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ABSTRACT

The present review highlights the idea that antioxidant supplementation can be optimized when tailored to the precise antioxidant status of
each individual. A novel methodologic approach involving personalized nutrition, the mechanisms by which antioxidant status regulates human
metabolism and performance, and similarities between antioxidants and other nutritional supplements are described. The usefulness of higher-
level phenotypes for data-driven personalized treatments is also explained. We conclude that personally tailored antioxidant interventions based
on specific antioxidant inadequacies or deficiencies could result in improved exercise performance accompanied by consistent alterations in redox
profile. Adv Nutr 2018;9:813–823.
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Introduction
Antioxidant supplements have been placed over the years
at both “ends” of the exercise nutrition field and have
been characterized from absolutely necessary to totally
detrimental (1, 2). Approximately 35 y ago, when the
first reports about reactive oxygen, nitrogen, and sulfur
species (referred to as reactive species) production during
exercise appeared, antioxidant supplements were considered
essential in order to combat the “damaging” oxidative stress
induced by exercise (1). However, during the past decade,
antioxidant supplements have been considered a “villain” in
the exercise nutrition field (2). In fact, many original studies
and review articles have strongly supported the view that
antioxidant supplementation should be discouraged during
exercise training, because it leads to diminished molecular,
biochemical, and physiologic adaptations (3, 4).

In a series of studies conducted by our groupwe found that
large redox interindividual variability exists both at rest and
in response to acute exercise (5–10). This variability was sub-
stantiated in both antioxidant (i.e., glutathione, vitamin C)
and oxidative stress (i.e., F2-isoprostanes, protein carbonyls)
biomarkers.We asserted that this redox heterogeneity among
individuals might actually explain the equivocal findings
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with regard to the effectiveness of antioxidants as possible
ergogenic aids.More specifically, antioxidant treatments have
been typically applied to young, healthy individuals with
normal concentrations of antioxidants or oxidative stress
biomarkers (11–14). Therefore, the participants recruited
may not have been derived from the appropriate cohort
to experience any potential benefit from the antioxidant
treatments. On the basis of this idea, we exploited an
emerging practice in biomedical research, known as stratified
purposive sampling, and tried to identify those individuals
who would be more likely to benefit from the treatment.
Figure 1 summarizes the central idea of our approach. In
particular, contrary to the conventional strategy (Figure 1A),
which is characterized by the indiscriminate use of an-
tioxidants (either a single antioxidant or a combination
of antioxidants) by all individuals, we herein propose a
“stratified” approach (Figure 1B) based on the redox profile of
the individuals. According to this profile, the antioxidant in
deficiency should be administered in each participant indi-
vidually. Built on this “data-driven” participant recruitment,
we hereby argue that the effects of antioxidant supplements
on exercise responses and adaptations depend on the baseline
redox status of each individual, and consequently, the
ergogenic effects of antioxidant supplements are evident
only in individuals with low baseline concentrations of
antioxidants or high baseline levels of oxidative stress.

In light of the above, the main objectives of the present
article are as follows: 1) to highlight the necessity for more
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FIGURE 1 The conventional (A) and the novel “stratification” (B) approach with regard to antioxidant supplementation. The conventional
approach is characterized by the indiscriminate administration of antioxidants irrespective of the redox profile of the individual. On the
contrary, the stratified approach aims to identify potential antioxidant deficiencies in order to tailor the most suitable treatment (if
needed).

personalized approaches in exercise studies utilizing antiox-
idant supplements and 2) to present a novel methodologic
strategy—namely, the stratification of individuals on the
basis of their antioxidant profile (i.e., redox phenotyping)
in order to identify the most “susceptible” individuals and
to exclude those who are not in need of treatment or, even
worse, those for whom an otherwise beneficial treatment
will probably have a harmful effect. Secondary aims of the
article are 1) to describe the mechanisms through which
antioxidant supplements may exert their ergogenic potential
in individuals with a disturbed redox profile and 2) to
present possible applications in sports nutrition and to
draw similarities to other nutritional supplements whose
effectiveness has also been a matter of debate.

