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ABSTRACT Silver (Ag™*) and copper (Cu™) ions have been used for centuries in in-
dustry, as well as antimicrobial agents in agriculture and health care. Nowadays, Ag™
is also widely used in the field of nanotechnology. Yet, the underlying mechanisms
driving toxicity of Ag™ ions in vivo are poorly characterized. It is well known that ex-
posure to excess metal impairs the photosynthetic apparatus of plants and algae.
Here, we show that the light-harvesting complex Il (LH2) is the primary target of
Ag* and Cu™ exposure in the purple bacterium Rubrivivax gelatinosus. Ag* and Cu™
specifically inactivate the 800-nm absorbing bacteriochlorophyll a (B800), while Niz+
or Cd2* treatment had no effect. This was further supported by analyses of CuSO,-
or AgNO;-treated membrane proteins. Indeed, this treatment induced changes in
the LH2 absorption spectrum related to the disruption of the interaction of B800
molecules with the LH2 protein. This caused the release of B800 molecules and sub-
sequently impacted the spectral properties of the carotenoids within the 850-nm ab-
sorbing LH2. Moreover, previous studies have suggested that Ag™ can affect the re-
spiratory chain in mitochondria and bacteria. Our data demonstrated that exposure
to Ag™, both in vivo and in vitro, caused a decrease of cytochrome c oxidase and
succinate dehydrogenase activities. Ag™ inhibition of these respiratory complexes
was also observed in Escherichia coli, but not in Bacillus subtilis.

IMPORTANCE The use of metal ions represents a serious threat to the environment
and to all living organisms because of the acute toxicity of these ions. Nowadays, sil-
ver nanoparticles are one of the most widely used nanoparticles in various industrial
and health applications. The antimicrobial effect of nanoparticles is in part related to
the released Ag™ ions and their ability to interact with bacterial membranes. Here,
we identify, both in vitro and in vivo, specific targets of Ag™ ions within the mem-
brane of bacteria. This include complexes involved in photosynthesis, but also com-
plexes involved in respiration.

KEYWORDS chlorophyll, copper, membrane complexes, metal homeostasis,
photosynthesis, respiration, silver, toxicity

