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Abstract

Infection with Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), results in a 

range of clinical presentations in humans. Most infections manifest as a clinically asymptomatic, 

contained state that is termed latent TB infection (LTBI); a smaller subset of infected individuals 

present with symptomatic, active TB. Within these two seemingly binary states, there is a 

spectrum of host outcomes that have varying symptoms, microbiologies, immune responses and 

pathologies. Recently, it has become apparent that there is diversity of infection even within a 

single individual. A good understanding of the heterogeneity that is intrinsic to TB — at both the 

population level and the individual level — is crucial to inform the development of intervention 

strategies that account for and target the unique, complex and independent nature of the local 

host–pathogen interactions that occur in this infection. In this Review, we draw on model systems 

and human data to discuss multiple facets of TB biology and their relationship to the overall 

heterogeneity observed in the human disease.

Classically, Mycobacterium tuberculosis infection in humans is thought to result in one of 

two clinically defined states: latent infection (termed latent tuberculosis (TB) infection 

(LTBI)) or active disease. LTBI is characterized by the presence of immunological 

sensitivity to mycobacterial antigen (as determined by a tuberculin skin test or an interferon-

γ (IFNγ) release assay) in the absence of the clinical symptoms of disease, which can be 

extremely varied but most often include cough, fever or weight loss. LTBI accounts for 90% 

of human infections and has an estimated burden of more than 2 billion individuals 

worldwide1,2. By contrast, active TB is diagnosed in patients who have clinical signs and 

symptoms of TB, and show microbiological evidence of M. tuberculosis infection. 

Pulmonary TB is typified by a chronic cough, fever, sustained weight loss, wasting and 

haemoptysis (that is, coughing up blood or blood-stained mucus)3. Microbiological 

confirmation — either by culturing M. tuberculosis from sputum or other relevant samples, 

or by identifying the organism through nucleic acid testing or acid-fast staining — is 

required for the unequivocal diagnosis of TB.
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In 2015, there were 10.4 million new cases of TB infection and 1.8 million deaths due to 

TB4; the active disease state is estimated to occur in approximately 5% of initial infections 

in the first 18 months with a remaining risk of 5% (due to the reactivation of LTBI) 

throughout the lifetime of the individual5. Although these definitions of active TB and LTBI 

have been the basis of decades of clinical practice, the TB field has more recently embraced 

a newer paradigm that recognizes a spectrum of infection outcomes within these two states6. 

The biological and immunological under-pinnings of this variability are not well understood, 

and the clinical ramifications of this variability in human TB remain unknown.

This Review provides a framework for understanding the heterogeneity observed in M. 
tuberculosis infection by separating host, granuloma and bacterial features that contribute to 

the overall spectrum of TB. In examining each of these factors as they relate to the 

variability of TB, we highlight the intricate network of interactions that ultimately influences 

infection outcome and emphasize the need to consider all three domains for effective 

intervention.

Host heterogeneity

TB: a spectrum of clinical and pathological outcomes.

It is widely accepted that the severity of active TB can be highly varied and can show 

different patterns of lung involvement7–9. It is now appreciated that what is considered to be 

LTBI can also encompass a range of infection outcomes6,10,11. The large reservoir of 

individuals with asymptomatic LTBI represents a nuanced continuum of bacterial 

persistence and host containment, ranging from cleared infection to low-grade TB6,10. This 

concept of a spectrum of infection for LTBI extends the definition of subclinical, latent TB 

beyond a single status and enables us to better differentiate the risk of LTBI reactivation in 

an individual, prioritize preventive treatment and emphasize the heterogeneity of host 

responses to M. tuberculosis infection. Individuals who have a sterilized or extremely well-

contained infection are the least likely to suffer reactivation of infection and presumably are 

the last to require intervention. By contrast, individuals with LTBI who are harbouring a 

low-grade, sub clinical infection are at a higher risk of reactivation and are more likely to 

require treatment.

Evidence supporting this concept has been observed in a human study using 

[18F]fluorodeoxyglucose positron emission tomography and computed tomography (FDG 

PET–CT)12. The authors of this study found that among 35 antiretroviral therapy-naive, 

HIV-1-positive adults with LTBI, 10 patients with pulmonary irregularities indicative of 

subclinical TB disease had a significantly higher risk of developing active TB than did the 

remaining 25 patients who had no subclinical pathology as detected by FDG PET–CT. 

Specifically, 4 of the 10 patients with evidence of subclinical disease developed active 

disease, whereas none of the 25 patients in the second cohort developed active disease. The 

10 patients who were at a higher risk of disease had radiological evidence of active nodules, 

infiltrates or fibrotic scars, whereas the 25 participants who did not develop disease had 

either normal lung parenchyma (n = 10) or only discrete nodules (n = 15). Importantly, 

although the group with pulmonary irregularities had an elevated risk relative to the group 

without subclinical pathology, there were six individuals in the higher-risk group who did 
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not develop active disease during the period of study, further emphasizing the variability in 

disease progression and host outcome. This study challenges the binary classification of 

active disease and LTBI, and instead emphasizes the importance of heterogeneity within 

LTBI in which a subset of individuals harbour a low-grade, subclinical and asymptomatic 

disease state that places them at increased risk of developing active TB.

