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Abstract
Hospitalized patients are at risk for increased length of stay, illness, or death due to hospital acquired infections. The
majority of hospital transmission models describe dynamics on the level of the host rather than on the level of the pathogens
themselves. Accordingly, epidemiologists often cannot complete transmission chains without direct evidence of either
host–host contact or a large reservoir population. Here, we propose an ecology-based model to explain the transmission of
pathogens in hospitals. The model is based upon metapopulation biology, which describes a group of interacting localized
populations and island biogeography, which provides a basis for how pathogens may be moving between locales.
Computational simulation trials are used to assess the applicability of the model. Results indicate that pathogens survive for
extended periods without the need for large reservoirs by living in localized ephemeral populations while continuously
transmitting pathogens to new seed populations. Computational simulations show small populations spending significant
portions of time at sizes too small to be detected by most surveillance protocols and that the number and type of these
ephemeral populations enable the overall pathogen population to be sustained. By modeling hospital pathogens as a
metapopulation, many observations characteristic of hospital acquired infection outbreaks for which there has previously
been no sufficient biological explanation, including how and why empirically successful interventions work, can now be
accounted for using population dynamic hypotheses. Epidemiological links between temporally isolated outbreaks are
explained via pathogen population dynamics and potential outbreak intervention targets are identified.

Introduction

Hospital acquired infections (HAIs) adversely impact
patient care and outcomes. Worldwide, the rate of HAIs for
patients in the intensive care unit approaches 30% and
deaths due to antibiotic resistant pathogens are expected to
outpace even cancer deaths and reach 10 million annually
by 2050 [1]. Central to the fight to lower the number of
HAIs are ways in which we can lower or slow transmission
of pathogens within hospital environments [2]. Hospitals
have found some success in doing this using a variety of
mostly behavioral programs. As a result, patient isolation
[3], patient [4], and environmental disinfection [5], as well
as handwashing protocols [6], remain the most successful
and cost effective means of controlling transmission of
HAIs.

In recent years, the application of genomic tools to
hospital epidemiology has also become a valued outbreak
control tool, enhancing both magnification and resolution
into outbreaks [7]. However, even as genomic analyses
coupled with epidemiological data have provided a deeper
understanding of how nosocomial infections spread in
hospital outbreaks, there remains two interacting aspects of
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outbreaks that epidemiologists still do not understand well:
the discontinuity in outbreak cases and the lack of known
pathogen reservoirs. The discontinuity of infections in
outbreaks are periods of time in which there is a gap
between recognized cases. There is an outbreak, then new
cases cease, in some cases for extended periods of time,
leading epidemiologists thinking the outbreak has subsided.
But often, additional infections are later identified [7–11],
without any epidemiological link between the infected hosts
(such as asymptomatic carriers). Genomics has helped
because this discontinuity can sometimes be at least par-
tially explained by genomic data and surveillance mon-
itoring during and after outbreaks, such as in the
identification of previously unknown infections [8].

When new cases are identified after such breaks and the
pathogen is matched to a previous outbreak strain, a reser-
voir population is presumed to exist [2]. The location and
size of the reservoir population is often never identified.
Even so, some assumptions about reservoirs are common.
For instance, reservoirs are thought to be large populations
[12–14], although there are cases in which populations of
unknown but lesser size are called reservoirs [2, 15]. In each
of these situations, however, the source population is con-
sidered to be one from which many potential infections can
be founded. This presupposes that the reservoir is a source
population, with individual infections being sink popula-
tions. Assumptions concerning such source-sinks may turn
out to be incorrect.

Another assumption concerning reservoirs is that they
are durable, self-supporting, and exist for extended periods
of time [16, 17]. Long term sources have been associated
with infections such as Legionnaires Disease [18], which is

often associated with bacterial contamination in water
supply systems. Recent studies have begun to elucidate the
role of the hospital environment on the existence and per-
sistence of possible nosocomial reservoir populations [19–
24]. However, these environmental hospital populations
violate the assumption that reservoirs are large. Further, the
duration of these small populations, while longer than
previously suspected, is by no means permanent [25].