etal accumulation in the environment results in toxicity and defects in metabo-

lism, leading to impaired growth of microorganisms, as well as to a variety of
metabolic disorders in higher organisms. In most bacteria, metals such as Cu*, Cd2™,
or Ag™ would diffuse through nonspecific importers within the membrane. This
induces the expression of the detoxification systems that allow the cell to tolerate the
presence of metals in its environment (1-6). Among these systems, metal efflux systems
are very efficient to detoxify excess metal. The P,B-type ATPases are the most fre-
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quently present heavy metal transporters in bacteria (7). They extrude excess or toxic
metal ions such as Cu™, Zn2*+, Cd2+, Co?™, Pb2™", or Ag™ from the cytoplasm to the
periplasm, where metal is handled by other detoxifying proteins. In Escherichia coli, the
Cu* detoxifying system includes the Cu* efflux ATPase CopA, the CusFCBA efflux
system, and the CueO oxidase (8, 9). These systems are also involved in Ag* detoxifi-
cation in E. coli and other species (9-11). In mutants defective in the efflux system,
metal accumulation in the cytoplasm can disrupt different metabolic pathways. Indeed,
Cu*, Ag™, or Cd2* can disrupt the solvent-exposed 4Fe-4S clusters of dehydratases (12,
13). In the purple photosynthetic bacterium Rubrivivax gelatinosus, Cu* induces the
expression of the CopA-ATPase and the periplasmic blue copper protein Copl (14, 15).
Recent in vivo studies showed that Cu™ accumulation in R. gelatinosus and the human
pathogen Neisseria gonorrhoeae AcopA mutants affects cell growth by altering heme
biosynthesis in the cytoplasm (14, 16) or cytochrome ¢ assembly in the periplasm for
the Acopl mutant in R. gelatinosus (15). Interestingly, similar effect of tellurite on
cytochrome c-type assembly was recently reported in Rhodobacter capsulatus (17). Cu*
can also compete with iron for the metal binding site of IscA and inhibit the 4Fe-4S
cluster assembly pathway in E. coli (18). In plants and algae, metals exert their toxic
action mostly by damaging chloroplasts, which leads to decreased efficiency of pho-
tosynthesis. Plants subject to excess metals usually exhibit a decrease in the photosys-
tem amount and chlorophyll content (19-22). However, the toxicity mechanisms are
not well known. Assessing the effect of metals on the growth of photosynthetic
bacteria can provide new insights into the toxicity mechanisms and identify metal
targets in phototrophs. Purple photosynthetic nonsulfur bacteria can grow by aerobic
and anaerobic respiration or photosynthetically in the light under anaerobic or mi-
croaerobic conditions, using a cyclic electron transport chain. Aerobic respiration
usually involves a branched energy-transducing electron transfer chain (23). The cyto-
chrome c-dependent branch usually involves the NADH dehydrogenase, succinate
dehydrogenase, the bc, complex, and the terminal cytochrome c oxidase (aas or cbb,).
Under light-exposed condition, photosynthesis takes place within the membranous
photosynthetic apparatus. The photosystem is usually composed of three pigment-
protein complexes, namely, the two light-harvesting antennae (light-harvesting com-
plex | [LH1] and light-harvesting complex Il [LH2]) and the reaction center (RC),
associated with carotenoids and bacteriochlorophylls (24). During the process, the
light-harvesting complexes (LH) capture light energy and direct it to the RC, where
conversion of the excitation energy/charge separation takes place. The LH antenna
system consists of two large pigment-protein complexes, the core light-harvesting
complex, LH1, that surrounds the RC, and the peripheral light-harvesting complex,
LH2, induced under low-light conditions to increase light trapping efficiency in
some species. Both LH antennae are composed of two integral membrane poly-
peptides (« and B) that associate with bacteriochlorophyll (BChl) and carotenoid
molecules (25-27). The LH2 antennae contain two spectrally distinct bacteriochlo-
rophylls, a (B800) and B850, which absorb in the near-infrared range, at 800 and
850 nm, respectively. The crystal structure of the LH2 from Rhodopseudomonas
acidophila was previously resolved (25). The B850 molecules are sandwiched be-
tween the « and B subunits and are perpendicular to the membrane surface. In
contrast, the B800 molecules are localized between the B subunits and aligned
parallel to the membrane surface. The structures of the RC-LH1 core complexes of
Rhodopseudomonas palustris and Thermochromatium tepidum are available (26, 27).
In this study, we analyzed the effect of extended exposure to metals on photosyn-
thesis and respiration in the photosynthetic purple bacterium R. gelatinosus. The
data indicated that the B800 of LH2 was specifically removed upon exposure to
AgNO; and CuSO,. We then assessed the impact on the respiratory chain and
showed that metal ions also damaged the succinate dehydrogenase and the
terminal cytochrome c¢ oxidase, thereby affecting respiration.
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FIG 1 AgNO; growth inhibition of R. gelatinosus. Wild-type cells were grown in 96-well microplates in the Tecan Infinite
M200 luminometer. Indicated concentrations of CuSO,, CdCl,, or AgNO, were added to the growth medium after 3.5 h,
when cells reached an ODg4, of 0.16 (arrow). Black line represents growth curves of untreated cells (malate) and red, green,
blue, cyan, magenta, yellow, and brown lines represent growth curves of cells treated with increasing concentrations of

Cu?+, Cd?*, or Ag*, as indicated.