These radiological findings in humans support our earlier observations of a spectrum of 

disease in the macaque model of TB13,14 (BOX 1). A detailed study of experimentally 

infected cynomolgus macaques that quantitatively assessed parameters of infection among 

animals with clinically defined active infection or LTBI found marked heterogeneity in 

disease pathology, extrapulmonary dissemination and tissue involvement14. There were 

quantifiable differences between macaques with active TB and those with LTBI, including 

the degree of pathology and bacterial burden. However, there were also differences in both 

the lungs and the blood of monkeys in each of these two groups. Some monkeys with 

clinically active disease had bilateral lobe involvement, pulmonary cavitation, tuberculous 

pneumonia and extrapulmonary disease, whereas other monkeys with active disease had a 

pathology that was confined to the thoracic lymph nodes and a single lung lobe14. There was 

similar heterogeneity observed in the macaques that maintained LTBI; four animals 

appeared to only have lymph node involvement, whereas three animals had evidence of a 

Ghon complex. Of particular interest were five animals that were classified as having an 

intermediate disease state (between active disease and LTBI) and thus were analogous to the 

ten human patients described above12. Four of these animals had disease that was limited to 

the lungs and lymph nodes, but intermittently showed M. tuberculosis growth in cultures of 

bronchoalveolar lavage fluid samples or gastric aspirate samples (a surrogate for human 

sputum sampling), thereby precluding their inclusion in the LTBI cohort. These monkeys 

were deemed to have subclinical disease and were termed ‘percolators’ on the basis of 

occasional M. tuberculosis-positive samples14. Overall, these studies in humans and 

macaques support the idea of the biological heterogeneity of TB and suggest that there may 

be clinical benefit in appreciating the variability of host outcomes in TB by segregating 

patients according to disease risk.

Peripheral transcriptional signatures reveal dynamic and variable disease states.

Clinical heterogeneity has also been observed in the context of recent studies that have 

examined whole-blood transcriptional signatures related to host disease status15–17. In a 

landmark study published in 2010, Berry et al.15 reported a 393-transcript signature that was 

unique to patients with active TB (from both intermediate-burden and high-burden areas) 

relative to subjects with LTBI and healthy controls. This signature reflected the upregulated 

transcription of IFN-inducible genes (that is, genes that are induced by both type I and type 

II IFNs) in blood neutrophils from patients with active TB that correlated with the extent of 

lung disease as assessed by radiography15,18. Notably, whereas the majority of individuals 

with LTBI clustered independently of the patients with active TB, 10–25% of the subjects 

with LTBI had similar transcriptional profiles to patients with active TB, and it was 

considered likely that these patients had subclinical, active disease15. These shared 

transcriptional profiles observed in a sub-set of patients with clinically defined LTBI 
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reiterate the heterogeneous radiological findings described above and further emphasize the 

varied nature of this disease.

Further studies have examined blood gene-expression profiles in patients with pulmonary 

TB at diagnosis and throughout TB treatment19,20. In the first study, Bloom et al.19 found a 

320-transcript signature in patients after 2 weeks of treatment that subsequently diminished 

by 6 months. Cliff et al.20 reported similar changes in gene networks following antibiotic 

treatment. Within 1 week of TB treatment, the expression of more than 1,200 genes was 

markedly downregulated, including the expression of multiple inflammatory markers such as 

the complement proteins C1q and C2. This initial period of rapid transcriptional change was 

followed by a slower upregulation of genes involved in the humoral response20. Importantly, 

as was observed in the study by Berry et al.15, several of the treated patients from both 

studies had notable differences in their gene-expression profiles relative to the majority of 

treated individuals. This host-specific variability once more highlights the heterogeneity that 

is intrinsic to TB and suggests an opportunity to stratify patients to different treatment 

strategies, particularly as the standard treatment regimen can be problematic owing to its 

length and its potential for toxicity and drug interactions21,22.

A whole-blood gene expression analysis of patients with pulmonary and extrapulmonary TB 

found that transcriptional profiles are influenced by symptom status and the site of disease23. 

Individuals with the highest mean molecular distance to health24 had the highest likelihood 

of presenting with one or more of the following symptoms: fever, night sweats, chest pain, 

cough or weight loss. These findings suggest that clinical illness is linked to the site of 

infection, bacterial burden and host response, which are reflected in the diversity of 

transcriptional profiles and host statuses. A recent study of adolescents with LTBI 

demonstrated that a whole-blood transcriptional signature could identify those who were at 

risk of developing active TB up to 12 months before clinical diagnosis; the signature was 

validated in a separate adult population25. These data further support the concept of a 

differential risk of reactivation in a population25; this differential risk is possibly due to a 

spectrum of disease states within asymptomatic infection. This study provides an 

opportunity to target drug treatment to those in whom LTBI reactivation is most likely to 

occur.

In non-human primates, similar studies have investigated gene-expression changes specific 

to lung granulomas26 and longitudinal changes in gene-expression profiles in the blood27. In 

the first study26, granulomas from rhesus macaques were found to undergo transcriptional 

reprogramming from early (4 weeks) to late (13 weeks) time points in infection26. In the 

second study27, an analysis of peripheral blood from cynomolgus macaques revealed that the 

greatest transcriptional change occurred 3–8 weeks after infection27. There was a positive 

correlation between the transcriptional signature and inflammation as assessed by FDG 

PET–CT. One of the most important findings was that even before infection, stronger type I 

IFN signatures were observed in the macaques that went on to develop active TB, which 

suggests that there is an innate response linked to host susceptibility to progressive disease. 