This necessitates the possibility that hospital acquired
infections can be caused by pathogens from ephemeral
environmental populations [26], even when these popula-
tions are small. Importantly, if a pathogen from one of these
populations is capable of causing an infection in a suscep-
tible host, then that pathogen is also capable of founding a
new environmental population somewhere else within the
hospital environment, with the size, growth rate, and
duration of that population being dependent upon a series of
independent factors, not the least of which is how well
adapted the bacterial clone is to surviving under such con-
ditions and how often that population’s location is cleaned
by facility staff.

The resulting conditions are such that hospital pathogens
can survive for prolonged periods of time by emigrating
from one ephemeral population to another until one of three
possible outcomes is reached: bacterial cells will eventually
die off, be killed through the regular process of hospital
cleaning, or cause a new infection. If the cells are able to
infect a new host, the size of the infecting pathogen popu-
lation will grow exponentially and many new populations
can be founded, starting the process a new. The result is that
the pathogen population survives as a metapopulation
(Fig. 1a, b).

Fig. 1 The Ephemeral Island Metapopulation Model in Hospital
Environments. Colors represent each patch class: Patients in red;
Nurses in green; Doctors in blue; Equipment in black; and Stationary
surfaces are yellow. a A Gantt-like diagram of a hospital outbreak with
overlap of identified infected patients (elongated red bars) over time.
The undefined area denoted by the question mark is a discontinuity in
the epidemiological analysis of transmission typical of outbreaks. b A
similar depiction of a hospital outbreak under the proposed model,

where many ephemeral islands can bridge the discontinuity so long as
the metapopulation exists within the hospital facility. c Graphic
representation of transmission routes in the model. Transmission route
arrows and patch areas represent (approximately) the strength of
transmissions modeled. Transmission routes are in linear scale and
patch classifications are in log scale (relative to each other). Dashed
transmission line between Doctors and Equipment denotes low
interaction
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Here, we propose a model for HAIs that is based upon
the concept of a metapopulation [27] and is further
informed by island biogeography [28, 29]. This differs from
most outbreak models by departing from the Susceptible-
Infected-Recovered (SIR) focus on hosts and moving our
attention to the population biology of the pathogen itself.
We should note, however, that hosts can be viewed as patch
populations in SIR models [30]. For our purposes here, we
will presume the pathogen to be bacterial. We propose that
hospital pathogen metapopulations survive across a patchy
distribution of habitable areas within a larger inhabitable
landscape by existing in smaller populations for some per-
iod of time. Individuals from one patch (or island, the terms
will be interchangeable for our purposes) move to other
locales after some period of time before either the resources
required to survive in the original patch are exhausted or
that patch is wiped out by cleaning and the resident popu-
lation goes extinct. In this way, populations exist within a
particular hospitable patch for a period of time, but not
indefinitely. The patches can vary spatially, like small
islands in an inhospitable sea, or temporally, such as a
blooming plant in a desert might for a group of insect
nomads. Then, after some unknown amount of time has
passed, individuals from an island population either die off
or move on to other islands, within which they can found a
new island population or join one already existing. Addi-
tionally, in our model, migration distances are replaced with
a sort of network connectivity measure dependent upon the
amount and intensity of interactions between island types.
In macroscopic species, migration probability is a function
of physical distance, whereas for microbes, the ability to go
from patch to patch is really a matter of how you will be
carried there or by whom.

The applicability of metapopulations to problems
of pest control [31], parasitism, and infections [32]
has been recognized for some time. The further applicability
of metapopulation ecology to nosocomial infection
transmission should also be evident. However, in the
hospital environment instead of naturally occuring limits on
patch viability, the likelihood of an island being sustainable
or not is dictated by human behaviors such as
hand washing, patient isolation, antibiotic stewardship
protocols, healthcare worker cohorting, and the frequency
of environmental cleaning [33]. Not surprisingly, all
of these behaviors are also intervention targets thought to
be effective infection control measures [24, 33–35].
Here, we provide an adequate scientific base capable
of explaining why [36, 37]. Understanding metapopulation
dynamics of pathogens in this way has the potential
to provide a wide scientific foundation upon which
hospital epidemiology can be interpreted and further
developed.