RESULTS

Silver is highly toxic for R. gelatinosus, and the Cu*-ATPase CopA is not
involved in Ag* response. To assess the toxicity of Ag™ in comparison with those of
other toxic metals, wild-type cells were treated with increasing concentration of AgNO;,
CuSO,, or CdCl, during the exponential growth phase, and overnight growth was
monitored. Growth was not affected by the addition of CuSO, or CdCl,, even at T mM.
In contrast, addition of 1 uM AgNO; was enough to fully inhibit growth (Fig. 1). Similar
results were reported in E. coli cells, highlighting the acute toxicity of Ag™ compared to
that of other metal cations (13). We should note that toxicity was reduced when AgNO,
was added to a higher density of cells (Fig. S1), as previously reported for E. coli. It was
suggested that metal ions could interact and be sequestered on the cell surface; the
high cell density will therefore affect the dose response (13). To cope with excess toxic
metal, bacteria usually induce the genes encoding the metal-efflux ATPases. Ag™
tolerance in E. coli involves the metal efflux P,B-type ATPase CopA, which translocates
Cu™ and Ag™ from the cytoplasm to the periplasm (4, 9). Therefore, the R. gelatinosus
efflux-defective copA mutant was used to check the involvement of CopA in Ag™ efflux.
Unlike CuSO,, which inhibits copA mutant growth (Fig. 2A), no difference in growth
inhibition was observed between copA mutant and wild-type cells subjected to excess
AgNO;. These data suggested that in contrast to Ag™ tolerance in E. coli, CopA is not
involved in Ag™ tolerance in R. gelatinosus. Although the ZntA/CadA ATPase is known
to translocate divalent cations, we also checked whether the AcadA mutant was sensitive
to Ag+ (A. S. Steunou, A. Durand, M.L. Bourbon, M. Babot, S. Liotenberg, and S. Ouchane,
submitted for publication). As for the copA mutant strain, no difference in growth was
observed between wild-type and AcadA strains in the presence of AQNO; (not shown). Cells
were also spotted on solid medium supplemented with the same metals. Both copA and
AcadA mutants showed growth inhibition on 500 uM CuSO, and 500 uM CdCl,, respec-
tively. However, none of the mutants exhibited an altered growth phenotype on 5 uM
AgNO; (Fig. 2B). We therefore concluded that the CopA and CadA ATPases were not
involved in the AgNO; response. To further support this conclusion, we analyzed by
Western blot the expression of CopA and Copl in response to metal shock in a strain
expressing a His-tagged version of CopA (CopA-H,) (Fig. 2C). Cells were grown under
photosynthetic condition and shocked with CuSO, and CdCl,, known to induce the
expression of the Cu™ efflux system (Steunou et al,, submitted for publication), or with
AgNO;. Untreated cells showed a basal level of CopA and Copl expression because of the
presence of 1.6 uM CuSO, in the growth medium. As expected, addition of CuSO, or CdCl,
to the growing cells led to significant increases in the amounts of CopA and Copl (Fig. 2C).
In contrast, AGNO; did not induce the expression of both proteins. Collectively, these results
showed that the R. gelatinosus CopA efflux ATPase is not involved in AgNO; stress response
and detoxification, in contrast to that in E. coli.

Silver and copper excess specifically affected the LH2 complexes in the mem-
brane. To assess the effects of Ag™ ions on photosynthesis, cells (optical density at
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FIG 2 CopA and CadA are not involved in AgNO; response. (A) Wild-type (WT) and copA mutant (copA~) cells
were grown in microplates under microaerobic conditions. Indicated concentrations of AgNO, were added to the
growth medium after 8.5 h, when cells reached an ODgg, of 0.3 (arrow). (B) Growth phenotype of the WT, copA
and AcadA mutants in the presence of indicated concentrations of AgNO,, CuSO,, or CdCl, on solid malate media.
Cells were grown aerobically for 24 h at 30°C prior to photography. (C) Induction of CopA-Hg and Copl expression
in cells shocked for 1h with 0.5mM CuSO,, 0.5mM CdCl,, or 1T to 10 uM AgNO,. Cells were grown in
photosynthetic condition and metals were added to the growth medium when cells reached an ODg4, of 0.8.
Total protein extracts from the same amount of cells (ODgq, of 0.1) were separated on 14% SDS-PAGE. The

proteins were revealed on a Western blot using an HisProbe-HRP.

680 nm [ODgg,] = 2) grown overnight under photosynthetic condition were treated
with T mM AgNO; and grown further for 2, 10, or 20 h. The bacteriochlorophyll a
absorbance in the photosynthetic complexes was measured to monitor changes in
response to excess AgNO; in the cell in the reaction center and in light-harvesting
antenna LH1 complexes and LH2 complexes. The effect of Ag™ on the photosynthetic
(PS) complex spectra are presented in Fig. 3A. The B860 (RC-LH1-LH2) and B800 (LH2)
wavelength band intensity variations, depending on the length of AgNO; exposure, are
represented. Ag™ induced no apparent effect on the 860-nm band. However, a time
exposure-dependent decrease of the B800 band intensity was observed (Fig. 3A). This
suggested that the LH2 antennae were affected by AgNO; exposure. We also question
whether this effect was specific to AgNOs;. For that purpose, cells were also subjected
to metal excess stress as described above, but with different metal cations (Fig. 3B).
Interestingly, only CuSO, caused the same effect as AgNO; on the LH2 complexes.
Exposure to CdCl, or NiSO, did not affect the photosynthetic complexes. These data
demonstrated that AgNO; and CuSO, extended exposure affected the LH2 in the
photosynthetic membranes.

