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Abstract

Here we present the feasibility of NMR Signal Amplification by Reversible Exchange (SABRE) 

using radio-frequency irradiation at low magnetic field (0.05 T) in the regime, where the chemical 

shifts of free and catalyst bound species are similar. In SABRE, the 15N-containing substrate and 

parahydrogen perform simultaneous chemical exchange on an Iridium hexacoordinate complex. 

Shaped Spin-Lock Induced Crossing (SLIC) radio-frequency pulse sequence followed by a delay 

is applied at QUASi-Resonance (QUASR) condition of 15N spins of 15N-enriched substrate. As a 

result of this pulse sequence application, 15N z-magnetization is created from the spin-order of 

parahydrogen derived hyperpolarized hydrides. The repetition of the pulse-sequence block 

consisting of shaped radio-frequency pulse and the delay leads to the build-up of 15N 

magnetization. The modulation of this effect by the irradiation frequency, pulse duration and 

amplitude, delay duration, and the number of pumping cycles was demonstrated. Pyridine-15N, 

acetonitrile-15N, metronidazole-15N2-13C2 substrates were studied representing three classes of 

compounds (five- and six-membered heterocycles and nitrile) showing the wide applicability of 

the technique. Metronidazole-15N2-13C2 is an FDA-approved antibiotic that can be injected in 

large quantities promising non-invasive and accurate hypoxia sensing. The 15N hyperpolarization 

levels attained with QUASR-SABRE on metronidazole-15N2-13C2 were more than two-fold 

greater than with SABRE-SHEATH (SABRE in SHield Enables Alignment Transfer to 

Heteronuclei) demonstrating that QUASR-SABRE can deliver significantly more efficient means 

of SABRE hyperpolarization.
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Conventional NMR relies on equilibrium thermal nuclear spin polarization P dictated by the 

Boltzmann distribution among Zeeman energy levels in dependence of the applied static 

magnetic field B0. Although P can be boosted significantly by applying stronger magnetic 

field (because P∝B0), P is typically on the order of 10−5 to 10−6 for a conventional high-

field NMR spectrometer (ca. 9.4 T) or MRI scanner (ca. 3 T) at room temperature, i.e. when 

the high temperature approximation holds. Hyperpolarization techniques increase P to the 

order of unity increasing NMR sensitivity increase by 4–5 orders of magnitude.1–3

Several hyperpolarization techniques exist.1–3 Signal Amplification by Reversible Exchange 

(SABRE) is one of more recent techniques pioneered by Duckett and co-workers in 2009.4–7 

SABRE relies on simultaneous chemical exchange of parahydrogen (p-H2) and to-be-

hyperpolarized substrate (Figure 1a).8 When the transient complex is formed, the 

parahydrogen symmetry is broken,9 and the network of spin-spin couplings can enable 

transfer polarization from parahydrogen-derived hydrides to the nuclear spins of the 

substrate.4–7 Two major groups of approaches have been developed for SABRE polarization 

transfer: the first group employs a matching static magnetic field Bevo,4, 10–13 and the second 

group applies radio-frequency (RF) pulse sequences,14 to approach Level Anti-Crossings 

(LAC)15–16 and induce polarization transfer. Both approaches have merit depending on the 

application. For biomedical applications, which represent the main driver for development of 

hyperpolarization technology,2 the key is to achieve high degrees of polarization with the 

long lifetimes in a suitable biomolecular motif.17 So far, approaches relying on static 

magnetic fields such as SABRE-SHEATH (SABRE in SHield Enables Alignment Transfer 

to Heteronuclei)18–20 have been the most efficient for preparation of long-lived 15N 

hyperpolarized spin states with exponential decay constant of more than 20 minutes21 and 

P15N exceeding 30%.22–23

One likely explanation as to why RF-based methods are lagging behind in the context of 

SABRE is the reliance on conventional high-field NMR spectrometers with small coils that 

only encompass a small fraction of the liquid sample in a 5 mm NMR tube,14 which is 

continuously bubbled with p-H2.24 These factors result in major RF-inhomogeneities. In 

contrast, a previous approach used in hydrogenative Parahydrogen Induced Polarization 