Methods

Our model investigates the ability of pathogens to spread
and survive via numerous interactions between different
carriers. Using Monte Carlo simulation, we model the
interactions between different islands and investigate the
long term viability of the pathogen metapopulation. The
model considers five classes of island/patch. Three of these
are potential human hosts: patients (P), nurses (N), and
physicians (D). Two account for the environment: mobile
equipment (E) and non-mobile surfaces (S), modeling the
role of the environment in the potential survival and
transmission of HAI pathogens. Through these five classes
most typical interactions can be simulated. The island
classes are defined by the behavior and levels of interaction
relative to each class type within the model system. This
means that not all members of a class necessarily perform
the same job function within the hospital, only that they
behave in a manner similar to the defining characteristic of
their class [38]. Therefore, not all members of the Nurse
island class are nurses; they may be a Physical Therapist or
an X-ray Technician, but their level and number of inter-
actions are similar enough to place them in the same class as
a Nurse. In the present study, efforts were undertaken to
keep the model as simple as possible. For this reason, the
number of classes is limited here. However, the design of
the model allows for the modular addition of more classes
by expanding the relevant matrices and incorporating into
them a greater number of parameter values (see below).

General properties of interactions for each island type
can be listed as follows: (D) interact with all patients (P).
(N) do not necessary interact with all (P), but the frequency
of (N)-(P) interactions is greater than the frequency of (P)-
(D). (S) do not directly interact with each other. (P) only
have direct interaction with (E) and (S) in their immediate
environment. (S) and (E) can be cleaned more effectively
than (N), (P), and (D) (Fig. 1c).

Several parameters are needed to simulate the pathogen
population over the different islands. The parameter Maxi is
a vector that corresponds to the carrying capacity an island
of type i can support. The number of interactions, over a
given period of time, between an island of type i and an
island of type j is noted in matrix form as Nij. The prob-
ability of pathogen transmission, i.e., the probability for the
pathogen to be found on j after an interaction with i con-
stitutes the matrix, Pij. Additional parameter classifications
can be added by incorporating new columns into the
matrices, thereby affording the model a level of customiz-
ability. The frequency of cleaning an island per unit time is
a vector, Ci. The efficacy of cleaning, i.e., the fraction of the
patch population killed through a cleaning event is the
vector Li. Values for these parameters as used here are given
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in Fig. 2 and are calculated based upon a review of the
literature from studies worldwide (see SI for more infor-
mation). This was done in order to highlight the universal
applicability of the model; however, we note that parameter
values for a specific clinical site would be necessary for a
more refined study.

The population, when left alone on an island, has a
doubling time τ. Here, the value of τ is 8 h. This generation
time was chosen based upon empirical evidence of doubling
time for bacteria under environmental conditions and can
also be adjusted as necessary. The value of τ here has the
added benefit of matching with what we describe as a
hospital shift, i.e., the amount of time a particular group of
health care workers surround a patient. Thus, simplifying
the model in the current instance as the number of inter-
actions between island types are all per shift. See SI for
additional discussion of the τ value used here.

At the beginning of our simulations, all islands are free
of pathogens. We introduce a pathogen on a patient for a
given amount of time, 30 days (tstart), after which this index
patient is removed. The value of tstart can be adjusted within
the simulations, here 30 days was chosen so as to allow the
pathogens to infiltrate the environment and allow each trial
to begin with similar conditions. However, we consistently
observed environmental saturation to occur in our

simulation runs in less than the 30 days. We run our
simulations by randomly drawing, every day, a sequence of
interactions between islands and of cleaning events, and by
following the changes in the growth, death (or cleaning),
and locations of the populations of pathogens over time.
While the model allows for bacterial colonization of
patients (P), no secondary infections were allowed as this
would effectively reset the model to Day 0 and the question
being addressed here concerns metapopulation persistence.

Results

A total of 1000 Monte Carlo trials were conducted, each for
2000 days (total of 2,000,000 simulated patient-days). The
overall number of trials was determined by verifying that
the number be sufficient to ensure that our average results
do not depend on the total simulations run. We simulate a
situation where an index patient carrying a pathogen is
admitted to a naïve hospital ward for tstart= 30 days. Sen-
sitivity analyses indicate that all results are robust to two-
fold increases/decreases to interaction matrix (Nij) values
(see SI for more information).

All simulations begin with a single index patient. Trials
show all patches quickly reaching maximum carrying
capacity and remaining at those levels for the duration of
the infected patient’s stay. Following removal of the source
population, island population sizes decline, but do not go
extinct for extended periods of time. This results in the
continued transmission of the pathogen between hospital
workers, environmental patches, and novel patients during
that period. Without a new source population (second index
patients were not introduced in trials and secondary infec-
tions were not allowed), simulations indicate that the
metapopulation will eventually go extinct, but the time to
total metapopulation extinction in the model is a function of
the frequency and level of cleaning events affecting indi-
vidual patch populations.