Silver and copper specifically induced the loss of the 800-nm absorbing bac-
teriochlorophyll a in LH2. The LH2 antenna (B800 and B850) complexes are spectrally
characterized by the 800- and 850-nm absorption bands that arise from the near-
infrared (Qy) transitions of the bacteriochlorophyll a. The loss of the B800 band
suggested the loss of the LH2 in the membrane. However, the spectra presented in
Fig. 3 also suggested that the LH2 B850 bacteriochlorophyll was not affected, since no
shift was observed in the 860-nm band that encompasses the RC (870-nm), the LH1
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FIG 3 AgNO, exposure impact on photosystem in vivo. (A) Spectral analyses of wild type (WT) cells grown
overnight by photosynthesis and exposed or not to T mM AgNO; after they reach an ODgg, of 2. Spectra (350 to
1,000 nm) were recorded after 2- (light red line), 10- (purple line), or 20-h (blue line) exposure on a double-beam
Cary 500 spectrophotometer. (B) Spectral analyses of the WT cells exposed or not to T mM CdCl, (gray line), NiSO,
(purple line), CuSO, (blue line), or AgNO; (black line) after they reached an ODg, of 2. Spectra were recorded after
20 h of exposure. Mal (dark red line), untreated cells grown in malate medium.

(875-nm), and the LH2 (850-nm) bands. To confirm this assumption, we compared the
spectra of the untreated or AgNO;-shocked wild-type cells to the spectrum of the
pucBA LH2-deficient mutant (28) that only assembles the RC-LH1 core (Fig. 4A). Deletion
of the LH2 genes resulted in a significant decrease of the 800-nm band and a
substantial red shift of 15nm (from 860 to 875 nm) of the 860-nm band (28). The
resulting peak at 875 nm corresponds to the RC-LH1 core absorption bands. In sharp
contrast with the LH2-deficient mutant, the AgNO;-shocked wild-type cell spectrum
showed the decrease of the 800-nm band and no changes in the 860-nm-absorbing
bacteriochlorophyll molecules arising from the RC-LH1 core and a modified (B800-free)
LH2 (Fig. 4A). Similar impact on LH2 complexes was observed when cells were sub-
jected to CuSO, treatment (Fig. S2). These spectra showed that the B800 molecules can
selectively be extracted or released from the LH2 complexes in the presence of metals
without disrupting the interaction of the LH2 polypeptides with the B850 molecules.

The effect of metals on the RC-LH1 core was also assessed using the pucBA
LH2-deficient mutant. Spectra of the exposed cells showed that AgNO; and CuSO,
slightly affected the amount of the RC-LH1 (Fig. 4B). Moreover, total protein lysates
from all untreated or treated samples were also loaded onto SDS-PAGE. The Coomassie
blue staining showed that all wild-type samples have comparable amounts of LH2
subunits, indicating that the release of B800 molecules did not affect the LH2 protein
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FIG 4 Effect of AgNO, on LH2 complexes in vivo. (A) Absorption spectra of wild-type (WT) cells grown overnight
by photosynthesis untreated (Mal, red line) or exposed to 1 mM AgNO; (black line) in comparison with LH2-
deficient mutant (LH2-) cells grown overnight by photosynthesis in malate medium (green line). (B) Spectral
analyses of the LH2-deficient mutant cells untreated (Mal, red line) or exposed to T mM CdCl, (gray line), NiSO,
(purple line), CuSO, (blue line), or AGNO; (black line) after they reach an ODgg, of 2. Spectra were recorded after
20 h of exposure.
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FIG 5 Effect of CuSO, on LH2 complexes of isolated membranes. (A) Spectra (350 to 1,000 nm) of untreated
membranes were recorded every 30 min. (B) Enlargement of the 400- to 750-nm spectrum absorbance
region of untreated membranes. (C) Enriched membrane fractions were mixed with CuSO, at 2 mM final
concentration; 350- to 1,000-nm spectra were then recorded every 30 min. (D) Enlargement of the 400- to
750-nm spectrum absorbance region, highlighting the shift in the carotenoids bands and the increase in
the 688-nm band in the CuSO,-treated membranes.

stability (Fig. S2). Altogether, these data indicated that AgNO;- and CuSO,-induced
alterations in the structure of the LH2 complexes, targeting the B800 molecules of the
complex. However, this specific and rather limited effect on B800 and the LH2 could not
explain the drastic growth inhibition by Ag™, suggesting that Ag+ affects other crucial
components or complexes of the cell.