These pre-existing differences in immune status may be due to host genetics; several genetic 

polymorphisms have been linked to TB risk (BOX 2). Collectively, these studies suggest a 
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model in which the dynamic regulation of inflammation shapes the trajectory of infection to 

create a continuum of outcomes.

Granuloma heterogeneity

TB granulomas have varied structures and cellular compositions that influence host 
outcome.

The pathological hallmark of human TB is the granuloma, which is an organized and 

localized aggregate of immune cells that consists of macrophages, lymphocytes and other 

host immune cells, and forms in response to persistent stimuli28. These structures arise at the 

sites of M. tuberculosis infection, and are the locations in which there is active interchange 

between the host and the pathogen. The formation of granulomas is crucial for controlling 

and containing infection29,30, but granulomas may also contribute to early M. tuberculosis 
proliferation and dissemination31–33. Studies of human autopsy specimens from more than 

50 years ago have revealed that in active disease and LTBI, granulomas exhibit 

morphological heterogeneity34,35. In addition to the classic caseous granuloma, granulomas 

can be non-necrotizing, neutrophil-rich, mineralized, completely fibrotic or cavitary30. In 

most of these types, the basic granuloma architecture exhibits the following structure: a 

central acellular necrotic core, termed the caseum, surrounded by a diverse population of 

macrophages that is itself circumscribed by a lymphocytic cuff of CD4+ and CD8+ T cells 

and B cells, and may have a peripheral fibrotic edge29,32. Granulomas mainly contain 

macrophages that are at various stages of activation, and T cells and B cells, but they can 

also contain neutrophils, dendritic cells and fibroblasts30,32 (FIG. 1).

The important lesson learned from appreciating the heterogeneity of human TB granulomas 

is that each separate granuloma represents a localized micro environment that can be 

independently influenced by the quality of the localized immune response; the 

pathogenicity, state and number of bacteria; the extent of immunopathology; and the overall 

host disease status36,37. Recent studies using both animal models of TB14,37 and surgically 

resected tissue from humans with TB38,39 support these findings and reiterate the inherent 

complexity of the disease. Importantly, this granuloma-specific heterogeneity is crucial in 

determining host outcome, as only one or a few granulomas that poorly contain their 

bacteria are probably responsible for allowing bacterial dissemination, worsening pathology 

and driving the onset of active disease37,40–42. In a macaque model of TB, Lin et al.37 

demonstrated that animals with clinically active disease had both sterile granulomas and 

regions of severe pathology (that is, consolidations and TB-associated pneumonia) that had 

very different profiles of bacterial killing. These findings shift the view of host control from 

a systemic response to a localized response within individual granulomas. The mechanisms 

that establish diverging granuloma fates are unclear, but involve complex interactions 

between tissue inflammation, host immune responses and bacterial processes. We discuss 

these factors in greater detail below.

Inflammation: a delicate and dynamic balance.

Following successful infection, M. tuberculosis initiates a clash of pro-inflammatory and 

anti-inflammatory signals within the lungs that is vital in establishing the granuloma and in 
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influencing its eventual trajectory30,41,43–47. The resulting ‘tug-of-war’ between these 

mediators of inflammation can both promote and limit bacterial dissemination6,30,48. 

Skewing towards a robust pro-inflammatory state can lead to remodelling within the 

granuloma, liquefaction (or softening) of caseum49 and the destruction of the surrounding 

lung parenchyma. Such processes are linked to the onset of active disease40, and are 

necessary for cavitation into neighbouring airways and successful transmission of M. 
tuberculosis49,50. By comparison, the resolution of inflammation within the granuloma and 

the lungs is associated with better host outcome40, a reduced risk of reactivation51 and a 

better long-term prognosis after treatment52.

In a seminal study published in 2016, Malherbe et al.52 observed that residual inflammation 

detected by FDG PET–CT in patients with seemingly cured pulmonary TB was associated 

with the presence of M.tuber culosis mRNA in both sputum and bronchoalveolar lavage 

fluid samples. Patients from two separate cohorts in South Africa and South Korea displayed 

a range of radiographic responses, with the majority exhibiting pulmonary inflammation that 

persisted a year after treatment despite receiving a curative regimen. This study highlights 

the spectrum of host outcomes, even following treatment, as well as the heterogeneous and 

potentially predictive role of inflammation in TB outcome.

A second study published in 2016 examined lipid inflammatory pathways within human and 

rabbit granulomas46. Marakalala et al.46 showed that granulomas have highly organized 

regions of inflammatory signalling that are closely linked to function: specifically, pro-

inflammatory, antibacterial lipid mediators are concentrated in the centre of the granulomas, 

and anti-inflammatory, tissue-preserving mediators are in the periphery46. These 

observations are consistent with a previous study of human and macaque granulomas that 

found similar spatial compartmentalization of inflammatory programmes organized around 

differential populations of macrophages53. Marakalala et al.46 proposed that the precise 

localization and balance of these inflammatory boundaries influences individual granuloma 

fate, which collectively affects host outcome. This model is broadly consistent with earlier 

studies from several groups that have highlighted the importance of balance in the 

eicosanoid inflammatory axis in TB54–60. Importantly, this hypothesis helps to explain the 

variation observed in TB granulomas, as slight differences in inflammatory pathways 

probably contribute to diverse granuloma architectures and functions, and have different 

consequences for bacterial control. This large area of work ultimately suggests that 

beneficial inflammatory intervention at the local granuloma level has the possibility to skew 

granuloma responses in favour of host resolution.