Current Status of Knowledge
Antioxidant supplements: panacea, deleterious,
or neutral?
It is increasingly recognized that the reactive species pro-
duced during exercise are essential signaling molecules driv-
ing exercise adaptations, such as mitochondrial biogenesis,
angiogenesis, and neurogenesis, leading to increased physical
performance (3, 7, 15–18). Our knowledge on the role of
reactive species in exercise responses and adaptations has
been acquired through diverse in vitro, ex vivo, in situ, and in

vivo experiments (3, 19–22). The vastmajority of the relevant
studies (and actually all in vivo studies) have utilized agents
with purported antioxidant properties. According to the
current consensus, antioxidant supplementation either does
not affect exercise adaptations (11, 12) or blocks the beneficial
effects of reactive species, leading to a more “reductive”
state than the optimal state, resulting thereby in hampered
exercise adaptations (23). Similar negative or neutral effects
of antioxidant supplementation have been observed in the
progression of cancer and diabetes and in increasedmortality
(24–26). As a result, currently, antioxidant supplements have
a negative reputation in the nutrition field and biomedicine
in general.

In our first study on the topic, we showed a large
interindividual variability in redox (both antioxidant and
oxidative stress) responses after acute exercise among 100
participants and argued that this heterogeneity was partially
determined by the baseline values of biomarkers measured
(5). In a subsequent study, we showed that this redox
individuality, assessed through the exercise-induced changes
in the levels of the reference oxidative stress biomarker
(i.e., F2-isoprostanes), partially predicts aerobic and anaer-
obic trainability (7). On the basis of this documented
redox variability, we hypothesized that baseline antioxidant
concentrations could also affect exercise physiology and
nutrition outcomes. In order to examine this hypothesis,
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FIGURE 2 The differential effects of antioxidant supplementation on physical performance (V̇O2max), oxidative stress (F2-isoprostanes),
and antioxidant concentrations [vitamin C (A) and glutathione (B)] according to baseline antioxidant concentration. The 100% level
corresponds to the presupplementation values. Values are based on data from references 8 and 9.

we conducted a study in 100 individuals screened for
plasma vitaminC concentrations, and subsequently, 2 groups
(10 individuals/group) were formed: one with the highest
(78 ± 11 μmol/L) and one with the lowest (35 ± 8 μmol/L)
plasma vitamin C concentrations. After supplementing both
groups with 1 g vitamin C/d for 1 mo, we observed that
the “low” vitamin C group exhibited a marginally significant
increase in maximal oxygen uptake (V̇O2max) equal to
14% (P = 0.079), along with a concomitant decrease in
baseline oxidative stress (i.e., −18% in urine F2-isoprostanes
and −23% in plasma protein carbonyls) (8). In contrast,
no changes were observed in the “high” vitamin C group
after supplementation. By implementing the same method-
ologic strategy, we investigated the effect of N-acetylcysteine
(NAC) supplementation (i.e., 1.2 g NAC/d for 1 mo) on 3
whole-body exercise tests evaluating aerobic and anaerobic
capacity (i.e., V̇O2max, time trial, and Wingate tests) in
groups of individuals with low (2.05 μmol/g hemoglobin),
moderate (3.06μmol/g hemoglobin), and high (3.96μmol/g
hemoglobin) resting erythrocyte reduced glutathione (GSH)

levels (9). We found that NAC supplementation improved
both aerobic and anaerobic capacity only in the “low” GSH
group (i.e., +13.6% in V̇O2max, +15.4% in time trial,
and +11.4% in Wingate; P < 0.05 for all tests), whereas
an improvement in Wingate was also observed in the
“moderate”GSHgroup (i.e.,+10.4%;P< 0.05). Interestingly,
an adverse effect was found in the “high” GSH group after
NAC supplementation in time trial performance (i.e.,−3.5%;
P < 0.05) (9). Collectively, it can be reasonably assumed
that the ergogenic effects of antioxidant supplements appear
only when a relevant “deficiency” or inadequacy exists in the
population under study. Otherwise, either neutral or even
negative effects may be experienced (Figure 2). These find-
ings could be interpreted by the hormesis concept, according
to which there is an optimal range where reactive species
exert their favorable effects on exercise performance (27). In
addition, our findings are also in line with the very recent
International Olympic Committee consensus statement on
dietary supplements and performance, which underlined
that some supplements exert their ergogenic effects by

Personalized antioxidant supplementation 815



correcting nutrient deficiencies and reverse the associated
impairment of health, training capacity, or performance (28).