(PHIP9, 25–26), employs low-field (ca. 5–50 mT) magnets and RF excitation coils,27–32 

which encompass the entire sample volume, sometimes in excess of 50 mL.33–35 Moreover, 

the hardware behind such low-field devices is significantly less complex and less costly 

compared to that of the high-field NMR spectrometers.17, 31–32, 35–36 Here it is demonstrated 

that these advantageous features can also be translated to SABRE.
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RF-based polarization transfer such as Low-Irradiation Generation of High Tesla (LIGHT)-

SABRE employs RF irradiation of the catalyst-bound substrate (Figure 1A), which typically 

has a chemical shift difference of 30–50 ppm with respect to the free substrate.14, 37 

Irradiation of the catalyst bound species allows for polarization transfer from p-H2-derived 

hydrides.14 When the complex dissociates, the 15N nuclear spin polarization is preserved in 

the free substrate, because it is not affected by the frequency-selective RF pulses.14 

Achieving this frequency selective irradiation at high magnetic fields is trivial due to large 

chemical shift dispersion. For example, 50 ppm difference equals to ~2 kHz at 9.4 T. 

However, this difference vanishes at low magnetic fields: for example, 50 ppm difference 

equals 10 Hz at 0.05 T (the magnetic field employed in this Letter), and selective RF-

excitation becomes challenging. We demonstrate that this challenge can be overcome 

through the use of quasi-resonance (QUASR) spin-lock induced crossing (SLIC)38 

irradiation to polarize 15N spins from p-H2-derived hydrides.

The QUASR-SABRE experiment (Figure 1B) is performed at 0.05 T magnetic field using 

previously described p-H2 bubbling setup in a medium-walled 5-mm NMR tube.24, 39–40 

During p-H2 bubbling a triangular-shaped pulse is applied for duration τPULSE followed by a 

delay period τDELAY. The process is repeated, and the net z-magnetization increases during 

this “rf-pumping” process. The resulting magnetization can be conveniently assessed by 

applying a broad-band excitation (π/2) RF pulse, Figure 1c. We compare the performance of 

this QUASR-SABRE approach with SABRE-SHEATH approach (Figure 1d), which has 

been employed previously to obtain record-high 15N polarization in excess of 30%.22–23

The previously described SABRE-SHEATH setup,39–40 15N RF coil and 0.05 T magnet have 

been employed here.41 Samples of three substrates and IrIMes catalyst precursor in 

perdeuterated methanol were prepared as follows: pyridine-15N/catalyst, ~20 mM/~1 mM, 

acetonitrile-15N/catalyst, ~40 mM/~1–2 mM, metronidazole-15N2-13C2/catalyst, ~20 mM/~1 

mM. All 15N-enriched compounds were purchased from Isotec. The RF pulse sequences was 

coded and applied on Kea-2 NMR spectrometer (Magritek, New Zeeland) using Tomco RF 

amplifier. The employed Kea-2 spectrometer was operated in the signal averaging mode, 

where the signal is averaged during multi-scan acquisitions version being added. As a result, 

the signal integral value from multi-scan spectrum is similar to that acquired using 1-scan 

acquisition, e.g. the integral values of spectra shown in corresponding displays in Figures 2–

4 can be compared directly without any scaling even though the spectra were recorded using 

different numbers of scans. A Three-layered mu-metal magnetic shield was employed 

(Magnetic Shield Corp., Bensenville, IL, P/N ZG-206). All data was acquired employing 

75–80% parahydrogen prepared using home-built parahydrogen generator based on 

Sunpower cryo-chiller at a flow rate of 150 standard cubic centimeters per minute (sccm). 

For the SABRE experiments, the following conditions were used: 75 psi back-pressure and 

70 sccm para-H2 flow rate (Figure 1b and Figure 1d). The flow rate was maintained by via a 

mass flow controller (MFC, Sierra Instruments, Monterey, CA, P/N C100L-DD-OV1-SV1-

PV2-V1-S0-C0).