The heterogeneity of immune responses in TB granulomas.

Closely linked to the inflammatory axis are the innate and adaptive immune responses that 

occur within the TB granuloma. These responses are an integral component of host defence 

and bacterial containment34,43,44,61, and they are intimately linked with granuloma 

outcome37,62–64. The particular immune cells involved in TB immunity34,65–67, and their 

localization and kinetics32,41,61,68, have been extensively reviewed in the past few years. 

Here, we discuss how the heterogeneity of the immune response in TB influences the local 

granuloma microenvironment. In a recent study in macaques, we demonstrated that the vast 
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majority of granulomas begin with a single bacterium37. The bacteria grow within the 

nascent granuloma up to 4 weeks following infection, at which time the adaptive immune 

response is engaged. After 4 weeks, bacterial killing is seen in the majority of granulomas, 

and approximately 10% of granulomas are sterilized by 11 weeks; sterilization increased 

even in the macaques that were developing active TB. However, there was substantial 

variability in the frequency of granulomas that were sterilized in each monkey, again 

supporting the variability of granuloma outcomes between individuals.

So, what is the variability of the host adaptive immune response in granulomas? In a pilot 

study that examined lung granulomas from patients with chronic pulmonary TB, Subbian et 
al.38 found significant variability in the density of T cells and in the extent of fibrosis, which 

varied in accordance with immune activation and bacterial load. The authors suggested that 

the observed heterogeneity was at least partly driven by differential immune profiles in 

individual granuloma microenvironments that reflected the maturation state of the 

granuloma. A similar study62 that carefully measured T cell cytokine responses in discrete 

granulomas from infected macaques noted considerable heterogeneity across and within 

animals. As was observed by Subbian et al.38 in the resected human tissue, Gideon et al.62 

found extensive variability in the total numbers and phenotypes of T cells, as well as a wide 

range of cytokine profiles and bacterial burdens within individual granulomas, even within 

the same macaque. Fewer than 10% of granuloma T cells were found to produce cytokines 

following M. tuberculosis antigen stimulation, and the majority of these cells produced only 

a single cytokine62; the dominant cytokines included IFNγ, interleukin-2 (IL-2), tumour 

necrosis factor (TNF), IL-10 and IL-17. However, when viewed as a whole, granulomas 

were found to be multifunctional cytokine environments with different T cells contributing a 

broader cytokine repertoire.

Subsequent comparisons of differential T cell responses with granuloma bacterial burden 

have shown that a combination of pro-inflammatory and anti-inflammatory cytokines 

produced by different T cells — for example, IL-10 with IL-17 — best associated with 

granuloma sterility, reiterating a necessity for balanced cytokine responses in achieving 

bacterial clearance30,61. However, we do not understand the mechanisms that lead to the 

heterogeneity of adaptive immune responses in granulomas or the extent to which these 

differences are driven by the described variability in innate immune responses. The 

relatively small population of granuloma T cells that express cytokines raises questions 

about the remainder of the T cells. For example, are they non-TB-specific T cells that are 

just recruited in response to granulomatous inflammation? Does the initial interaction of M. 
tuberculosis with a specific type of phagocyte skew the T cell responses in the granuloma 

that emerges? Is the local adaptive immune response modulated by the local initial innate 

immune response? Is there exhaustion of T cells in the granuloma, resulting in few 

responding T cells? There are many potential mechanisms for the regulation of T cell 

responses in granulomas, and further careful analysis of individual granulomas may provide 

answers to these questions. Nonetheless, the available data on granuloma T cells parallel the 

observations and data above, which indicate that individual granulomas have unique and 

distinct inflammatory signatures46 and killing potentials37, and this suggests that there is an 

overall relationship between local host immune responses, the subsequent skewing of 

inflammation and differential bacterial containment that governs granuloma fate (FIG. 2).
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There are recent studies40,51,69 that support this paradigm. In one study, Coleman et al.40 

used serial FDG PET–CT imaging to evaluate granuloma dynamics in macaques that 

subsequently developed active disease or LTBI following a low-dose M. tuberculosis 
infection40. This revealed two features observed in the first 3–6 weeks post infection that 

were associated with the eventual onset of active TB (months later): first, the development of 

new pulmonary granulomas (that is, dissemination); and second, increased inflammation in 

pulmonary granulomas, as measured by FDG avidity. These two observations not only 

emphasize the importance of the early interactions between the host and pathogen in 

determining host outcome41, but also indicate that the early cellular response of a granuloma 

is linked to inflammation that then influences dissemination risk. Very recent work in our 

laboratories has confirmed these findings, demonstrating that only a subset of granulomas 

disseminate to form new, productive granulomas and showing that granuloma size at 4–5 

weeks post infection correlates with dissemination69. Recent work in the zebrafish–

Mycobacterium marinum model has identified similar crucial events in granuloma formation 

and organization that depend on the macrophage-specific reprogramming of adhesion 

pathways that are dependent on epithelial cadherin (E-cadherin; also known as cadherin 

1)70. Disruption of this axis resulted in disordered granuloma formation and increased host 

clearance following increased neutrophil access. These observations once more link cellular 

responses with granuloma trajectory, and further suggest that variability may be encoded 

early in infection and influenced by multiple immune components.