Researchers outside the exercise nutrition field have also
asserted that the effectiveness of antioxidant supplements to
decrease oxidative stress and promote health depends on
the baseline redox status (29–34). For instance, Block et al.
(29) showed that the beneficial effects of vitamin C or E
supplementation on plasma F2-isoprostane concentrations
are genuine, yet limited only to individuals with high
baseline oxidative stress levels (29). On this basis, the authors
proposed the concentration of 50 μg F2-isoprostanes/mL in
plasma as a “cutoff point” for enrollment eligibility in studies
using antioxidants. Similarly, Dow et al. (30) showed that
a 6-wk antioxidant treatment reduced urine F2-isoprostane
concentrations only in overweight adults with high baseline
values (30). The importance of baseline oxidative stress on
the effectiveness of antioxidants in translationalmedicine has
also been highlighted in commentaries and reviews (31–34).
Some authors have proposed that the “antioxidant paradox”
(i.e., the lack of therapeutic effect of antioxidant supplements
despite the fact that reactive species are involved in several
human diseases) may be explained by the enrollment of
individuals with normal levels of oxidative stress in clinical
trials (35).

An important methodologic distinction should be made
between these studies and ours. The vast majority (if
not all) of the previous studies have focused on generic
oxidative stress biomarkers for stratifying participants (e.g.,
low or high baseline F2-isoprostane concentrations) (36).
We, instead, focused on specific antioxidant inadequacies
(i.e., vitamin C and GSH) and attempted to reverse the
specific aberrant nutritional status in each case by restoring
the concentrations of the antioxidant in deficiency (i.e.,
supplementation with vitamin C and NAC, respectively).
In other words, we followed a “targeted” supplementation
strategy instead of administering antioxidants indiscrimi-
nately in order to combat a generically defined state of
“oxidative stress.” Collectively, it seems that the effects of
antioxidant supplementation (i.e., beneficial, detrimental, or
neutral) on physiology and pathology largely depend on the
baseline antioxidant profile of the individuals who receive the
treatment, a fact that necessitates the implementation ofmore
personalized experimental approaches in the exercise field.

Precision nutrition studies: a novel methodologic
design
The idea to tailor the right nutrient to the right individual, at
the right time point, every single time undoubtedly sounds
like a fascinating prospect and is reasonably regarded as
the next-generation approach in nutrition. The evaluation of
variability in individuals’ responses to nutritional treatments
is central to assessing potential benefits from personalized
nutrition (37). Although this requirement is obvious, ful-
filling it is more difficult than generally considered (38).
Precision nutrition, as a facet of the general concept of
precision (also known as personalized) medicine, has been
predominantly built on studies that tried to identify how an

individual’s genetic makeup predisposes that individual to
respond differently to the same nutritional intervention or
supplement (i.e., nutrigenetics) (39).However, this genotype-
to-phenotype-to-selection approach has been challenged,
because, with very few exceptions [e.g., diagnosis of hy-
polactasia and phenylketonuria screening (40)], it failed to
deliver its promise to revolutionize experimental and clinical
treatments (41, 42). Some explanations for this failure are
as follows: 1) the still unidentified causality chain between
genetic makeup and nutritional effectiveness, 2) the non-
transformable genetic report on nutritional properties due
to the dynamic intermediary steps from genes to phenotype
(e.g., post-transcriptional and post-translational modifica-
tions), and 3) the complex nature of high-level physiologic
phenotypes, which manifest redundancy and cross-talk [i.e.,
multiple overlappingmechanisms cooperate atmany levels in
order to secure optimal function (43)]. Furthermore, the 2-
way interaction (i.e., gene-diet interaction) seems to be what
truly matters, instead of the conventional 1-way reductionist
approach (i.e., from genes to diet) (42) (Figure 3).

