickened medullar cords lined with hypertrophic endothelial cells. Sinuses also 

contained increased numbers of band cells, all consistent chronic, aberrant, immune 

stimulation with terminal lymphoid depletion/exhaustion. Flow cytometry of LN cell 

suspensions also indicated marked an absence of GC Tfh cells in SIV-infected infants (Fig. 

4A). In contrast, there were no significant changes in frequencies of CD20+ B cells in lymph 

nodes between SIV-infected and SIV naïve age-matched infants (Fig. 4B) this was likely due 

to the equal depletion of other cell subsets in these preparations, as B cells were clearly 

depleted in lymphoid tissues of all SIV-infected infants by immunohistochemistry (Fig. 3D). 

Further, LN B cells of SIV-infected infants showed significantly reduced levels of B-cell 

proliferation as indicated by lower levels of Ki67+ B-cells, which are the dominant subset 

among germinal center B cells of naïve, uninfected infants (45) (Fig. 4C). Resting memory 

B-cells (IgD+CD27+) also decreased in lymph nodes of infected infants compared to age-

matched controls (Fig. 4D), which corresponded with markedly increased levels of memory 

B cell (IgD-CD27+) generation in infected infants. Note that at 14 dpi (peak viremia) 

memory B cells (IgD-CD27+) were already significantly increased in infected neonates (Fig. 

4E). Consistent with lower numbers of GC Tfh cells, and the reduced B cell proliferation in 

lymph nodes, levels of plasma anti-SIV gp120 in SIV-infected infants were also significantly 

lower than SIV+ adults after 3 months of SIV infection (Fig. 4F), suggesting humoral 

immune responses in HIV/SIV-infected infants were severely impaired, especially when 

compared to SIV-infected adults. These findings indicate that SIV infection of neonates at 

birth results in markedly compromised lymphoid follicle formation, impaired GC Tfh cell 

development, and subsequent severe defects in B-cell differentiation, proliferation, and 

maturation.

Limited proinflammatory responses in SIV-infected neonatal macaques

Prior studies have shown a “cytokine storm” is induced in acute SIV infection of adult 

macaques (46) and HIV-infected humans (47, 48), and the proinflammatory cytokines 

produced may contribute to altered development and differentiation of GC Tfh cells, and 

over-activity of GC in pathologic conditions (26). Here we analyzed levels of plasma 

proinflammatory cytokines in neonatal animals infected with SIV at birth. In contrast to 

SIV-infected adults, proinflammatory cytokine responses were not significantly increased in 

SIV infected infants compared to age-matched normal controls. In fact, samples compared 
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from naïve infants 2–3 months of age consistently showed higher constitutive levels of 

several pro-inflammatory cytokines compared to SIV-infected infants (Fig. 5). This suggests 

In addition to other effects of SIV, this lack of proinflammatory responses in neonates post 

HIV/SIV infection may play a causative role in the lack of lymphoid follicle, germinal 

center, reaction, as well as Tfh cell development and maturation, resulting in pathogen-

specific unresponsiveness, clonal anergy/tolerance, and more rapid disease progression in 

pediatric HIV infection.

Discussion

T follicular helper (Tfh) cells play an essential role in B-cell proliferation, differentiation, 

and generating antigen-specific antibody responses. Here we compared B-cell follicle 

formation and GC Tfh and B cell development in germinal centers of normal and SIV-

infected neonates in situ. The results indicate that lymph node follicles are rapidly formed in 

the first few weeks of birth, accompanied with increases GC Tfh cells with age. However, 

SIV infection in neonates at birth essentially prevented the development and differentiation 

of germinal centers and GC Tfh and B-cells, as indicated by markedly lower levels of GC 

Tfh cells in lymph nodes, reduced B-cell proliferation and differentiation, and limited 

proinflammatory cytokine responses throughout SIV infection, compared with age-matched 

controls. Thus HIV/SIV infection in neonates clearly leads to rapid impairment of lymph 

node structural, and functional development, preventing normal maturation of the humoral 

immune system. These early immunologic deficits likely contribute to the sustained high 

viremia, and rapid disease progression typical of pediatric AIDS.