In a separate macaque study, we evaluated reactivation risk in a large number (n = 26) of 

clinically latent cynomolgus macaques using FDG PET–CT imaging before and during the 

administration of antibody specific for TNF51, which is a trigger for the reactivation of 

infection in humans71–73 and macaques. We previously showed that not all macaques 

undergo infection reactivation during 8 weeks of TNF neutralization74, and this allowed us 

to study which factors correlated with the risk of reactivation. FDG PET–CT scans 

performed before TNF neutralization identified increased lung inflammation and the 

presence of an extrapulmonary site of infection as features that predict reactivation risk with 

92% sensitivity and specificity51. Using this metric, we then classified a separate set of 25 

clinically latent macaques as being at high or low risk of reactivation, but necropsied them 

without TNF neutralization. The macaques that were at high risk of infection had at least 

one granuloma with a relatively high bacterial burden, suggesting that, first, the robust 

control of infection at all sites is essential for preventing reactivation, and second, the 

reactivation risk is granuloma specific, once more returning our focus to the individual 

granuloma and its unique immune response. Further support for this idea came from data 

indicating that only a subset of granulomas in each macaque had dynamic changes in FDG 

avidity or size during TNF neutralization; this suggests that some granulomas are more TNF 

dependent than others in the same animal. It is important to note that the stable granulomas 

during TNF neutralization were not necessarily sterile, yet they did not seem to be affected 

by the loss of TNF.

Thus, our current understanding of granuloma-specific host responses can be considered as a 

set of mathematical equations that can be solved in many different ways by each granuloma 

to reach the result of infection control (FIG. 3). In this scenario, modulating one aspect of 

the immune response could cause one or a few granulomas to lose control of the infection, 
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leading to dissemination and disease, while other granulomas are unaffected. Indeed, 

computational modelling of TB granulomas has demonstrated that there are many pathways 

to containment or loss of control, and the ultimate outcome depends on the particular 

combination of different factors75–78. Again, it seems from these data that only one or a few 

granulomas need to fail — either during chronic infection or LTBI, or even in early infection 

— to result in active TB. Collectively, these findings provide a basis to explain the 

heterogeneity among infected hosts, as we believe variable granuloma contexts — 

particularly early in infection41 — initiate heterogeneous disease states (FIG. 4).

Bacterial heterogeneity

The heterogeneity in granuloma course raises questions both about the contribution of 

bacterial processes to granuloma fate and about the impact of the heterogeneous granuloma 

state on the bacterial population. For the purpose of this Review, we define ‘deterministic’ 

bacterial heterogeneity as the ways in which bacterial variability might influence host–

pathogen interactions. We then briefly review the extensive literature on the ways in which 

differences in granuloma course can also affect bacterial cell state — here termed ‘reactive’ 

bacterial variability — and consequently the efficacy of antibiotic treatment.

Is there deterministic bacterial variation?

In considering how differences in the course of infection or granuloma fate emerge, one 

possibility is that variation in the bacterial population helps to shape granuloma trajectory. It 

is clear from studies of fixed genetic variants that differences between bacteria can influence 

host responses. For example, compared with the M. tuberculosis H37Rv strain, M. 
tuberculosis strains from the East Asian lineage induce a distinct immunopathological 

response in mouse models, with larger areas of pneumonia and relatively less granulomatous 

lung tissue79,80. These differences in immunopathology have been linked, at least partially, 

to differences in the production of distinct cell wall glycolipids81, which result in the 

differential activation of Toll-like receptors and resulting inflammatory responses82–85.

Although the importance of differences between M. tuberculosis strains has become clear, it 

is less clear whether bacterial variation contributes to differences in granuloma trajectory in 

a given individual. Bacterial barcoding analyses have demonstrated that the majority of TB 

granulomas are founded by a single bacterium37. From studies in macaques, there seems to 

be an early wave of dissemination during the first 6–8 weeks of infection in which most 

granulomas are established, although later dissemination is not uncommon69. Thus, there is 

a very tight bottleneck on the bacterial population early in infection at the time of secondary 

granuloma formation. However, this is only likely to result in a significant bacterial founder 

effect if there is biologically meaningful variation in the bacterial population.

In many infections, the infecting pathogen population is large and already diverse, or there is 

sufficient genomic instability that within a short period of time there is tremendous 

opportunity for genetic diversification of the pathogen population86,87. However, M. 
tuberculosis is comparatively genetically monomorphic, and the infectious dose is very 

low88. Whole-genome sequencing of macaque granulomas and human samples indicates that 

even after extended periods of infection, little genetic diversity accumulates in the bacterial 
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population36,89,90. The epidemiological guide is that fewer than five single-nucleotide 

polymorphisms separate bacteria within a given individual36,89,90, making it unlikely that 

genetic diversification of the M. tuberculosis population followed by sharp bottlenecking 

creates sufficiently distinct pathogen populations to drive differences in granuloma fate.

