Hindawi

Oxidative Medicine and Cellular Longevity
Volume 2018, Article ID 8087598, 15 pages
https://doi.org/10.1155/2018/8087598

Review Article

The Possible Pathophysiological Outcomes and Mechanisms of
Tourniquet-Induced Ischemia-Reperfusion Injury during Total

Knee Arthroplasty

Prangmalee Leurcharusmee,">> Passakorn Sawaddiruk,"*> Yodying Punjasawadwong,’

Nipon Chattipakorn ," and Siriporn C. Chattipakorn

1,3,4

'Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University,

Chiang Mai, Thailand

Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
?Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
*Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand

Correspondence should be addressed to Siriporn C. Chattipakorn; scchattipakorn@gmail.com

Received 15 August 2018; Accepted 4 October 2018; Published 5 November 2018

Guest Editor: Luciano Saso

Copyright © 2018 Prangmalee Leurcharusmee et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

Ischemia and reperfusion (I/R) injury induced by tourniquet (TQ) application leads to the release of both oxygen free radicals
and inflammatory cytokines. The skeletal muscle I/R may contribute to local skeletal muscle and remote organ damage
affecting outcomes after total knee arthroplasty (TKA). The aim of the study is to summarize the current findings
associated with I/R injury following TKA using a thigh TQ, which include cellular alterations and protective therapeutic
interventions. The PubMed database was searched using the keywords “ischemia reperfusion injury,” “oxidative stress,”
“tourniquet,” and “knee arthroplasty.” The search was limited to research articles published in the English language.
Twenty-eight clinical studies were included in this qualitative review. Skeletal muscle I/R reduces protein synthesis,
increases protein degradation, and upregulates genes in cell stress pathways. The I/R of the lower extremity elevates local
and systemic oxidative stress as well as inflammatory reactions and impairs renal function. Propofol reduces oxidative
injury in this I/R model. Ischemic preconditioning (IPC) and vitamin C may prevent oxygen free radical production.
However, a high dose of N-acetylcysteine possibly induces kidney injury. In summary, TQ-related I/R during TKA leads to
muscle protein metabolism alteration, endothelial dysfunction, oxidative stress, inflammatory response, and renal function
disturbance. Propofol, IPC, and vitamin C show protective effects on oxidative and inflammatory markers. However, a
relationship between biochemical parameters and postoperative clinical outcomes has not been validated.

1. Introduction

Total knee arthroplasty (TKA) is a surgical treatment aim-
ing at improving the mobility and quality of life of
patients suffering from advanced knee osteoarthritis. The
prevalence of this procedure has substantially increased
in the past decade and is expected to continue [1, 2]. A
hallmark of the clinical success of TKA is postoperative
quadriceps muscle function. Muscle atrophy following a
use of intraoperative thigh tourniquet (TQ) results in early

postoperative deficits in quadriceps strength and subse-
quently impaired TKA rehabilitation. The majority of
TKA patients are in the elderly population [1] whose
TQ-induced muscle loss is likely permanent and may
increase risk for falls as well as loss of independence [3].

A TQ is routinely used in extremity surgery to
produce a bloodless surgical field. However, TQ applica-
tion alters normal physiology and is associated with
several complications [4]. Locally, a circumferential inflat-
able cuff compresses the structures beneath the cuff and
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can possibly cause mechanical and ischemic injuries to local-
ized muscles and nerves. Skeletal muscles distal to the TQ
are also affected at a molecular level by prolonged inade-
quate blood flow and subsequent restoration of circulation.
Systemically, limb exsanguination followed by TQ inflation
transiently increases central blood volume and systemic
vascular resistance, induces a hypercoagulable state, and
activates fibrinolytic activity. Clinically, the use of a TQ
is considered a risk factor for thromboembolism [5]. How-
ever, the incidence of deep vein thrombosis and pulmo-
nary thromboembolism after TKA was found to be
similar regardless of the use of the TQ [6].