Low-field detection of hyperpolarized (HP) compounds offers sufficient detection sensitivity 

in the context of NMR detection of HP states.42 However, detection of thermal polarization 

is challenging due to low P even at high concentrations (see Supporting Information (SI) for 
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details). As a result, the quantification of 15N enhancements (ε15N) and polarization (P15N) 

relied on signal to noise measurements (see SI for details) in order to determine the 

minimum values achieved.

15N NMR spectra with high SNR were obtained for all three studied molecules: 

pyridine-15N, acetonitrile-15N, and metronidazole-15N2-13C2 using SABRE-SHEATH 

(Figure 2a, Figure 3a, and Figure 4a respectively) and QUASR-SABRE (Figure 2c, Figure 

3c, and Figure 4c respectively). We note that while p-H2 bubbling through the sample placed 

in 0.05 T leads to 15N signal even without RF pulses (Figure 2b, Figure 3b and Figure 4b 

respectively), this 15N signal is distinctly anti-phase,14, 41, 43 and has significantly lower 

intensity compared to those obtained using SABRE-SHEATH and QUASR-SABRE 

protocols.

The key distinct feature of QUASR-SABRE phenomenon is strong RF offset frequency 

dependence: Figure 2d and Figure 4d demonstrate the dependence of the 15N QUASR-

SABRE signal for pyridine-15N and metronidazole-15N2-13C2 respectively. Note that very 

small signal is obtained at the resonance frequency. The maximum intensity of 15N QUASR-

SABRE was compared to that of SABRE-SHEATH and is reported here as the ratio of 15N 

QUASR-SABRE and SABRE-SHEATH signal, η. We find η of ~1.0 for pyridine-15N, η of 

~0.44 for acetonitrile-15N, and η of (at least) ~2.4 for metronidazole-15N2-13C2. The 

relatively low η value for acetonitrile-15N is in part explained by the fact that frequency 

optimization was not performed, and the data was recorded using the frequency offset 

parameter optimized for pyridine-15N, which unfortunately did not provide a fair 

comparison. Based on the range of on the frequency optimization data for pyridine-15N 

(Figure 2e) and for metronidazole-15N2-13C2 (Figure 4d), we estimate that this optimization 

may potentially yield an improvement of up ten-fold. We note that η value for 

metronidazole-15N2-13C2 assumes that both 15N sites are hyperpolarized via SABRE-

SHEATH and QUASR-SABRE protocols. While SABRE-SHEATH indeed yields 

hyperpolarization of both 15N sites due to spin-relay of polarization at very low magnetic 

fields (the Earth’s field (ca. 50 μT) and below), QUASR-SABRE may yield 

hyperpolarization of only one (N3) site, Figure 4. If that is the case, then η would be 

effectively doubled to 4.8, because only one 15N site contributes to the QUASR-SABRE 

signal (Figure 4c) versus two 15N sites to the SABRE-SHEATH NMR signal (Figure 4a). 

We note that the Full Width at the Half-Height (FWHH) was approximately the same for 

SABRE-SHEATH and QUASR-SABRE NMR spectra for acetonitrile-15N and 

metronidazole-15N2-13C2: Figure 3 and Figure 4 respectively, whereas QUASR-SABRE 

spectrum FWHH was approximately half of that for SABRE-SHEATH spectrum for 

pyridine-15N (Figure 2c and Figure 2a respectively). The latter observation may in part 

explain pyridine-15N η value, which is significantly lower than that of 

metronidazole-15N2-13C2.

All three molecules studies exhibited a clear and strong dependence of 15N QUASR-SABRE 

signal on the duration of the pulse (τPULSE) and the duration of the delay (τDELAY): Figure 

S2a, Figure S3a and Figure S3b, Figure S4a and Figure S2b, Figure S3c, Figure S4b 

respectively. This strong dependence is likely due to the dynamics and kinetics of the 

substrate and p-H2 exchange on the catalyst. When the τPULSE and τDELAY are in sync with 
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chemistry of exchange, the maximum QUASR-SABRE signal may be achieved. However, 

we note that QUASR-SABRE signal has very complex dependence on τPULSE and τDELAY. 