By contrast, there is a surprising amount of phenotypic heterogeneity within M. tuberculosis 
populations. More than 50 years ago, Bigger91 described the existence of a small, 

phenotypically distinct subpopulation of bacteria (in his studies of Staphylococcus 
pyogenes) that were recognizable as non-growing, highly antibiotic-tolerant cells; he termed 

these cells ‘persisters’. More recently, considerable efforts to identify phenotypically distinct 

subpopulations of M. tuberculosis cells have led to the recognition that there are likely to be 

many phenotypic variants in any given M. tuberculosis population and that these variants 

arise through a variety of mechanisms92,93. This variability has typically been described in 

terms of cell-to-cell differences in antibiotic susceptibility; it is unclear to what extent this 

variation results in differences between bacterial cells in terms of their pathogenicity. It is 

also unclear whether there are mechanisms to generate variation in bacterial pathogenicity at 

a sufficiently high frequency but also of sufficiently long duration to plausibly drive 

granuloma fate. Asymmetric growth and division generates high-frequency variants, but 

their phenotypes change rapidly over successive cycles of cell division94. Studies describing 

subpopulations of drug-resistant cells that arise at a relatively high frequency and show 

semi-stable drug resistance across several generations suggest that epigenetic mechanisms 

may exist and fill this gap95. However, the relative importance of any of these populations 

has been hard to address experimentally because genetic mechanisms to perturb these 

distinct cell states have not been identified.

Reactive bacterial variation.

The concept of functionally important bacterial heterogeneity that arises in distinct 

granuloma environments is much better established in the TB field than is the concept of 

deterministic bacterial variation. Mitchison and colleagues96 were among the first 

proponents of this model, which they invoked to explain the results of the early trials of 

combination drug treatment for TB that were conducted in the 1950s and 1960s. In the 

earliest studies of various antimicrobial regimens, investigators recognized that treatment 

failure due to the emergence of drug resistance occurred frequently even when patients were 

treated with two fully effective antibiotics. Given the limited capacity of the bacterium for 

genetic diversification due to its low mutation rate and relatively small population size, these 

data were difficult to explain unless there were subpopulations of organisms that were not 

exposed to or functionally susceptible to both drugs96. From these data and experimental 

studies of drug efficacy, Mitchison93 proposed that in a given individual there are different 

subpopulations of organisms that have distinct drug susceptibilities based on growth rate 

differences or granuloma pH.

The Mitchison model did not claim that these functionally distinct bacterial subpopulations 

were spatially segregated in distinct granulomas. However, the model was consistent with 

pioneering work by Medlar et al.97 who undertook histopathological and microbiological 

examination of thousands of TB granulomas obtained at autopsy, and noted that some 
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‘closed’ granulomas (that were not accessible to an airway) contained microscopically 

visible but unculturable bacteria, whereas other ‘open’ granulomas were teeming with 

readily culturable organisms. Subsequent work confirmed these findings98,99, and led 

investigators to further suggest that at least a proportion of the bacterial population in closed 

granulomas was not dead but instead viable and unculturable100. These findings are early 

evidence of the spectrum of granulomas in a given individual as reflected in a variety of 

bacterial states; closed granulomas were first described in samples from patients who died of 

active TB and who also had open granulomas characterized by high numbers of readily 

culturable organisms. This and other work led investigators to postulate that under certain 

types of environmental stress — most notably hypoxia — the bacterium enters a state of so-

called ‘non-replicating persistence’, which is characterized by metabolic remodelling and 

multidrug tolerance101. Importantly, these changes in bacterial cell state correlate with 

changes in cell wall composition that alter the acid fastness of the organism and thus its 

ability to be detected via Ziehl–Neelsen staining102. Acid-fast staining-negative TB bacilli 

have been associated with stages of infection in which the bacterial population is not actively 

replicating103, although this association is imperfect as large replicating populations of 

weakly acid-fast bacteria have been described in some animal models104.

As these discrepancies suggest, there is likely to be a range of bacterial states in vivo that are 

only crudely probed by metrics such as aggregate growth rate and acid fastness. Studies 

suggest that even in sputum — so presumably coming from open granulomas — there are 

subpopulations of ‘differentially culturable’ M. tuberculosis bacilli105,106. However, it has 

been surprisingly challenging to develop molecular definitions for the state of M. 
tuberculosis in TB granulomas in humans or non-human primates, and even more difficult to 

establish the molecular mechanisms by which bacterial subpopulations arise and are 

maintained. In part, this question has become hard to address because of the success of 

antibiotic therapy.

Unlike Medlar et al.97, researchers today do not have access to thousands of human TB 

granulomas. Even in macaque granulomas, it has proved technically difficult to probe M. 
tuberculosis state, for example, by transcriptional profiling, in individual granulomas, 

because many granulomas have relatively few organisms, from which it is difficult to obtain 

transcripts. Several studies have successfully probed bacterial gene expression and 

phenotypic state of M. tuberculosis isolated from sputum. Although these studies capture 

bacteria only from the granulomas that progress, even in M. tuberculosis isolated from 

sputum there is evidence of metabolic reprogramming105–109. These results are broadly 

consistent with studies in mice in which bacterial reporter strains have provided single-cell 

measures of pathogen state that suggest that the adaptive immune response drives the 

emergence of a subpopulation of metabolically active but non-growing bacterial cells110,111. 

It remains to be determined whether this is more nuanced: that is, whether specific immune 

environments drive distinct bacterial responses or whether there is a feedback loop such that 

the emergent bacterial populations then promote different immune reactions.
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Variable responses to drug treatment.