TQ inflation induces ischemia to an extremity, and its
release may lead to an ischemia and reperfusion (I/R)
injury to not only localized skeletal muscle but also sys-
temic circulation and vital distant organs including the
brain, heart, lungs, and kidneys. The restoration of blood
flow following an ischemic period is essential to prevent-
ing irreversible cellular injury; however, the reperfusion
can augment secondary damage to ischemia. During oxy-
gen deprivation, intracellular ionic and metabolic changes
including ATP depletion, intracellular acidosis, and cyto-
solic calcium overload occur and cause damage to cells
[7]. In addition, ischemia can exacerbate reactive oxygen
species (ROS) production and promote a proinflammatory
state, which subsequently increases tissue vulnerability to
further injury during reperfusion. Upon the reintroduction
of oxygen, excessive production of ROS disproportionate
to the antioxidant capacity results in cell injury through
the oxidation of proteins, lipids, and DNA.

Several treatment strategies have been proposed to
prevent or attenuate the effects of I/R injury following
TQ use in cases of orthopedic surgery [8]. Studies into
the use of ischemic preconditioning (IPC) and antioxi-
dants have generated inconclusive results depending on
the administration techniques. Of the anesthetic agents,
propofol is the best medication producing both antioxida-
tive and anti-inflammatory effects. However, the correla-
tion between the benefits of these interventional and
pharmacologic strategies with the postoperative clinical
outcomes has not been drawn.

Therefore, the aim of this review is to summarize cur-
rent findings relating to the effects of TQ-induced I/R
injury on localized skeletal muscles, local and systemic
circulation, and remote organs in TKA surgery and thera-
peutic interventions in clinical study. Furthermore, the
controversial reports regarding these issues are included
and discussed.

2. Effects of TQ-Induced I/R Injury on Localized
Skeletal Muscles

TQ application during TKA has been shown to produce I/R
injury in human skeletal muscle by triggering cascades of
cellular events resulting in a reduction in protein synthesis
[9], an increase in protein degradation [10, 11], and an
upregulation of the genes in cell stress pathways [12]. Alter-
ations in the protein metabolism as a result of I/R injury
lead to the mobilization of free amino acids [11] which
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subsequently contribute to quadriceps muscle atrophy [3].
Cap-dependent translation initiation and elongation in the
protein synthesis pathway were inhibited during ischemia
and in early reperfusion phases causing downregulation of
protein synthesis and a 12% loss of mid-thigh quadriceps
volume as measured by magnetic resonance imaging
(MRI) at two weeks after surgery [9]. The ubiquitin (Ub)
proteasome system, the main pathway of skeletal muscle
proteolysis, was upregulated at 60 minutes of ischemia
suggesting an increase in muscle protein breakdown [10].
Regarding the analysis of gene expression profiles following
TKA, 72 genes in skeletal muscle cells were significantly
upregulated at two hours after TQ release [12]. The genes
related to the cell stress pathways were altered and poten-
tially induced apoptosis, cell cycle regulation, and comple-
ment activation.

Other mechanisms of skeletal muscle I/R injury have
been investigated [13, 14]. Many studies [15-17] have
reported that endothelial dysfunction resulting from an
imbalance of vasoactive substances, including endothelin
1 (ET-1), as well as neuronal and endothelial nitric oxide
synthases (nNOS and eNOS) plays a role in the patho-
physiology of several ischemic conditions. Concordantly,
ET-1, nNOS, and eNOS are involved in skeletal muscle
I/R. The rise in ET-1 tissue protein levels occurred dur-
ing the periods of I/R and was attributed to an increase
in the release of stored peptides or the conversion of
precursor peptides to ET-1 [13]. Furthermore, the upreg-
ulation of NOSs occurred in postischemic skeletal muscle.
The increased protein expression of nNOS was controlled
at the mRNA level, whereas the upregulation of the eNOS
protein was regulated by posttranscriptional processes [14].
All these findings suggest that agents modulating the ET-
1 and NO pathways such as an ET antagonist may have
therapeutic benefits in this condition.