For example, the τPULSE-curves for acetonictrile-15N are vastly different at τDELAY of 2 ms 

(Figure S3a) and τDELAY of 33 ms (Figure S3b). Future theoretical work is certainly 

warranted to study this complex behavior of QUASR-SABRE effect, which is outside the 

scope of this pioneering phenomenological report.

The second key feature of QUASR-SABRE effect allows for continuous “RF-pumping” of 
15N z-magnetization: Figure 2e, Figure 3d, and Figure 4e for the three studied compounds 

respectively. This fitting of the exponential dependence of the build-up processed yielded Tb 

of 0.5±0.05 s for acetonitrile-15N, Tb of 1.26±0.02 s for pyridine-15N, and Tb of 2.17±0.09 s 

for metronidazole-15N2-13C2. The Tb values correlate well with η values with R2 of 0.93, 

Figure 5, suggesting that the build-up rate may be affecting the efficiency of QUASR-

SABRE polarization process. A likely explanation of this observation in the contribution of 

the polarization destruction processes to Tb: when the destruction due to RF pulses is 

significant, Tb is reduced resulting in lower 15N signals in a manner analogous to that of 

batch-mode Spin Exchange Optical Pumping (SEOP).44–47 Further experimental and 

theoretical studies are certainly warranted in the future to maximize the efficiency of 

QUASR-SABRE approach described here.

All experiments were performed at room temperature (ca. 298 K). We note that the rf 

pumping of QUASR-SABRE process needs to be effectively matched to the chemical 

exchange dynamics in order to maximize the polarization transfer efficiency to yield the 

highest P15N value. Therefore, it is expected that the optimal values of τPULSE and τDELAY 

(Figure S2, Figure S3, and Figure S4) would exhibit temperature dependence, because 

temperature modulates the rates of substrate and p-H2 exchange. Moreover, it is entirely 

possible that optimum temperature (i.e. yielding the highest value of P15N) may be 

significantly different from room temperature and may be different from optimal 

temperature of the SABRE-SHEATH process (note that the optimal SABRE-SHEATH 

temperature for pyridine-15N and for metronidazole-15N2-13C2 corresponds to 

approximately room temperature, i.e. SABRE-SHEATH experiments were optimized with 

respect to temperature). As a result, some additional improvement in the maximum value of 

P15N may be potentially expected for QUASR-SABRE process.

We have also investigated the dependence of the QUASR-SABRE signal on the amplitude of 

SLIC power amplitude. Figure S4c exhibits a plateau (with a range of approximately 6 

decibels) with relatively steep slopes on both sides. This trend is expected, because LAC 

conditions are usually created in a relatively narrow power range.15, 48

Optimization of P15N was not the goal of this report. Moreover, due to lack of direct 15N 

signal reference (due to insufficient thermal equilibrium signal), we can only report the low 

limit of ε15N and P15N values. Metronidazole-15N2-13C2 QUASR-SABRE estimates were 

ε15N ~9*105 and P15N ~1.5% (these values are doubled if only N3 site is hyperpolarized). 

Metronidazole-15N2-13C2 SABRE-SHEATH estimates were ε15N ~3.7*105 and P15N ~0.6%. 

Note these lower-limit estimates are in good agreement with P15N~1.5% reported for 

SABRE-SHEATH under similar conditions using detection provided by high-resolution 9.4 
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T NMR spectrometer.39–40 Pyridine-15N lower-limit estimates were ε15N ~ 6.6*105 and 

P15N ~ 1.1% for both QUASR-SABRE and SABRE-SHEATH—in line with previous 

SABRE-SHEATH studies.18–19 Acetonitrile-15N lower-limit estimates were ε15N ~ 5.3*104 

and P15N ~ 0.09% for QUASR-SABRE and ε15N ~ 1.2*105 and P15N ~ 0.2% for SABRE-

SHEATH respectively. See SI for details.

With regards to the limitations of the QUASR-SABRE method, it remains to be seen if 

QUASR-SABRE is capable of hyperpolarization of long-range spin sites in the substrate 

compounds. Moreover, future systematic experimental and theoretical studies are certainly 

needed to further optimize the efficiency of QUASR-SABRE technique. For example, more 

advanced shaped forms (e.g. sine, exponential, trapezoid, etc.) and strategies (adiabatic 

pulses) can be envisioned.