Metal-specific impact on the 800-nm band attested by the release of bacteri-
ochlorophyll and shift in carotenoid absorbance. In the LH2 structure of Rhodopseu-
domonas acidophila, the 800-nm absorbing bacteriochlorophyll a molecules lie be-
tween the B-apoprotein helices, where phytyl moieties interact with the carotenoids.
The structural data showed that at least one of the carotenoid molecules makes close
Van der Waals contacts with the B800 pigment (25, 29). We therefore assumed that the
release of B800 molecules following metal stress should also impact the B800-
carotenoid interaction. To verify this assumption, enriched membranes from wild-type
cells were incubated in phosphate buffer supplemented or not with 2 mM CuSO,, or
AgNO;. Spectra were then recorded every 30 min to monitor the effect of metals on
photosynthetic complexes on isolated membranes (Fig. 5). For untreated membranes,
no changes in the amount or in the spectral properties of the RC, LH1, and LH2 were
observed (Fig. 5A and B). However, in the membranes subjected to CuSO, treatment,
a significant decrease in the intensity of the 800-nm band was observed in association
with an absorption increase at 688 nm (Fig. 5C and D). This later absorption peak very
likely arose from oxidized Bchl in solution, as previously reported (30). Furthermore,
with extended exposure to CuSO,, a shift was also observed in the carotenoid absorp-
tion region. Indeed, untreated proteins exhibited three peaks at 452, 482, and 512 nm
(Fig. 5B), while CuSO,, treatment resulted in a shift of the carotenoid absorbance to 448,
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FIG 6 AgNO,; effect on respiratory complexes in vivo. The wild-type (WT) cells were grown under
microaerobic respiratory condition and shocked for 1 h with increasing concentration of AgQNO,. DDM-
solubilized membrane proteins were separated on a 5% to 12% BN-PAGE. (A) cbb, cytochrome ¢ oxidase
DAB:Cytc in-gel activity assay. (B) Succinate dehydrogenase (SDH) in-gel activity assay.

474, and 508 nm (Fig. 5D). Similar effects were obtained in the presence of AgNO,
treatment (Fig. S3). Thus, we concluded that in the presence of CuSO, or AgNO;,
changes in the LH2 absorption spectrum are related to the disruption of the interaction
of B800 molecules with LH2, which causes the release of the B800 molecules and
subsequently impacts the spectral properties of the carotenoids within the B850 LH2.

Silver damages the cytochrome c oxidase and the succinate dehydrogenase in
the respiratory chain. Previous studies in 1974 and 2005 established that Ag™ ions
inhibit the respiratory chain of E. coli (31, 32). In eukaryotes, Ag™ ions can induce
mitochondrial dysfunction, partly by inhibiting respiration (33, 34). However, the com-
plexes targeted by Ag™ ions were not yet identified. To check the effect of AQNO; on
two respiratory complexes (succinate dehydrogenase and cbb; cytochrome ¢ oxidase)
from R. gelatinosus, exponentially growing wild-type cells under respiratory conditions
were subjected to increasing concentration of AgNO; (25 to 150 uM) and grown for
another hour. To examine the effect of AQNO; on the cbb, oxidase, membrane proteins
were solubilized and cytochrome ¢ oxidase activity was assayed on blue native PAGE
(BN-PAGE) (35). As shown in Fig. 6A, comparable diaminobenzidine (DAB)-positive
bands corresponding to the cbb; oxidase were revealed in the solubilized membrane
proteins from untreated and 25 uM AgNO;-stressed cells. Decreased activity was
detected in the 50 uM AgNO;-stressed cells. However, no active cbb; oxidase was
detected on membrane fractions isolated from 100 and 150 uM AgNO;-stressed cells
(Fig. 6A). We should note that there was a slight effect on the amount of RC-LH with
100 and 150 uM AgNO;. This could be the consequence of membrane protein solubi-
lization; indeed, the loss of B800 may destabilize LH2 in the presence of detergent.
Nonetheless, the other blue-stained complexes on BN-PAGE did not seem to be
affected (Fig. 6A and B), suggesting that AgNO; targets only some complexes, including
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FIG 7 Effect of AgNO; treatment on respiratory complexes in membrane-enriched fractions. These
fractions were mixed with increasing concentration of AgNO, for 1h. DDM-solubilized membrane
proteins were then separated on a 5% to 12% gradient BN-PAGE. (A) cbb; cytochrome c oxidase in-gel
activity assay. (B) Succinate dehydrogenase (SDH) in-gel activity assay.

the cbb; cytochrome c oxidase and the RC-LH. Similarly, succinate:nitroblue tetrazolium
(NBT) in gel assay revealed an active band, likely corresponding to succinate dehydro-
genase (SDH). Treatment with increasing concentration of AgNO; resulted in a partial
or full inhibition of this activity (Fig. 6B) suggesting that AgNO; also affected succinate
dehydrogenase in exposed cells.