The cellular bioenergetics and mitochondria are
preserved during skeletal muscle I/R in the TKA setting
[11, 18, 19]. For example, (1) adenosine triphosphate
(ATP) concentrations and mitochondrial enzymes were
maintained during 60-90 minutes of ischemic time and at
24 hours after reperfusion [11, 18], despite significant
metabolic changes which suggested ischemic injury to the
skeletal muscle cell at approximately 75 minutes of ische-
mia [20], and (2) a previous human study [19] showed
mitochondria to have normal appearance when viewed
under an electron microscope after 15 minutes of ischemia.
However, in cases of myocardial I/R condition, mitochon-
drial respiratory chain activity was reduced after 30 minutes
of ischemia and restored upon reperfusion as a biphasic
process [21, 22]. All those findings suggest that alterations
in mitochondrial function induced by I/R injury are tissue-
specific and the severity of the cellular damage depends
on the duration of ischemia. However, the actual period
of total ischemia which results in mitochondrial damage
and the reversal time of mitochondrial dysfunction have
not yet been validated. Therefore, the ischemic time induc-
ing skeletal muscle mitochondrial impairment should be
further defined and therapeutic strategies to address the
prevention and modulation of mitochondrial injury should
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be studied. A comprehensive summary of those findings is
shown in Table 1.

3. Effects of TQ-Induced I/R Injury on Local and
Systemic Circulation

TQ use can lead to a production of oxygen free radicals and
stimulation of inflammatory processes in the ischemic skel-
etal muscle cells and endothelium. Upon TQ release, acti-
vated endothelial cells generate more oxygen free radicals
and release inflammatory mediators [23]. The elevated oxi-
dative stress levels and the inflammatory reaction in both
the local and systemic circulation after TQ deflation were
demonstrated in the TKA-related I/R models [24-26].
Interestingly, the changes were observed earlier and more
intensely in the blood from the reperfused area than from
the systemic circulation. The rise in systemic prooxidant
and hypoxanthine levels as well as in xanthine oxidase
activity is probably explained by a dispersal of these mole-
cules from the injured area into the systemic circulation
because hypoxanthine accumulates in hypoxic conditions
[25]. On the other hand, the circulatory increase in pro-
and anti-inflammatory cytokines can be explained by sys-
temically induced stress responses secondary to tissue
trauma. The number and type of lymphocytes can be used
to monitor the systemic effect of the stress response, and
the application of a TQ has been shown to induce geno-
toxic and cytotoxic effects on peripheral leukocytes during
the reperfusion period with possible irreversible damage
[27]. Despite these acknowledged deleterious effects of use
of a TQ, the surgical trauma per se generates surgical stress
which is characterized by neuroendocrine, immunological,
and hematological changes. When compared to the proce-
dure without TQ application, the increase in plasma
interleukin-6 (IL-6), C-reactive protein (CRP), creatine
phosphokinase (CPK) and white blood cell counts at 24
hours and seven days after surgery were not different and
improvement of knee function at one year after operation
was comparable [28]. It is possible that these long-term sys-
temic responses originated from the surgical injury. Further
studies focusing on differentiation between responses from
surgical stress and those from I/R injury in this setting
should be investigated. A comprehensive summary of those
findings is shown in Table 2.

4. Effects of TQ-Induced I/R Injury on
Remote Organs

The I/R of the lower extremity affects not only the local
structures but also distant organs. The remote response
to I/R is associated with microvascular dysfunction [23].
Activated endothelial cells produce excessive ROS at the
initiation of reperfusion and lead to an imbalance between
superoxide and nitric oxide in all segments of the micro-
circulation, which subsequently induce a systemic inflam-
matory response and cause multiple organ damage. A
previous study [29] reported hepatic and renal dysfunction
as well as pulmonary damage in animals subjected to three
hours of bilateral hind limb ischemia, followed by three

hours of reperfusion. In relation to TQ-induced I/R in
the clinical setting, remote kidney damage was suggested
by the elevation of two sensitive indicators of proximal
tubular function [30]. However, no significant myocardial,
cerebral, or lung injury was demonstrated after unilateral
TKA surgery [31-33]. It is likely that the severity of dis-
tant organ injury is related to the degree of local tissue
injury and systemic inflammatory activation. This supposi-
tion is supported by higher postoperative complications
affecting multiple organ systems among bilateral TKA
patients compared to those undergoing a unilateral TKA
[34]. A comprehensive summary of these findings is
shown in Table 3.