This is the first of several unexpected results of our
model simulations. The longer a pathogen metapopulation
can remain extant within a hospital, the greater the prob-
ability of a secondary infection occurring in a susceptible
patient. Within our model, any secondary infection would
represent a stochastic jackpot event in which a limited
number of cells found what will become a large new island
population with which other potential hosts (short and long
term) are expected to interact. When such a secondary
infection occurs, patch populations quickly reach carrying
capacity once again, thereby resetting the time to extinction
clock for the metapopulation as a whole. As a result, the
metapopulation can remain in existence indefinitely. From
an epidemiological perspective, there need not be any direct
contact at all between the primary and secondary infected

Fig. 2 Parameter values used for the current simulations. The matrices
Nij and Pij represent the number of interactions within and between
parameter classes and the level of transfer of live bacterial cells during
the interaction, respectively. The Nij matrix contains number of
interactions per 8 h shift and is based upon publicly available data
sources for a range of health care facilities. The carrying capacity for
any class of island is dependent upon patch type but is impacted by the
frequency of cleaning (Ci), as well as the thoroughness of that cleaning
(Li). The regularity and thoroughness of cleaning is expected to keep
the metapopulation from reaching equilibrium on a consistent basis,
raising the overall importance of the level of detectability of a
pathogen within a facility in the ability of that pathogen to persist over
time. The parameter classes in the matrices, in order, are: doctor, nurse,
patient, equipment, surfaces. Supporting references for parameter
values can be found in the SI
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patients, so long as the time between the two cases is less
than the time to metapopulation extinction and there exists a
transmission path, regardless of how indirect, between the
two infected patients. The reason for the extended persis-
tence of the metapopulation is that in order for permanent
extinction of the metapopulation to occur, all islands must
be extinct at the same moment (Fig. 3). If any island
population remains, regardless of the number of individuals,
the possibility remains for other islands to be repopulated
over time and for additional infections to occur. In this
manner, the model explains the discontinuity of infections
often observed in hospital outbreaks.

A second outcome of model simulations relates to the
small size of island populations during the period between
loss of the source population and extinction. Model para-
meterization set limits to patch population sizes based
upon island class. These limits are in line with empirical
data currently available [6, 26, 39, 40]. In most simulation
trials, the size of patch populations quickly dropped below
carrying capacity once the source population was removed
(Fig. 4). The island populations remained extant at small
sizes for significant periods of time before going extinct.
However, the local populations continue to survive during
this time, even at such small scales. Patches surviving at
levels indicated by our simulations suggest that many of
these islands would be too small to be readily detected by

most pathogen sampling techniques currently in use in
healthcare facilities.

Typically, hospitals employ culture-based protocols for
the presence/absence detection of pathogens. However, all
such methods have a lower limit to their resolution of
detection [2, 41]. In large part, this limit may be due to
sampling itself: in order to detect a pathogen, staff must first
swab then culture a strain. Successful detection is impacted
by, among other things, the likelihood of sampling enough
of the relevant bacteria (typically from a patient). If the
same techniques are applied for surveillance of staff and
environment during which island populations exist in small
populations, the probability of detection is greatly dimin-
ished, leading to a large false negative bias. In fact, our
simulations suggest that metapopulations can persist on
islands for extended periods below a reasonable size
threshold of detectability, providing faulty data upon which
facility personnel may base critical decisions.

An additional result indicates that a metapopulation
model, while robust to changes in interaction or transmis-
sion parameters, is sensitive to the number of local popu-
lations that make up the metapopulation system. For patch
classes such as doctors, nurses, and the patients themselves,
the number of possible patches is relatively limited: most
(but not all) pathogen islands will be on hands and most of
these will have high frequencies of cleaning with high
effectiveness. However, the number and duration of non-

