TABLE 1.
Equation no. | Equation | Associated MAG(s) |
ΔG per mol substrateb
(kJ mol−1) |
YATP (mol ATP mol−1 substrate)b ,c |
ΔG0' available per ATP produced (kJ mol−1 ATP) |
Terminal enzyme |
||
---|---|---|---|---|---|---|---|---|
PH2 = 10–6 atm | PH2 = 1 atm | PH2 = 6.8 atm | ||||||
Xylose simple fermentation |
||||||||
1 | 3 C5H10O5 → 5 C3H5O3- + 5 H+ | LAC1, LAC2, LAC4, LAC5 |
−174 | −174 | −174 | 1.67 | −104 to −104 | |
2 | 3 C5H10O5 → 3 C3H5O3- + 3 C2H3O2- + 6 H+ |
LAC1, LAC2, LAC4, LAC5 |
−214 | −214 | −214 | 2.00 | −107 to −107 | |
Xylose elongation | ||||||||
3 | 3 C5H10O5 → 3 C4H7O2- + 3 CO2 + 3 H2O + 3 H+ |
LCO1 | −264 | −264 | −264 | 3.00 | −88 to −88 | CoAT |
4 | 3 C5H10O5 → 1 C6H11O2- +3 C2H3O2- + 3 CO2 + 4 H+ + 2 H2 |
LCO1 | −272 | −248 | −245 | 2.83 | −87 to −96 | CoAT |
5 | 3 C5H10O5 → 1 C8H15O2- + 2 C2H3O2- + 3 CO2 + 3 H2O + 3 H+ |
LCO1 | −265 | −265 | −265 | 3.00 | −88 to −88 | CoAT |
6 | 2 C5H10O5 → 1 C4H7O2- + 2 C2H3O2- + 2 CO2 + 3 H++ 2 H2 |
LCO1 | −276 | −240 | −235 | 2.25 | −105 to −123 | TE |
7 | 3 C5H10O5 → 1 C6H11O2- + 3 C2H3O2- + 3 CO2 + 1 H2O + 4 H+ + 2 H2 |
LCO1 | −272 | −248 | −245 | 2.50 | −98 to −109 | TE |
8 | 4 C5H10O5 → 1 C8H15O2- + 4 C2H3O2- + 4 CO2 + 2 H2O + 5 H++ 2 H2 |
LCO1 | −270 | −253 | −250 | 2.63 | −95 to −103 | TE |
Xylose and C2/C4/C6d elongation |
||||||||
9 | 1 C5H10O5 + 2 C2H3O2- + 2 H2 → 2 C4H5O2- + 1 CO2 + 3 H2O |
LCO1 | −240 | −311 | −320 | 3.50 | −69 to −92 | CoAT |
10 | 1 C5H10O5 + 1 C2H3O2- + 2 H2 → 1 C6H11O2- + 1 CO2 + 3 H2O |
LCO1 | −240 | −311 | −320 | 3.50 | −69 to −92 | CoAT |
11 | 1 C5H10O5 + 1 C4H7O2- + 2 H2 → 1 C8H15O2- + 1 CO2 + 3 H2O |
LCO1 | −264 | −264 | −264 | 3.50 | −75 to −75 | CoAT |
12 | 1 C5H10O5 + 1 C4H7O2- → 1 C6H11O2- + 1 C2H3O2- + 1 CO2 + 1 H2O + 1 H+ |
LCO1 | −243 | −314 | −324 | 3.00 | −81 to −108 | CoAT |
13 | 1 C5H10O5 + 1 C6H11O2- → 1 C8H15O2- + 1 C2H3O2- + 1 CO2 + 1 H2O + 1 H+ |
LCO1 | −267 | −267 | −267 | 3.00 | −89 to −89 | CoAT |
14 | 1 C5H10O5 + 2 C2H3O2- + 2 H2 → 2 C4H5O2- + 1 CO2 + 3 H2O |
LCO1 | −240 | −311 | −320 | 1.50 | −160 to −214 | TE |
15 | 1 C5H10O5 + 1 C2H3O2- + 2 H2 → 1 C6H11O2- + 1 CO2 + 3 H2O |
LCO1 | −240 | −311 | −320 | 2.50 | −96 to −128 | TE |
16 | 1 C5H10O5 + 1 C4H7O2- + 2 H2 → 1 C8H15O2- + 1 CO2 + 3 H2O |
LCO1 | −264 | −264 | −264 | 2.50 | −105 to −105 | TE |
17 | 1 C5H10O5 + 1 C4H7O2- → 1 C6H11O2- + 1 C2H3O2- + 1 CO2 + 1 H2O + 1 H+ |
LCO1 | −243 | −314 | −324 | 2.00 | −122 to −162 | TE |
18 | 1 C5H10O5 + 1 C6H11O2- → 1 C8H15O2- + 1 C2H3O2- + 1 CO2 + 1 H2O + 1 H+ |
LCO1 | −267 | −267 | −267 | 2.00 | −133 to −133 | TE |
Free energies of formation for all chemical compounds were obtained from Kbase (www.kbase.us). The ATP yield (YATP) was determined on the basis of biochemical models presented in Data Set S7 and is indicated as moles of ATP produced per mole of xylose consumed. The terminal enzyme of reverse β-oxidation, i.e., either a CoA transferase (CoAT) or thioesterase (TE), is also indicated.
ΔG values and expected ATP yields are normalized to moles of xylose, moles of lactate, or moles of glycerol.
The pathway reconstructions shown in Data Set S7 were used to determine the expected ATP yields.
These scenarios considered coutilization of xylose and acetate (C2), butyrate (C4), or hexanoate (C6).