As a result, it is currently acknowledged that precision
nutrition cannot be solely based on nutrigenetics (44,
45). More specifically, other factors that may determine
individual responses to nutritional intakes should be taken
into consideration, such as dietary and physical activity
habits and the microbiome (40). It should also be noted
that these higher-level phenotypes are biologically “closer”
to the commonly evaluated nutritional endpoints compared
with the genome and thus may be more realistic tools to
design precision nutritional treatments. In this regard, and
despite the fact that the genomic element is generally deemed
the main driver of precision nutrition (possibly due to its
more “attractive” nature), nutritional advice based on the
assessment of the individual’s diet or based on phenotypic
markers (e.g., anthropometric measures, clinical physiologic
or chemical variables, markers of nutritional status) still
represents the 2 main pillars of precision nutrition (46).
With regard to our studies, poor dietary habits [i.e., low
vitamin C or sulfur-containing nutrient intake (47, 48)]
could reasonably explain the deficiencies observed in the
“low” antioxidant groups (plasma vitamin C and erythrocyte
GSH, respectively), which were subsequently reversed by
the targeted antioxidant supplementation. Nevertheless, a
deviant genetic background cannot be ruled out, especially
for the low GSH group (vitamin C cannot be synthesized
in humans, thus low vitamin C concentrations are most
likely attributed to low dietary intake). In fact, gene mu-
tations or missing genes that produce the enzymes that
synthesize the GSH tripeptide (i.e., glutamate-cysteine ligase,
glutathione synthetase, and γ -glutamyl transpeptidase) or
regulate its function (i.e., glutathione reductase, peroxidase,
and S-transferase) may lead to GSH deficiency, necessitating
exogenous administration or increased nutritional intake
of GSH or its precursors (49, 50). It is important to note
that our approach actually refers to tailored antioxidant
treatments at a group level rather than at an individual
level, which is in line with the widely adopted strategy to
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FIGURE 3 Four major limitations when designing genome-driven personalized nutritional treatments.

identify groups with a common phenotypic or metabolic
profile and then to apply a targeted treatment. Analogous
to the concept of metabolic phenotyping [or metabotyping
(51)], which describes the categorization of individuals on
the basis of metabolic or phenotypic characteristics into
more homogeneous subgroups, we herein propose a redox
(antioxidant) phenotyping. This idea can be extrapolated in
the future for developing analytical tools that will offer the
opportunity to rapidly screen individuals—for instance, via a
capillary blood sample, for assessing their antioxidant profile
to determine the antioxidant needed. Such an “idealized”
tool and its potential utility (i.e., to tailor the most optimal
nutritional redox treatment) is described in Figure 4. For
instance, a tool developed on the basis of the idea of redox
phenotyping would provide the opportunity to distinguish
a person with low concentrations of GSH [e.g., glucose-6-
phosphate dehydrogenase (G6PD) deficient or an individual
with aberrant NAD(P)H redox metabolism; i.e., individual
no. 1] from a vitamin E–deficient person (e.g., due to
malnutrition; i.e., individual no. 2), or equally important,
to identify individuals with a normal antioxidant status
who do not need any exogenous antioxidant supplement
(individual no. 4). Taking into account that oxidative stress
is widely regarded as an underlying mechanism of several
diseases and a factor aggravating a pre-existing pathol-
ogy (52, 53), the administration of the right antioxidant
in each case seems imperative. Of course, many mech-
anistic details should be taken into consideration when
integrating reactive species into the pathophysiology of a
disease (54); yet, a clinical point-of-care tool designed to
identify specific antioxidant deficiencies in each patient
individually would be useful for more successful antioxidant
therapies.

With regard to exercise, to the best of our knowledge,
we are unaware of any study that specifically addressed
the issue of personalized responses to a specific diet or
nutritional supplement. To fill this gap, the stratified pur-
posive sampling of participants on the basis of a specific
biological phenotype (considered critical for the objective of
each study) seems a promising experimental design (55). The
stratified purposive sampling is a nonprobability sampling
methodologic technique, where the key goal is to identify and
enroll “information-rich” subjects for an a priori–defined
characteristic from a larger population. The stratification
approach typically generates 2 (i.e., “above” and “below”
a predefined threshold) or 3 (i.e., “low,” “moderate,” and
“high”) strata of the biological trait (i.e., “classifier”) under
study. Thus, the distinct groups formed are expected to
capture a wide range of conditions (including the extremes
and the average), which provides the opportunity to gain a
comprehensive understanding of the topic under investiga-
tion using only part of the population. By implementing the
aforementioned approach, we have shown that 2 different
redox supplements, an antioxidant (i.e., vitamin C) and a
precursor of an antioxidant (i.e., NAC as a cysteine donor for
GSH synthesis), exert ergogenic effects only in individuals
with low baseline antioxidant concentrations (8, 9). On the
contrary, neutral or even detrimental effects may be seen in
individuals with moderate or high baseline antioxidant con-
centrations. Our studies focused only on 2 well-investigated
antioxidants and thus future studies are warranted that
will “scan for” and “identify” additional, and potentially
multiple and coexistent, antioxidant deficiencies that may
necessitate targeted antioxidant treatments. On this basis, the
stratification approachmay also facilitate the creation of data
sets summarizing the redox characteristics of the individuals
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who will probably not respond favorably to a nutritional
treatment (i.e., identification of “nonresponders” or “low
responders”).