As for photosynthetic complexes, we analyzed the in vitro effect of AgNO; on
respiratory complexes in isolated membrane protein fractions (Fig. 7). For that purpose,
membranes from wild-type cells were incubated in buffer supplemented or not with
increasing concentration of AgNO; (from 25 to 1,000 wM). Similarly to the in vivo data,
incubation of membrane proteins with increasing concentration of AgNO; led to a
decrease in cytochrome c oxidase cbb; (Fig. 7A) and succinate dehydrogenase activities
(Fig. 7B). Altogether, these data suggested that AgNO; could inhibit respiration by
directly damaging the respiratory complexes, including cytochrome ¢ oxidase and
succinate dehydrogenase.

Silver damages respiratory complexes in Escherichia coli but not in Bacillus
subtilis. The findings above prompted us to test the activity of respiratory complexes
in other bacterial species after AgQNO; treatment. To this aim, E. coli and Bacillus subtilis
cells grown to exponential phase were subjected to increasing concentration of AQNO,
(25 to 150 wM) and grown for another hour. Membranes proteins were isolated, and
activity assays for respiratory complexes were performed by BN-PAGE. As E. coli cells do
not express any cytochrome ¢ oxidase, we only assayed the activity of succinate
dehydrogenase. We detected changes in the activity of this complex when cells were
subjected to AgNO; stress, as the SDH activity decreased with increasing concentration
of AgNOs (Fig. 8A). To ascertain that the detected band corresponds to the SDH, the
succinate-NBT in-gel assay was also performed with membrane proteins isolated from
the sdhA deletion mutant (36) (Fig. 8A). These results confirmed that AgNO; can affect
respiration in E. coli and provide evidences that the SDH complex is a target of AgNO;.
In B. subtilis, however, AgNO; treatment did not affect the activity of the cytochrome
¢ oxidase caas, nor the activity of the SDH (Fig. 8B).

DISCUSSION

The use and spread of metal ions or nanoparticles represent a serious threat to the
environment and to all living organisms because of the acute toxicity of these ions.
Silver and copper ions have been used for their antimicrobial activities for several years.
Nowadays, Ag™ nanoparticles are one of the most widely used nanoparticles in many
industrial and health applications (37). The antimicrobial effect of Ag™* nanoparticles is
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FIG 8 AgNO; effect on respiratory complexes in E. coli and B. subtilis cells. Strains were grown under
aerobic respiratory condition and shocked for Th with increasing concentration of AgNO,. DDM-
solubilized membrane proteins were separated on a 5% to 12% gradient BN-PAGE. (A) Succinate
dehydrogenase (SDH) in-gel activity assay of E. coli membrane fractions. Membrane fraction from the
SDH-deficient mutant (sdhA~) was used as a control. (B) caa; cytochrome ¢ oxidase and succinate
dehydrogenase (SDH) in-gel activity assays of B. subtilis membranes.