The systemic immune system of infants is relatively immature, with few to no mature 

memory cells, and infants typically do not respond as well to systemic infections as adults 

(3, 49). In fact over 3 million neonatal deaths per year are attributed to various infectious 

diseases (50). The maturation of the immune system in neonates is partially controlled by 

environmental and intrinsic factors (51–53), as evidenced by changes in phenotype and 

numbers of neonatal Tfh and B-cells in response to different environments (53–55). In 

developing neonates, B cell follicles are rapidly formed in the first few days to weeks of 

birth, concomitant with increased numbers of GC Tfh cells that reside within GCs of 

follicles (Fig.1). It is reported the chemoattractant CXCL13 plays a central role in homing of 

Tfh and B cells (56), and in organizing both B-cell follicles and GCs in lymphoid tissues 

(57, 58). Thus plasma levels of CXCL13 play a role in the generation of neutralizing 

antibodies (nAbs) and may be used as a biomarker of GC activity (59). As shown in Fig. 1D, 

levels of plasma CXCL13 gradually increased through the first 21 days of age in normal 

infants, consistent with the timing of follicle formation and the peak of GC Tfh cells in LNs 

(Figs. 4A). However, the levels of plasma CXCL13 decreased afterwards, probably 

correlating with sufficient GC induction and maturation to antigens exposed after birth. 

These findings suggest the immune system rapidly develops in the early life of neonates to 

facilitate neonatal immune maturation and host immunity. To compare host immunity in 

developing neonates, we compared levels of plasma viral RNA and viral antigen (p27) in 

animals that were inoculated by SIV at birth to those infected at 4-months of age. The results 

showed that neonatal macaques maintained high viremia post SIV infection at birth, 

compared with infants infected later who showed a clear viral “peak” and subsequent lower 
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“set point” (Fig. 2). In fact, the dynamics of viremia in infants infected at 4 months of age to 

those of adults. Although it has been reported that bNabs are observed in HIV-infected 

children (2), this does not appear to result in better containment of infection in infants 

without therapy. Notably, the levels of plasma p27 showed some differences compared to 

plasma viral load between SIV-infected cohorts (43, 60), probably reflecting higher and 

earlier viral replication, and delayed viral protein clearance due to immature immune 

systems in HIV/SIV-infected infants. Consistent with this, studies of human infants that 

distinguished in utero, intrapartum and postnatal infection show median survival times from 

infection of 208, 380, and >500 days respectively (61). Combined, these data demonstrate 

the neonatal immune system rapidly develops with age to defend against potential pathogens 

encountered soon after birth.

In T-cell dependent (primary) antibody responses, Tfh cells fine-tune B-cell development 

through the release of specific cytokines that trigger B cell expansion and differentiation as 

well as through direct yet intermittent cell-to cell interactions between GC Tfh and B cells 

within GC. These interactions eventually result in full somatic hypermutation of germline 

antibody genes, and expanded Ig repertoires with nAb potential (19–21, 62). Neonatal B 

cells display a naïve phenotype with only a partially developed repertoire of surface 

immunoglobulins, thus their capacity for generating antibodies is limited. However, our 

results clearly showed that SIV infection in newborns delayed formation of follicles and GC 

structures, albeit we detected no changes in percentages of total CD20+ B cells in lymph 

nodes (Fig. 4B). Importantly, very few GC Tfh cells were detected in lymph nodes of SIV-

infected neonatal macaques throughout SIV infection compared with their rapid 

development and progressive increase in age-matched controls (Figs. 3 and Fig. 4A). We 

recently reported that persistent HIV/SIV infection results in expansion of GC Tfh cells in 

chronic SIV infection of adult macaques (26), which correlated with higher viremia (63). 

This is in stark contrast to the significant reduction of GC Tfh cells observed in SIV-infected 

infants here, which may be the result of limited or persistent proinflammatory responses to 

infection (Fig. 5) or potentially other yet unknown factors. In addition, frequencies of both 

proliferating (Ki-67+) B cells, (representing functional GC B-cells), and resting memory B 

cells in lymph nodes are also significantly lower in SIV-infected infants than controls (Figs. 