The stratification approach is not without disadvantages.
When trying to identify the most suitable subjects for
enrollment in a study, the initial screening of the classifier
trait requires a large pool of available participants. This
becomes more demanding when the normal (optimal)
values of the classifier trait is unspecified, because, despite
the advances in analytical chemistry (56–58), there are
no reference intervals for most redox biomarkers. This is
largely due to the numerous available analytical techniques
and assays used for the determination of the biomarkers,
which yield noncomparable values (59, 60). Thus, the initial
screening of the pool should delineate the range of variation
in the classifier trait in order to form the distinct groups.

Another disadvantage of the stratification approach is the
methodologic artifact known as “regression to the mean”:
individuals with an extreme initial value in a specific trait
are typically prone to exhibit a less extreme value (i.e., tend
toward the mean) in a subsequent measurement (6, 61,
62). Hence, regression to the mean may become a major
problem in studies in which participants are stratified on the
basis of an extreme initial value, such as the antioxidant-
insufficient individuals in our case. Severalmethodologic and
statistical approaches have been proposed to bypass or reduce
the impact of this artifact (61, 63, 64). In our studies, we
addressed regression to the mean by performing a duplicate
pretreatment measurement, using the second one as a more
realistic baseline value of the groups (7, 9). The key idea
of this approach is based on the fact that the impact of
regression to the mean predominantly takes place between
the first and the second measurement (65). Certainly, this
duplicate pretreatment measurement increases the amount
of work required. Yet, on the bright side, the stratification
approach represents a novel methodologic strategy that
allows to distinguish individualized responses to antioxidant
and nutritional supplementation in general.

How does redox status affect physical performance?
In our studies, the “low” antioxidant group (i.e., the in-
dividuals with the lowest antioxidant concentrations) ex-
hibited inferior physical performance at baseline compared
with the “moderate” and “high” antioxidant groups (8,
9). More specifically, the “low” plasma vitamin C group
(35 ± 8 μmol/L) had ∼21% lower V̇O2max compared
with the “high” vitamin C group (78 ± 11 μmol/L) (8).
Likewise, the “low” erythrocyte GSH group (2.05 μmol/g
hemoglobin) exhibited∼14% lower V̇O2max comparedwith
both “moderate” (3.06μmol/g hemoglobin) and “high” (3.96
μmol/g hemoglobin) GSH groups, whereas the performance
in the time trial was ∼17% lower than that in the “high”
GSH group (9). However, all of these features almost
disappeared after the 1-mo antioxidant (i.e., vitamin C or
NAC) supplementation period.

An interesting question that emerges from the afore-
mentioned data is how an aberrant antioxidant status can
affect physical performance. Antioxidant molecules do not
work independently of one other; instead, they represent
a part of a greater whole, which includes enzymatic and
nonenzymatic mechanisms (66). That is, each antioxidant
molecule interacts, supports, and is supported by other
molecules. Thus, low concentrations of an antioxidant, due
to poor dietary habits for example, may compromise the
entire biochemical pathway that involves this antioxidant.
Indeed, when we analyzed our redox data from the “low”
GSH group, we noticed that many molecules in the GSH-
dependent redox metabolism pathway were affected, such as
the concentration of the reductive substrate NAD(P)H and
the activity of many antioxidant enzymes (i.e., glutathione
peroxidase and reductase, superoxide dismutase, and cata-
lase) (9). This indicates that there is a disturbed flux in
the whole antioxidant buffering machinery, which results in
increased systemic oxidative stress levels (as shown by the
increased resting values of urine F2-isoprostanes and plasma
protein carbonyls). Interestingly, NAC supplementation not
only increased GSH production but also upregulated the flux
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in the abovementioned redox pathway (9). Collectively, a nu-
tritional antioxidant insufficiencymay lead to a dysregulation
of a whole redox metabolic network (9).