Although the contribution of specific bacterial populations — in distinct metabolic states — 

to the rate of progression to disease remains unclear, there is strong evidence that non-

replicating or differentially culturable bacteria are more tolerant of antibiotics, which makes 

granuloma state an important determinant of treatment response. Current treatment for drug-

sensitive, active TB remains the standard 6-month regimen of isoniazid, rifampin, 

pyrazinamide and ethambutol. This regimen provides cure rates of 90–95% in trial TB 

control programmes21, but several attempts to shorten the treatment period have failed112. It 

is thought that the prolonged duration of TB treatment is dictated by the fact that at any 

given time some bacteria are functionally tolerant to the administered drugs, and this is 

fundamentally a result of granuloma heterogeneity. The search for antibiotics that are active 

against bacteria across a range of granuloma environments has led to the identification of 

new classes of antibiotics such as the nitroimidazoles113–115 and may explain the clinical 

potency of drugs that target energy metabolism such as bedaquiline116,117.

Granuloma state also influences the activity and concentrations of different antibiotics 

independent of bacterial state. This was first recognized for the first-line antibiotic 

pyrazinamide, which is a crucial agent for bringing the duration of TB treatment down to 6 

months (a reduction compared with the very lengthy treatments of earlier times118). 

Pyrazinamide is only active under acidic conditions and thus is thought to be particularly 

useful against bacteria in inflammatory environments. More recently, it has become clear 

that different drugs do not access all TB granulomas equally. Using matrix-assisted laser 

desorption ionization (MALDI) mass spectrometry, Prideaux et al.119 demonstrated that 

some drugs — for example, the second-line agent moxifloxacin — diffuse poorly into 

caseum, whereas other drugs, such as rifampicin, efficiently penetrate all granulomas. Thus, 

differences in granuloma fate and anatomy can result in uneven drug delivery, and at a 

minimum provide a framework for constructing drug regimens that are both more effective 

and better protected against the emergence of drug resistance.

Conclusions

In this Review, we have developed a model for the biological heterogeneity of TB infection, 

which manifests at the level of individual granulomas through variability in inflammation, 

the local adaptive immune response and bacterial state. Granuloma heterogeneity has 

implications for how we study TB, and highlights the importance of tissue-level analyses 

rather than analyses of circulating immune cells or even tissue samples that contain multiple 

granulomas. It also indicates a great opportunity to define the features of successful and 

unsuccessful immune responses within a given individual. We anticipate that these types of 

study will be most useful as a foundation for rational vaccine design, and potentially help 

investigators to determine whether it is necessary to target one or multiple paths to achieve 

bacterial containment or sterility. Although there remains much work to be done, we are 

optimistic that embracing this paradigm of granuloma heterogeneity is central to skewing the 

host–pathogen ‘arms race’ in favour of humans.
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Box 1 |

Modelling heterogeneity in animal models of Mycobacterium tuberculosis 
infection

Animal models of Mycobacterium tuberculosis infection are crucial to dissect the 

features of infection pathogenesis, tuberculosis (TB) pathology and immunology, and 

bacterial virulence. Several animal models have been used throughout the past few 

decades to study TB, including zebrafish120, mice121 and non-human primates122–124. 

Each system has both benefits and limitations as a model of TB, and although none 

perfectly recapitulates human M. tuberculosis infection, they all contribute to our 

understanding of this disease. The model recognized to perhaps best recapitulate the 

multiple facets of variability in TB is the cynomolgus macaque. Although ethical 

considerations, limited reagents and cost may detract from the general use of cynomolgus 

macaques, the range of outcomes both clinically and pathologically is remarkably similar 

to those observed in humans13,14. There is a 50:50 ratio of latent infection and active 

disease in adult cynomolgus macaques infected with low-dose (<25 colony-forming 

units) virulent M. tuberculosis Erdman when using criteria identical to those used for 

human diagnosis, including immunological sensitivity, culture positivity of gastric 

aspirates and/or bronchoalveolar lavage fluid samples, signs of disease and increased 

erythrocyte sedimentation rates13,14. Importantly, within these binary definitions, infected 

macaques recapitulate the entire spectrum of human disease at both the local (lung) level 

and the overall host level, including the ability to reactivate latent infection following 

immune suppression with simian immunodeficiency virus125, or treatment with 

antibodies against tumour necrosis factor74 or CD4 (REF. 126).
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Box 2 |

Host genetics and tuberculosis

Host genotype is increasingly being associated with variation in host susceptibility and 

outcome in Mycobacterium tuberculosis infection. Recent studies have pinpointed several 

genetic factors that correlate with protection, susceptibility to disease and vaccine 

responses54,127–133. Toll-interacting protein (TOLLIP) is an example of a protein for 

which variation in its transcriptional expression was linked with susceptibility to 

tuberculosis (TB)127 and the efficacy of bacillus Calmette–Guérin (BCG) vaccination128. 

In the first study127, TOLLIP deficiency was associated with an increased risk for TB that 

was mediated by a loss of negative regulation of Toll-like receptor 2 (TLR2) and TLR4 

signalling. The subsequent related study128 found that a deficiency of this protein was 

correlated with decreased interleukin-2 production by BCG-specific CD4+ T cells. 