Fig. 3 Median size of patch populations over time for 1000 compu-
tational simulation trials. After the initial forcing period, median patch
population size fluctuates but remains at a low level for extended
periods of time, here over 1000 days. The metapopulation persists at
an equilibrium between patch population births and deaths, with the
rates of each affected by transmission and cleaning. At any point
during this time period, a jackpot even could occur which results in a
secondary active infection that would start a new forcing period.
Median population size for surface patches (in yellow, not visible)
remains close to 0 throughout timeframe. After approximately
1000 days, the other patch type populations also persist at extremely
small median sizes. Median time to metapopulation extinction in our
simulation trials was 506 days

Fig. 4 Fraction of occupied patches over time as compared to fraction
of populations above threshold of detectability. A comparison of the
average fraction of patches occupied, regardless of local population
size, and the fraction of patches with local population sizes greater
than the threshold of detectability, here set to 103 cells/patch. The slow
decline in metapopulation (first panel) suggests that hospital pathogens
survive for much longer periods of time than previously suspected
without a high probability of detection through most monitoring pro-
tocols. For instance, at 500 days, approximately 50% of all patches
have at least some pathogens in them, but only about 15% have more
than the number required to be detected with any reasonable
probability
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human islands, such as those on equipment, surfaces, and
even dust [23] are more problematic. The model here is
sensitive to the number of these islands, with minimum
thresholds being vital for metapopulation survival (Fig. 5).
This may present a unique target for HAI control measures
if reliable methods for detecting and monitoring such pat-
ches can be implemented in clinical environments. The
present simulations all utilized a conservative number of
four surface patches per patient. A much larger number of
surfaces per patient can be envisioned, including sites
known to be easily contaminated such as bedrails, door
knobs, toilet handles, call buttons, faucets, etc., suggesting
that the median time to extinction for pathogen metapopu-
lations in real-world environments is even longer than that
suggested in our simulation trials.

In addition to the sensitivity of the model to patch
number, also noteworthy is the model’s robustness to the
interaction and transmission levels that define the system.
By having low sensitivity to changes in these parameters
(denoted in Nij and Pij), simulation trials suggest that a
stable equilibrium can be reached for a wide range of
physical constraints across hospital conditions. This results
in a resilient population-level system by which pathogens
can survive and adapt to many different specific healthcare
facilities so long as the core structure and function of the
hospitals are alike across sites (a similar finding for viral
adaptation to novel hosts has been shown previously [42]).
The outcome is that hospitals are susceptible to endemic
metapopulations of pathogens by their very design and
function.

Limitations

The model presented here incorporates several aspects of
established ecological theory, including metapopulation
biology and island biogeography theory, and develops them
into a framework to potentially explain empirical data
concerning nosocomial outbreaks of infectious disease. In
the present form, the model should be seen as a baseline, or
first-order approximation, of the specific pathogen popula-
tion dynamics within hospitals. The emphasis here is on
attempting to understand the ecology of infectious diseases
in the built (and highly structured) environments of
healthcare facilities from the perspective of the pathogen as
opposed to their hosts while still being cognizant of host
biology and interactions.

Model parameter values should be from single site

Our Sensitivity Analyses (see SI) have shown that the
model is robust to changes in most parameter values,
however, we highlight in Fig. 5 that the number of surface
islands (S) can impact the median time to metapopulation
extinction. The number of such surface islands in any
hospital, ward, or room, is not clearly known and may be
highly specific to any particular facility. As such, we cau-
tion that this model, like most models, is limited by the
accuracy of the parameter values that inform it.

Model is incomplete

The model does not take many real-world aspects of HAI
into account. For instance, while we mention secondary
infections, these are not included in the presented model. In
order to do so, the modeler would need to include an
additional matrix of the probability of any patient devel-
oping a secondary infection. The intent is for this model to
be developed by the community over time so as to be
properly applicable under correct circumstances.

Discussion

For almost a century, mathematical models have been
applied to epidemic outbreaks [43]. Models are also often
used as a mechanism by which we can understand the
dynamics of infection transmission and spread in hospital
environments [35]. While models have proven helpful in
understanding how HAIs spread, they have been limited by
our incomplete understanding of the biology that underlies
them. For instance, SIR-type models focus on the biology of
hosts and make assumptions concerning the pathogen that
may limit the applicability to hospital outbreaks. In SIR

Fig. 5 Importance of the number of surface-type patches. While sen-
sitivity analyses indicate the model to be robust to interaction or
transmission values, the total number of patches within a metapopu-
lation is important to the system. Here, the number of possible patches
on surfaces must be greater than 60 in order for the metapopulation to
resist relatively rapid extinction. The simulations here concern a total
of 20 patients and 80 surface patches resulting in only four patches per
patient. A larger number of patches per patient can easily be envi-
sioned. Note the Log scale on the Y-axis. Shaded area indicates ±1 SD
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models, the two foundational measures of an outbreak are
R0, the average number of secondary infections produced
per primary infection, and the infection timescale [30].