4C and4D), indicating differentiation of B-cells is also severely impaired in SIV-infected 

neonatal macaques. Although total memory B cells in lymph nodes increased in acute 

infection (day 14) (Fig. 4E), accompanying peak viremia, likely probably reflecting 

expansion of short-lived memory B cell differentiation responding to viral antigens yet these 

were not sustained thereafter, reflecting lack of GC Tfh cell help. These findings are 

consistent with other reports showing decreased frequency and number of resting memory B 

cells, and increased percentages of switched memory B cells are in HIV-infected children 

(64, 65). Further, persistent B-cell defects are often observed in HIV-infected children, as 

indicated by subclinical immune abnormalities and defective B-cell maturation in HIV-1- 

infected children even when receiving antiretroviral therapy (ART) from birth (65–68). We 

propose that the damage to B-cell development in SIV-infected neonates occurs early, and is 

mainly attributed to direct infection and dysregulation of Tfh cells (Fig. 2D), resulting in 

impaired B cell maturation. This is supported by reports of impaired Tfh cells which 

correlate with lower levels of B-cell differentiation, including reduced BCR/co-stimulatory 
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signaling, and lower frequencies of resting memory B cells in HIV infected children (53, 

65). Indeed, Tfh cell loss or dysfunction during HIV infection impairs B-cell responses to 

HIV in adults (30), and in HIV+ children, it even impairs their responses to other vaccines 

(69). It is known that the safety and effectiveness of vaccines in HIV-infected children varies 

with age at vaccination and their immune status. For example, infants with symptomatic 

HIV infection should not receive live attenuated vaccine such as attenuated BCG and yellow 

fever vaccine. In general, antibody responses to vaccines are lower in HIV-infected children 

than age-matched uninfected children, albeit occasionally protective levels to some vaccines 

develop. However, HIV-infected children who do respond to vaccines also have a more rapid 

decline in antibody titres than uninfected children (70, 71). Thus, strategies for treatment 

and vaccination should be optimized for HIV-infected infants after initiation of ART (72).

Combined, we hypothesize HIV infection of neonates compromises humoral immune 

responses with regard to breadth, magnitude and specificity, all due to impairment of 

organized lymphoid tissue development and loss of Tfh cells. Although it has been reported 

that bNabs are observed in HIV-infected children (2), this does not appear to result in better 

containment of infection in infants without therapy. We and others previously reported that 

persistent SIV infection in adults is responsible for differentiation and aberrant expansion of 

GC Tfh cells in lymph nodes mediated through the production and elevation of 

proinflammatory cytokines including IL-4, IL-6 and IFN-γ (19, 26, 73–80). Here we 

examined the levels of plasma proinflammatory cytokines in SIV-infected neonatal 

macaques, and compared their levels with age-matched controls. However, as indicated in 

Fig. 5, SIV infection of neonates did not induce significant increases in proinflammatory 

responses in the first several weeks of infection, which is in stark contrast to the “cytokine 

storm” rapidly induced in SIV-infected adults (46). Since cytokines, especially IL-4 and 

IL-6, play major roles in the differentiation and localization of Tfh cells in GC of neonatal 

lymphoid tissues and B-cell function (65, 81), the lower levels of proinflammatory responses 

in neonates may play a role in the lack of GC Tfh development in acute stages of SIV 

infection. Notably, there were no significant differences in levels of proinflammatory 

cytokines between SIV naïve and SIV-infected infants until 3 months age. Thus, these 

particular proinflammatory cytokines may not be dominant factors in the initial GC Tfh cell 

development and differentiation, but likely play a role afterwards. The cellular and 

molecular mechanisms behind GC Tfh cell development and differentiation, especially in 

neonates needs to be further investigated.

In conclusion, HIV/SIV infection of neonates prevents the development and differentiation 

of normal organized lymphoid tissue development, and corresponding generation of GC Tfh 

cells and mature B cells, resulting in inadequate antibody responses, and rapid disease 

progression in HIV/SIV-infected neonates. Further understanding of neonatal immunological 

development may lead to improved treatments for combatting pediatric AIDS and other 

infectious diseases of infants and children.
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Figure 1. Rapid follicle formation and development of GC Tfh cells in lymph nodes of normal 
neonatal macaques.
(A) B-cell follicle formation in lymph nodes of normal developing infants as detected by 

immunohistochemistry for CD20 (B cells); (B) Distribution and dynamics of PD-1 positive 

cells (Tfh) in germinal centers of lymph nodes of normal neonates with age; (C) 