5. Effects of Ischemic Conditioning on TQ-
Induced I/R Injury in TKA

Ischemic preconditioning (IPC) is an exposure of tissues to
one or more brief periods of I/R which generates small
amounts of free radicals resulting in an adaptive response
to subsequent prolonged ischemic stress and reperfusion
injury [35]. The IPC results in protection, consisting of two
phases, an early phase and a late phase [23, 36]. The early
phase affects ion channel permeability, posttranslational
modification of proteins, and release of autocoids such as
adenosine, bradykinin, and nitric oxide. The later phase is
dependent on the gene expression and de novo protein syn-
thesis involved in endothelial function, an inflammatory
response, and hemostasis. During the conditioning, the
released autocoids bind to G-protein-coupled receptors
(GPCRs) which subsequently activate growth factor recep-
tors (GFRs) and in addition stimulate intracellular kinase
pathways. These processes result in an increase in antiapop-
totic proteins, inhibition of proapoptotic proteins, transloca-
tion of transcription factors, opening of ATP-sensitive
potassium channels (K, 1p), and inhibition of the mitochon-
drial permeability transition pores (mPTPs). The IPC of the
lower extremity in unilateral TKA patients showed protective
genomic responses, which resulted in an upregulated expres-
sion of immediate early response genes, oxidative stress
defense genes and prosurvival genes, and regulation of
neuron apoptosis [37, 38]. However, the systemic inflamma-
tory signals were not suppressed by IPC performed with one
to three cycles of five-minute ischemia and five-minute
reperfusion [33, 37, 39]. A comprehensive summary of these
findings is shown in Table 4.

Remote ischemic preconditioning (rIPC) is the condi-
tioning applied to distant tissues or organs in order to
render tissues with a subsequent sustained ischemic
episode resistant to I/R injury. The potential mechanisms
of rIPC consist of two components which are humoral
and neural [40, 41]. The two hypotheses involve produc-
tion of endogenous substrates, such as adenosine, bradyki-
nin, and calcitonin gene-related peptides (CGRP) in the
remote ischemic tissues. These endogenous mediators enter
the bloodstream and initiate protective effects via their
respective receptors in other tissues. In a different way, these
substrates stimulate afferent nerve fibers and transmit pro-
tection to distant organs through efferent nerve fibers.
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TasLE 3: Effects of TQ-induced I/R injury on remote organs.
Main findings (compared to
Sample size/age TQ pressure/ischemia time baseline level) Interpretation References

Outcomes on
remote organ

Systemic effects

Heart:
— CPK-MB
< Troponin I

n=16/70 4 yr 91 £ 11 min, N/A

Brain:
< 15c0,

No POCD at 1 week

n=36/71+7yr N/A Lungs:
< PF ratio
Kidney:

< serum Cr

L :
250 mmHg, 52+ ungs

=17/67 +10
" / r 11 min

/Cr ratio

Kidney:
T urine a-1-
microglobulin/
Cr ratio
300-350 mmHg,
n=15/64-73yr i
83-121 min

Cr ratio

| serum cystatin C
| serum Cr and

urea

< urine desmosine

T urine GST-a/Cr ratio
< urine NAG/

No cardiac muscle injury after

MDA 31
T serum TKA with TQ 1]
1 lactat
I plasma lactate No adverse effects on regional
T serum CPK .
cerebral oxygenation,
< serum LDH, ulmonar
AST pumonary [32]
oxygenation, and renal
« serum IL-6, function
TNF-a, IL-10
’ fter TKA with T
| serum TNE-f3 aner with TQ
No lung injury occurred as
T serum IL-6, indicated by the unaltered
TNF-a, CRP, marker [33]
and WBC count  of elastin breakdown after TKA
with TQ
T plasma lactate Possible proximal tubular
T serum myoglobin injury [30]

