Table 3. Cross-validated model discrimination for different predictor sets and modelling techniques: Derivation cohort.
Predictor set | Model | |||||
---|---|---|---|---|---|---|
CPH | RF | GBC | ||||
AUC | 95% CI | AUC | 95% CI | AUC | 95% CI | |
QA (men only) | 0.741 | 0.739, 0.743 | 0.754 | 0.752, 0.756 | 0.777 | 0.775, 0.779 |
QA (women only) | 0.739 | 0.738, 0.740 | 0.755 | 0.754, 0.756 | 0.779 | 0.777, 0.781 |
QA | 0.740 | 0.739, 0.741 | 0.752 | 0.751, 0.753 | 0.779 | 0.777, 0.781 |
QA+ | 0.751 | 0.750, 0.753 | 0.822 | 0.818, 0.826 | 0.834 | 0.833, 0.835 |
T | 0.805 | 0.804, 0.806 | 0.825 | 0.824, 0.826 | 0.848 | 0.847, 0.849 |
For any given set of predictors, GBC outperforms the other 2 models. Similarly, for any given model, T predictors show the best predictive power.
AUC, area under the receiver operating characteristic curve; CPH, Cox proportional hazards; GBC, gradient boosting classifier; RF, random forest.