in part related to the released Ag™ ions and their ability to interact with bacterial
membranes (37-39). It is therefore important to characterize the toxicity of Ag™ ions
and to identify cellular targets of this metal. Previous studies reported that the acute
toxicity of Ag™ lies in its ability to interact with membranes but also in its ability to
affect iron sulfur proteins (13). To identify targets of Ag™, we compared the impact of
different metal ions on the stability and activity of membrane complexes in the purple
photosynthetic bacterium R. gelatinosus. AgQNO5 was found to be more toxic than the
other ions used, including CuSO, and CdCl,. This may be related to the absence of an
efficient efflux system to detoxify Ag™ and/or to its bioactivity and ability to damage
molecules. Indeed, the Cop system involved in detoxification of Ag™ in other bacteria
(9-11) is not induced by AgNOs in R. gelatinosus, which may increase the susceptibility
of the bacterium to AgNO;. In E. coli, although the Cop efflux is effective in expelling
Ag™ ions outside the cells, AQNO; remains very toxic and targets different cellular
components. In Chlamydomonas reinhardtii (39, 40) and Arabidopsis thaliana (41), Ag™
and Cu™ exposures were both found to significantly inhibit growth and to induce
decreases in photosynthesis and chlorophyll content. Here, we found that both metals
target the bacterial LH2. Both Ag™ and Cu?™ specifically target the B800 molecules but
not the B850 ones (Fig. 9). Similar results were reported when LH2 complexes from R.
sphaeroides and R. acidophila were subjected to high atmospheric pressure (30). This
could be related to the structure of this complex and the position of the chlorophyll
molecules in the complex. In fact, the B850 bacteriochlorophylls with the carotenoid
molecules are buried between the concentric rings formed by the « and B subunit
outer rings (25) and are therefore well shielded from the external buffer. In contrast, the
B800 molecules are located between the outer rings formed by helices of the B
subunits and are parallel to the lipid surface near the cytosolic side (Fig. 9). This
positions the B800 molecules in contact with the solvent, where they would be more
exposed than the B850 molecules, in agreement with water molecules being found
close to the B800 molecules in the R. acidophila LH2 crystal structure (25, 29). The effect
on B800 did not modify the complex stability, since the B850 molecules were not
affected. Nevertheless, the resulting complex would be inefficient for light energy
capture and photon transfer to the photochemical reaction center. Indeed, the LH2
light energy is transferred from B800 to B850. Energy transfer then occurs between
B850 and B875 molecules in the light-harvesting complex LH1 to the RC (42). Thus, we
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FIG 9 Ag* and Cu* specifically target the B800 within the LH2. Structure of the LH2 and arrangement of
pigments within the complex from Rhodopseudomonas acidophila (1KZU.pdb) (25). The figure was generated
using the Protein Data Bank (Swiss-PdbViewer). View parallel to the plane of the membrane (A) and from the
top of the complex (B) showing the exposed B800 molecules (in red) located between the B subunit helices,
which form the outer ring (cyan). The B850 molecules (green) are buried between the concentric rings formed
by the helices of the «a subunits (pink) and the outer 3 subunit helix ring. For better viewing, carotenoids and
helices of « and B subunits were hidden.

assume that Ag™ or Cu™ exposure will result in reduced excitation transfer to the B870
in the RC and decreased photosynthesis yield. Only a slight effect of Ag™ and Cu™ was
observed on the LH1-RC in the LH2-deficient strain. In the LH1-RC structures from R.
palustris and T. tepidum (26, 27), the bacteriochlorophyll molecules in LHT complexes
are found sandwiched between the concentric ring formed by the « subunits and the
external ring formed by the B helices, like the B850 molecules in the LH2 structure.
These Bchl molecules and the RC-Bchls could therefore be shielded from the external
buffer and therefore from damages that may be caused by the presence of metal ions.
The mechanism by which Ag™ or Cu™ release B800 from the LH2 remains to be studied.
Nonetheless, previous studies have shown that Mg2™ in chlorophylls could be substi-
tuted, both in vitro and in vivo, by heavy metal ions (20, 43, 44). It was shown that in
vivo substitution of the Mg?* atom of chlorophyll by heavy metals, including Cu*,
Cd2*, or Pb2™, is a major damage mechanism in stressed plants. Indeed, substitution of
Mg2* affects the LHCII and the photosystem PSII, thereby causing a decrease in
photosynthesis (20). Likewise, it was shown that Ni2*, Cu?*, and Zn2* induced a
destabilization of heme binding to b-type hemoproteins and led to the release of heme
from myoglobin, ferricytochrome b, indoleamine-dioxygenase, hemopexin, and cyto-
chrome P450 (45, 46). Formation of a bioconjugate of human hemoglobin with Ag™
ions was also reported (47, 48). Finally, both Ag™ and Cu™ can displace metal- or
damage-exposed 4Fe-4S clusters in proteins (13). By theses means, such metal ions can
inhibit the activity of hemoproteins and metaloproteins in the membrane and the
cytosol. AgNO; impacts on the activity of cytochrome ¢ oxidase and succinate dehy-
drogenase in R. gelatinosus, as well as on the succinate dehydrogenase in E. coli, were
demonstrated in this study. This could arise from the disruption of the interaction
between the cofactors (heme or 4Fe-4S) and the proteins. Nevertheless, we should note
that the effects of Ag™ on complexes reported in this study were obtained with high
concentration of AgNO;. No effect was shown in the Gram-positive bacterium B. subtilis.
This may be related to the difference in the cell wall structure between Gram-positive
and Gram-negative bacteria. The much thicker peptidoglycan layers in Gram-positive
bacteria are crucial in protecting the cell from environmental stress, including that of
external metal ions (49). In agreement with this, Staphylococcus aureus is less sensitive
to AgNO; than E. coli, as AgNO; treatment was shown to strongly affect the membrane
integrity of E. coli but not that of S. aureus (50-52). In a recent study, AgNO; was shown
to affect the activity of the cytochrome c¢ oxidase in B. subtilis (53). However, AgNO4
interfered with the biogenesis process of the oxidase by displacing Cu2™ from the Sco
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assembly protein (53). In our study, we checked the impact of AgNO; on already-
assembled complexes. Nevertheless, prolonged exposure to metal should be further
studied to better characterize the response to Ag™ stress in B. subtilis. Beside the direct
effect of Cu?* and Ag™ on these membrane complexes, heme or 4Fe-4S cluster
degradation is expected to release iron, which may magnify the toxicity of metals, as
excess free iron gives rise to hydroxyl radicals and induces oxidative stress. Most toxicity
studies of Ag nanoparticles in bacteria and eukaryotes shed light on oxidative stress
response. For a full characterization of nanoparticle toxicity mechanisms, future exper-
iments should address the issue of interaction between membrane complexes involved
in cellular bioenergetics and Ag nanoparticles.