Here we propose a model in which pathogen populations
in hospital environments act as metapopulations, with small
patch populations interconnected by migration between
ephemeral islands that interact with each other. The size of
these island populations, their duration, and the migration
between them are dictated by the human behaviors inherent
to the operation of modern healthcare facilities. This pro-
vides a biologically relevant basis for observed HAI
dynamics and explains empirical data on individual inter-
ventions that have correlated with lowered HAI transmis-
sions [2, 5, 6, 44]. While many aspects of our model have
been observed independently, to our knowledge, they have
never been integrated into a common framework such as
presented here.

This means that viewing pathogen populations in
healthcare environments through a structured population
lens provides a system capable of explaining the underlying
biology. For instance, evidence of lower HAIs with
increased handwashing for health care workers not only
makes intuitive sense, but is also supported by the data [6].
In our model, the increased handwashing reflects a change
in the frequency of cleaning (Ci) and improved handwash-
ing leads to lower numbers of individual bacteria in the
metapopulation (Li), reducing the overall number of
migrating bacteria, having a cascading impact on the
number of possible transmission events at all later time-
points for that particular island.

Our simulations indicate that by existing in a metapo-
pulation structure, pathogens can survive within a hospital
for extended periods of time even after the original source
population is removed. In essence, each patch population
contributes to a diffuse reservoir that resists extinction
through a bet-hedging strategy in which the metapopulation
is never in any one place at any single time. In a SIR-type
model framework, this would be equivalent to the infection
timescale being greatly extended beyond just the period of
measured infections, with the metapopulation capable of
founding new infections at any time prior to complete
extinction. Surprisingly, the overall metapopulation size
remains small meaning that large reservoirs are not required
for pathogens to remain extant over long periods. Addi-
tionally, the metapopulation reservoir is ultimately a series
of sink populations. However, unlike most source-sink
systems, the metapopulation may be dependent upon sink
populations to found new populations which can then
subsequently become sources.

These new source populations would take the form of
secondary infections where local patch size can become
much larger than that of any other class of patch. In this

way, secondary infections represent a kind of stochastic
jackpot event in which a small number of individual bac-
teria found a large new source population capable of
resetting the time to metapopulation extinction by saturating
the system. This interpretation is rather different from the R0

statistic of SIR models, where one infection will beget a
certain number of secondary infections. We acknowledge
that our interpretation is an over simplified view that ignores
much of infection biology but the underlying tenet that
population structure can provide for extended pathogen
population existence is supported. Additionally, if the
model predictions are correct in real-world scenarios, this
would also imply that secondary infections follow not only
a single but perhaps several bottleneck events. Conse-
quently, founder effect genetic signatures should be iden-
tifiable in hospital outbreaks, as is observed [7, 9], as well
as in nosocomial strains more generally, as also seen [45,
46].

Future directions

The application of an ephemeral island metapopulation
model to nosocomial pathogen populations may provide a
tractable system for developing and testing intervention
hypotheses. The wealth of genomic studies of hospital
outbreaks makes population genetic analyses an immediate
possibility. Data from such studies can inform experimental
exploration of virulence evolution, as well as host-pathogen
coevolution. These aspects of the model proposed have the
potential to aid the development of the field of evolutionary
medicine, partly through the application of evolutionary
ecology to the hospital environment. Immediate next steps
require informing the model with parameter values specific
to individual hospitals to understand the physical limits of
metapopulations in specific institutions (individual rooms,
wards, entire wings, etc.).

Our model invites study of several aspects of hospital
pathogen population biology, with the potential to guide
development of novel intervention protocols. This could be
accomplished by leveraging the knowledge gained in field
biology concerning the conservation of species that live in a
metapopulation structure. By reversing the goal from con-
servation of species to eradication of pathogens, we may be
able to positively impact the public health through the
manipulation of the very aspects of metapopulation
dynamics that prolong persistence (patch size, transmission
distance, etc.).
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