Representative flow cytometry dot plots of PD-1high gated CD4+ T cells obtained from 

lymph nodes of normal infants at 0, 14, 28 and 180 days of age; (D) Levels of plasma 

CXCL13 in infants with age at day 0 (n=5), 7 (n=3), 14 (n=5), 21 (n=5), 28 (n=4), 42 (n=4), 

90 (n=4), 180 (n=5) after birth, compared to adults (n=16). (E) Distribution and localization 

of GC Tfh cells (CXCR5+PD-1high CD4 T cells) in developing neonates with age showing 

lymph nodes from newborns (n=5), 1 month (n=4) and 6 months (n=5) after birth. *p<0.05, 

as compared with newborns. Data are presented as means ± s.e.m (C and D).
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Figure 2. Viral loads and detection of SIV-infected cells in neonatal and infant macaques.
(A) SIV-infected cells in follicle (F) cortex (C), paracortex (P) and medulla (M) of lymph 

nodes of neonatal macaques post SIV infection, as demonstrated by SIV RNA in situ 
hybridization. Levels of plasma viral load (B) and SIV p27 antigen (C) in infants infected 

with SIV either at birth (n=28), 4-months of age (n=6), or adults (n=12). Note viral loads do 

not reach a “peak” in infants infected at birth and demonstrate sustained high levels. In 

contrast, macaques infected at 4 months of age showed declines in viremia after 14 days, 

and had set points similar to adult infection. *,# p<0.05, compared with SIV naïve newborn 

(*) or 4-month age/adults (#). (D) Levels of proviral DNA and SIV RNA in sorted GC Tfh 

cells at day 21 post SIV infection were from the infants at birth (gray bars) or adult (black 

bars) infected by SIV.
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Figure 3. Effects of SIV infection on follicle structure of lymph nodes in neonatal macaques 
infected with SIVmac251.
Confocal microscopy of PD-1+ cells in follicles of lymph nodes in SIV naïve age-matched 

(A) and SIV-infected neonates post SIV infection (B). CD20, blue; PD-1, green. (C) 

Histopathological examination of follicles in the lymph nodes of infants with or without SIV 

infection at birth. The numbers of follicles were decreased and remaining of follicles were 

primary (lacked germinal center formation) in SIV-infected infants at 21 and 90 dpi, 

compared with age-matched controls. Severe lymphoid depletion and impaired follicle 

formation observed throughout SIV infection in infants. All photomicrographs were taken 

from H&E stained slides at an original magnification of 100×. (D) Confocal image analysis 

of B/T-cell and macrophages in lymph nodes in SIV naïve or SIV-infected infants with ~3 

months age, as shown CD20 (green), CD3 (red) positive cells and macrophage (blue).
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Figure 4. Effects of SIV infection on GC Tfh cell and B-cell differentiation in neonatal macaques 
infected with SIVmac251.
(A) Changes in GC Tfh cells (CXCR5+PD-1high CD4+ T-cell) in lymph nodes of infants 

infected with SIV at birth and examined at day 3 (n=3), 7 (n=3), 14 (n=6), 21 (n=5), 28 

(n=3) and 2~3 months (n=8) post SIV infection, compared with age-matched uninfected 

infants (n=35); (B) Percentage of CD20+ B cells in lymph nodes of infants post SIV 

infection; (C) Proliferation of B cells in lymph nodes of neonates post SIV infection; and (D 

and E) changes of resting memory B-cell (IgD+CD27+) and memory B-cell in lymph nodes 

of infants post SIV infection; (F) Levels of plasma anti-SIV gp120 in infants and adults after 

3 months SIV infection. *,# p<0.05, compared with newborn (*) or age-matched normal 

infants (#).

Xu et al. Page 19

J Immunol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Proinflammatory responses in SIV-infected neonatal macaques.
Levels of plasma proinflammatory cytokines in infants infected with SIV infection at birth 

(n=28), compared with age-matched uninfected infants (n=35). *,# p<0.05, compared with 

SIV naïve newborn (*) or age-matched controls (#). Data are presented as mean ± s.e.m.
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