Two possible mechanisms whereby an aberrant redox
homeostasis may affect physical performance are the redox
control of cell signaling and the redox control of energy
metabolism. With regard to cell signaling, mounting evi-
dence suggests that antioxidant enzymes act as key “nodes”
(e.g., sensors or transmitters) that fine-tune redox signaling
triggered by reactive species (67, 68). In fact, antioxidant
enzymes exhibit a high selectivity against reactive species
featuring signaling properties, such as hydrogen peroxide
(H2O2) and NO (19, 69), while at the same time they are
kinetically favored (up to 107-fold higher rate constants)
compared with other low-molecular-weight antioxidants
(e.g., GSH, vitamins C and E) (70, 71). Although the precise
biochemical cascades have yet to be defined and remain
largely debatable, 2 proposed mechanisms have received the
greatest attention with regard to how antioxidant enzymes
control redox signaling and, more specifically, how they
facilitate the selective reversible reaction between a precise
reactive species (e.g., hydrogen peroxide) and the active
cysteine residue of a target signaling protein [e.g., Kelch-
like ECH-associated protein 1 (KEAP1)] (72, 73). The first
mechanism is known as the “redox relay.” According to this
mechanism, antioxidant enzymes “transfer” the oxidizing
equivalents to the downstream effector protein. For instance,
it has been shown that peroxiredoxin-2 acts as a redox
receptor and transmitter (i.e., as a “relay”) for the transcrip-
tion factor signal transducer and activator of transcription 3
(STAT3) signaling (74). The second mechanism is known as
the “floodgate model.” According to this model, the reactive
species (i.e., hydrogen peroxide) sequesters or inactivates the
antioxidant enzyme (i.e., peroxiredoxin), thereby flooding
the area, and subsequently oxidizes the cysteine residues in
the target protein (75).

With regard to cell metabolism, a wide spectrumof redox-
dependent post-translational modifications has been de-
scribed thatmodulate key aspects of cellularmetabolic fluxes,
many of them tightly linked with exercise metabolism (76,
77). It is nowwell established that redox processes coordinate
the regulation (i.e., activation or inactivation) of kinases
and phosphatases that catalyze the (de)phosphorylation of
proteins, thereby controlling the metabolic fate of cells.
For instance, reactive species activate several receptor and
nonreceptor tyrosine kinases and phosphatases, such as
the protein kinase C, Rho-kinase, and mitogen-activated
protein kinases, as well as the Src homology-2 domain-
containing phosphatase 2, phosphatase and tensin ho-
molog, 5′ AMP-activated protein kinase, c-Jun amino-
terminal kinases, and extracellular signal–regulated kinases
(78–84). Along with these enzymes, compartmentalized
and reversible redox reactions also regulate, either di-
rectly (i.e., by oxidative modifications) or indirectly (e.g.,
via intermediate tyrosine kinases), the activity of funda-
mental and ubiquitous transcription factors and coactiva-
tors, such as peroxisome proliferator-activated receptor γ

coactivator 1α (PGC1-α), nuclear factor (erythroid-derived
2)–like 2 (Nrf2), and NF-κB (67, 85). These transcrip-
tion regulators have been implicated in diverse exercise-
induced adaptations, such as mitochondrial biogenesis and
angiogenesis (86–89). With regard to energy metabolism,
several signaling pathways have been described to regulate
glucose uptake during exercise, predominantly by controlling
glucose transporter 4 (GLUT4) trafficking (90). Among the
diverse upstream signals, reactive species have been shown
to control, in part, this process. More specifically, mounting
evidence exists about the key role of NO (the parent reactive
nitrogen species) in the contraction-induced glucose uptake,
whereas in vitro and ex vivo (although not in vivo) data
support a role for reactive oxygen species in this process as
well (91–93). Finally, it is now well known that the activity of
many enzymes depends on their oxidation state. Taking into
account that some of these enzymes, such as creatine kinase
(94), play a pivotal role in energy utilization and recycling,
a disturbed redox state has strong implications in energy
production during exercise.

Taking into account that the inhibition of all of the afore-
mentioned signaling pathways is as an important event as is
their induction (19), the vital role of antioxidants (especially
of enzymes) in fine-tuning these processes becomes clear
(95). As a result, it is reasonable to argue that an aberrant flux
in an antioxidant pathway (aswas the case in ourGSH-related
pathway in the “low” GSH group) may result in deviant cell
signaling and impaired energy metabolism, especially under
conditions of increased stress (e.g., during exercise).