Similar studies have determined an important link between host genetic factors, immune 

responses and TB outcome. Using an inbred recombinant mouse panel known as the 

‘Collaborative Cross’ (REFS 134,135), Smith et al.130 found that host susceptibility to 

TB and BCG vaccine efficacy were remarkably variable and genetically uncoupled from 

one another, such that protection to vaccination correlated with the intrinsic quality of the 

immune response.
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Tuberculin skin test

A test that involves the induction of a delayed-type hypersensitivity reaction by an 

intradermal injection of purified protein derivative, which is a mixture of Mycobacterium 
tuberculosis- derived proteins. The tuberculin skin test is also known as the Mantoux test 

and is used as a diagnostic tool for M. tuberculosis infection, but it does not distinguish 

latent infection from active tuberculosis.
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Acid-fast staining

A method for staining mycobacteria for microscopic visualization, as the Gram stain is 

not useful for mycobacteria. Acid-fast staining relies on phenolic compounds that interact 

with the lipid-rich cell walls of mycobacteria, and the resistance of this interaction to acid 

alcohol is the basis of the term ‘acid-fast’.
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Positron emission tomography

An imaging method that depends on the 3D detection of radiation (positrons) from a 

probe that is typically localized by uptake and retention in a specific cell or by a specific 

process in vivo. This uptake provides functional information about the organ of interest.
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Computed tomography

An imaging method that uses computer-processed combinations of many X-ray images 

taken from different angles to produce cross-sectional (tomographic) images (virtual 

‘slices’) of specific areas of a scanned object, resulting in a 3D representation of an organ 

in a living subject. This provides structural information about the organ of interest.
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Pulmonary cavitation

The formation of a cavity in the lung. A cavity is an abnormal, gas-filled space with a 

lining wall that has developed within and replaced the normal lung architecture. In 

tuberculous disease, these cavities are formed when necrosis invades through the wall of 

an airway, dilating and distorting the structure, and leading to the discharge of necrotic 

debris into the bronchial tree.
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Ghon complex

A term for pathological lesions in latent tuberculosis infection that consist of an often-

calcified granuloma and an associated lymph node.
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Molecular distance to health

A numerical score that measures the global transcriptional difference of each patient 

relative to the median in healthy controls.

Cadena et al. Page 28

Nat Rev Immunol. Author manuscript; available in PMC 2018 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Caseum

A hallmark feature of human tuberculous granulomas that results from a distinctive type 

of central necrotic breakdown known as caseous necrosis. The term caseum derives from 

the ‘cheese-like’ appearance of the necrotic area.
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Consolidations

Pathological processes by which the pulmonary infiltration of cells, fluid or other 

material leads to the loss of aeration and of the normal spongy consistency, causing 

parenchymal tissue to have a more firm, solid texture. Such a change is most commonly 

associated with infection-induced inflammatory infiltrates and leads to pneumonia.

Cadena et al. Page 30

Nat Rev Immunol. Author manuscript; available in PMC 2018 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1 |. A classical tuberculosis granuloma.
The hallmark tuberculosis granuloma is a highly organized collection of immune cells that 

aggregate around a central necrotic core. Reproduced from REF. 32 © Macmillan Publishers 

Limited. NK, natural killer.
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Figure 2 |. Granuloma fate is influenced by a complex and dynamic exchange of host and 
bacterial features.
In the lungs, a crucial interplay between the bacteria and host immune cells influences 

inflammatory programmes that contribute to granuloma outcome. This process is highly 

dynamic and iterative, with multiple components having pleiotropic, knock-on and feedback 

effects on inflammation and the host–pathogen interaction.
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Figure 3 |. Multiple ‘equations’ can determine granuloma fate.
There are multiple pathways that lead to both resolved and unresolved granuloma outcomes 

in human tuberculosis. These are fluid and dynamic processes that change as the structures 

encounter different contexts of immune responses, inflammation and bacterial persistence.
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Figure 4 |. Individual granulomas establish variable host outcomes and contribute to the overall 
spectrum of tuberculosis.
a | An individual cynomolgus macaque in which all granulomas have resolved, thus leading 

to an asymptomatic, contained outcome, has the lowest risk of reactivation of infection, and 

has effectively cleared most or all of the Mycobacterium tuberculosis infection. b | An 

individual macaque that has one or more granulomas that contain viable M. tuberculosis but 

can be asymptomatic for clinical tuberculosis (TB). These granulomas are not actively 

disseminating or progressing to worse pathologies, but they may have a persistent low level 

of inflammation. c | An individual macaque that has one or more very poorly controlled 

granulomas that are actively disseminating bacteria to other sites (indicated by outward-

pointing arrows) can develop progressive disease and potentially worse forms of active TB.

Cadena et al. Page 34

Nat Rev Immunol. Author manuscript; available in PMC 2018 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Host heterogeneity
	TB: a spectrum of clinical and pathological outcomes.
	Peripheral transcriptional signatures reveal dynamic and variable disease states.

	Granuloma heterogeneity
	TB granulomas have varied structures and cellular compositions that influence host outcome.
	Inflammation: a delicate and dynamic balance.
	The heterogeneity of immune responses in TB granulomas.

	Bacterial heterogeneity
	Is there deterministic bacterial variation?
	Reactive bacterial variation.
	Variable responses to drug treatment.

	Conclusions
	References
	Figure 1 |
	Figure 2 |
	Figure 3 |
	Figure 4 |