MATERIALS AND METHODS

Bacterial strains and growth. E. coli and B. subtilis cells were grown aerobically (500-ml flasks
containing 50 ml medium) at 37°C in LB medium. R. gelatinosus cells were grown at 30°C, in the dark
microaerobically (low oxygenation in 50-ml flasks containing 50 ml medium) or in light by photosyn-
thesis (filled tubes with residual oxygen in the medium) in malate growth medium (54). The antibiotics
kanamycin (Kan) and trimethoprim (Tmp) were used at a final concentration of 50 wg/ml.

Growth inhibition curves were monitored at ODgg,, With measurements taken every 15 min for 24 h,
using an Infinite M200 luminometer (Tecan, Mannerdorf, Switzerland) for aerobic condition. For photo-
synthesis conditions, strains were grown as described above, and OD was measured after 24 h using the
Tecan luminometer.

Membrane protein preparation. Cells were disrupted by sonication in 0.1 M sodium phosphate
buffer (pH 7.4) containing 1 mM phenylmethylsulfonyl fluoride. Unbroken cells were removed by a
low-speed centrifugation step (25,000 X g, 30 min, 4°C), and supernatants were subjected to ultracen-
trifugation (200,000 X g, 90 min, 4°C) to collect the membrane fraction. Membrane fractions were then
resuspended in the same buffer. Membrane protein concentration was estimated using the bicinchoninic
acid assay (Sigma), with bovine serum albumin as the standard. For membrane protein metal treatment,
required concentrations of metal solution were mixed with 50 mg/ml membrane proteins at room
temperature. Spectra were recorded every 30 min.

Spectrophotometric measurements. Absorption spectroscopy was performed with a Cary 500
spectrophotometer. For spectra on whole cells, cells were resuspended in a 60% (wt/vol) sucrose
solution. Membrane fractions were in 0.1 M sodium phosphate buffer (pH 7.4).

Blue native gel electrophoresis and in-gel assays. To assay cbb, and succinate dehydrogenase
activities, R. gelatinosus wild-type cells were grown microaerobically. For E. coli and B. subtilis, cells were
grown aerobically. Membranes were prepared as previously described. Blue native polyacrylamide gel
electrophoresis (BN-PAGE) and in-gel Cox activity assays (DAB:Cytc staining) were performed as de-
scribed in (35), and succinate dehydrogenase activity was assayed using succinate and NBT (nitroblue
tetrazolium), as described in reference (55).

Western blot analysis and HisProbe-HRP detection. Equal amounts of cells (ODgg, = 1) were
disrupted in SDS loading buffer, and proteins were then separated on a 15% SDS-PAGE and further
transferred to a Hybond ECL polyvinylidene difluoride (PVDF) membrane (GE Healthcare). Membranes
were then probed with the HisProbe-horseradish peroxidase (HRP) (Pierce), according to the manufac-
turer’s instructions, and positive bands were detected using a chemiluminescent HRP substrate, accord-
ing to the method of Haan and Behrmann (56). Image capture was performed with a ChemiDoc camera
system (Bio-Rad).

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/mBio
.01535-18.
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