Similarities to other nutrition supplements
Analogous to our concept on the effectiveness of antioxidant
supplementation (i.e., restricted to individuals with low
baseline antioxidant concentrations), some authors have
proposed a similar idea for other nutritional supplements
as well. Two representative examples are vitamins E and
D and their efficacy to reduce molecular and biochemical
deregulation and reverse an adverse condition observed at
the physiologic level.

Vitamin E (typically seen in the literature in the
α-tocopherol form) is a well-described lipophilic antioxidant
and regulator of cellular metabolism (96). It has been pre-
viously reported that the vast majority of adult individuals,
sometimes up to 80–90% (97), do not consume sufficient
amounts of dietary vitamin E and fail to meet the Estimated
Average Requirements. As a result, vitamin E inadequacy or
deficiency is a common phenomenon in humans and has
been linked to a wide array of symptoms, such as anemia,
increased risk of infection, impaired cognitive function, and
developmental maladies (34). Mechanistic studies, mainly
in animal models (e.g., rat and zebrafish), have shown that
long-term low concentratons of vitamin E are associated
with dysregulated energymetabolism and neurological func-
tion, suboptimal tissue lipid profile, aberrant mitochondrial
function, and extensive tissue damage due to the prolonged
lipid peroxidation (mostly of membrane PUFAs) (34, 98, 99).
It is noteworthy that it has been shown that long-lasting
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impairment of redox homeostasis and cellular metabolism
due to vitamin E deficiency may sometimes persist even
after vitaminE remediation throughdiet or supplementation,
whereas extreme situations of deficiency have been linked to
embryonic death (100, 101). On the bright side, supplements
providing several orders of magnitude greater vitamin E
intakes increase steady-state vitamin E concentrations, re-
verse complex comorbidities, and lead to health benefits (34).
However, the potential benefits of long-term and excessive
intake of vitamin E beyond the optimal levels have been a
matter of debate (102, 103).

Similar to vitaminE, vitaminDdeficiency and inadequacy
are widespread among both athletes and the general pop-
ulation (104, 105). Vitamin D has received great attention
during the past decade mainly due to the resurgence of
the comorbidities associated with vitamin D deficiency. In
fact, low concentrations of vitamin D have been associated
with impaired muscle function, disturbed immune function,
poor bone health, and aberrant cardiovascular function
(105, 106). Most of these data come from epidemiologic
studies and the causal link is lacking. Yet, a recent study has
shown that vitamin D is essentially implicated in skeletal
muscle regeneration and that the maintenance of optimal
vitamin D concentrations is critical for keeping the best
regenerative capacity during recovery after eccentric exercise
and this may facilitate the hypertrophic response (107).
On the other hand, like the use of antioxidants, chronic
high-dose vitamin D supplementation not only does not
convey further beneficial effects, it may instead become
detrimental for its targeted purposes (108). Collectively,
maintaining optimal concentrations of vitamins D and E
seems imperative for diverse biological phenotypes, although
the provision of larger amounts is at best neutral (if not
detrimental).

Conclusions
We have shown that personally tailored antioxidant in-
terventions based on specific antioxidant inadequacies or
deficiencies result in improved exercise performance accom-
panied by consistent alterations in the redox profile (8, 9).
Despite any possible limitations, current empirical data offer
hope of the promise of stratified nutrition on the basis of
phenotype (and not necessarily genotype). This “targeted”
redox framework may have important ramifications in the
antioxidant supplementation strategies used by athletes (e.g.,
guarantee of optimal antioxidant concentrations during
competition) and in other population cohorts as well (e.g.,
in a clinical setting). In a broader perspective, the use
of higher level biological phenotypes phenotypes, which
are biologically closer to the target endpoint, to predict
or modulate the most suitable intervention [e.g., toward
personalized nutrition (37)] is emerging as a promising
strategy in research and everyday practice (109). As Halliwell
(110) provocatively stated, “Perhaps, we should only test
the effects of antioxidants on the most ‘rancid’ people, who
may be those at greatest risk of disease.” We herein tried to
refine this idea by suggesting that for each “rancid” individual

under oxidative stress, the specific antioxidant deficiency
or deficiencies have to be revealed and the appropriate
antioxidant or antioxidants should be administered.
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