In summary, radio-frequency based polarization transfer approach has been presented for 

polarization of 15N sites. At least in some compounds, this method appears to be more 

efficient than the SABRE-SHEATH approach, which has already been shown to yield more 

than 30% 15N polarization.23 This is remarkable because in all previous demonstrations RF-

SABRE approaches yielded significantly less polarization than static field matching / field 

cycling approaches. We hope that QUASR-SABRE may ultimately yield 15N polarization of 

the order of unity for a wide range of biomolecules. The employed pulse-sequence is a 

shaped variant of SLIC pulse sequence,38 which has the benefit of using low power levels. 

The applicability of this technique has been explored for three different types of compounds 

(six- and five-membered N-heterocycles and acetonitrile) including the antibiotic 

metronidazole. Metronidazole is an antibiotic that can be administered in large doses,49 and 

contains the nitroimidazole moiety, which has been exploited in a wide range of molecular 

contrast agents for hypoxia sensing using position emission tomography (PET).50–55 

Therefore, metronidazole is a promising candidate as molecular probe for hypoxia imaging 

using HP MRI.40

Supplementary Material
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Figure 1. 
a) The diagram of molecular exchange with p-H2 in SABRE hyperpolarization. b) the 

experimental setup for QUASR-SABRE, c) the RF pulse sequence for QUASR-SABRE, d) 

corresponding experimental setup for SABRE-SHEATH experiment.
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Figure 2. 
Pyridine-15N data. The other experimental conditions were as follows: 20 mM pyridine-15N, 

1 mM catalyst in CD3OD. Note the width of the signal in displays b and d. a) the 15N 

spectrum obtained after performing SABRE-SHEATH; b) The 15N spectrum recorded using 

90-degree excitation pulse when bubbling p-H2 in situ of the 0.05 T magnet; c) the 15N 

spectrum obtained after performing QUASR-SABRE; d) 15N QUASR-SABRE signal 

dependence on the applied radio frequency offset from the actual resonance condition; e) the 

build-up of 15N QUASR-SABRE signal as a function of the number of pumping cycles. 
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Note the individual spectra employed for figures in displays d and e were auto-phased, and 

the data is presented in the magnitude mode.
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Figure 3. 
acetonitrile-15N data. The other experimental conditions were as follows: 40 mM 

acetonitrile-15N, 1 or 2 mM catalyst in CD3OD. Note the width of the signal in displays a 

and c is nearly the same as opposed to pyridine-15N case. a) the 15N spectrum obtained after 

performing SABRE-SHEATH; b) The 15N spectrum recorded using 90-degree excitation 

pulse when bubbling p-H2 in situ of the 0.05 T magnet; c) the 15N spectrum obtained after 

performing QUASR-SABRE; d) the build-up of 15N QUASR-SABRE signal as a function of 

the number of pumping cycles; Note the individual spectra employed for figures in display d 

were auto-phased, and the data is presented in the magnitude mode.
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Figure 4. 
Metronidazole-15N2-13C2 data. The other experimental conditions were as follows: ~20 mM 

metronidazole-15N2-13C2, 1 or 2 mM catalyst in CD3OD. Note the width of the signal in 

displays a and c is nearly the same as opposed to pyridine-15N case. a) the 15N spectrum 

obtained after performing SABRE-SHEATH; b) The 15N spectrum recorded using 90-degree 

excitation pulse when bubbling p-H2 in situ of the 0.05 T magnet; c) the 15N spectrum 

obtained after performing QUASR-SABRE; d) 15N QUASR-SABRE signal dependence on 

the frequency of the applied RF shaped pulse; e) the build-up of 15N QUASR-SABRE signal 
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as a function of the number of pumping cycles N. Note the individual spectra employed for 

figures in displays d and e were auto-phased, and the data is presented in the magnitude 

mode.
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Figure 5. 
Correlation plot of Tb and η for the three studied compounds.
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