T serum lactoferrin after TKA with TQ

AST: aspartate aminotransferase; CPK: creatinine phosphokinase; CRP: c-reactive protein; Cr: creatinine; GST-a: glutathione-S-transferase-a; IL:
interleukin; LDH: lactate dehydrogenase; MDA: malondialdehyde; N/A: not available; NAG: N-acetyl-f-D-glucosaminidase; PF ratio: ratio of arterial
oxygen partial pressure to fractional inspired oxygen; POCD: postoperative cognitive dysfunction; rScO,: regional cerebral oxygen saturation; TKA:
total knee arthroplasty; TNF: tumor necrosis factor; TQ: tourniquet; WBC: white blood cell.

Thus, an intact neural pathway is required for the com-
plete signaling of remote preconditioning. The skeletal
muscle ischemia resulting from use of a TQ on a nonop-
erated thigh has been investigated in the TKA setting. This
rIPC with three cycles of five-minute ischemia improved
regional cerebral and pulmonary oxygenation during the
early reperfusion period in the patients undergoing unilat-
eral TKA under general anesthesia [32]. However, in cases
of bilateral TKA, application of a thigh TQ in the first-
operated knee may prevent I/R injury from occurring dur-
ing the subsequent ischemic surgical procedure on the
other knee [31, 42, 43]. Nonetheless, the conditioning
stimulus of rIPC in these previous studies was unclear.
The ischemic times of the preconditioning, of approxi-
mately 60-90 minutes, were longer than a typical ischemic
stimulus of IPC. It is uncertain whether a longer condi-
tioning time is more effective than a conventional time
[44]. It is noteworthy that the anesthesia technique should
be focused because spinal anesthesia can block neural
impulses at spinal nerve roots and may interfere with the

neural pathway of rIPC. A comprehensive summary of
these findings is shown in Table 4.

6. Effects of Anesthetic Agents on TQ-Induced I/
R Injury in TKA

Anesthetic intervention to reduce TQ-related I/R injury
in cases of orthopedic surgery has been systematically
reviewed [8]. Anesthetic agents with proven antioxidative
effects include propofol, dexmedetomidine, and ketamine.
Intravenous propofol (2,6-diisopropylphenol) is a com-
mon choice as an anesthetic agent for sedation and main-
tenance of anesthesia. Its antioxidative properties arise
from its chemical structure which is similar to the endog-
enous antioxidant a-tocopherol and phenol-based free
radical scavengers [45]. The cardioprotective effect of
propofol in cases of cardiac I/R is dose-dependent and
mediated by the activation of mitochondrial respiratory
chain complexes [46, 47]. However, in skeletal muscle 1/
R, the small or sedation dose of propofol (2mg/kg/h)
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FiGure 1: Effects of tourniquet- (TQ-) induced I/R injury on localized skeletal muscle, circulation, and remote organs and the effects
of therapeutic interventions on the skeletal muscle I/R in cases of surgery for knee arthroplasty (TKA). The skeletal muscle I/R
condition results in (1) preserved cellular bioenergy and mitochondrial function, (2) upregulation of genes related to cell stress
pathways, (3) endothelial dysfunction as indicated by an increase in endothelin 1 and NOS levels, (4) alteration in protein
metabolism, (4) increased oxidative stress and inflammatory responses, and (5) injury to distant organs including the kidney.
Ischemic preconditioning (IPC), propofol, and vitamin C demonstrated positive or protective effects in the cases of I/R injury in
this setting, while elevated O, tension aggravated the injury and N-acetylcysteine may have dose-dependent responses. Other
interventions including remote ischemic preconditioning (rIPC), volatile anesthetic agents, mannitol, and nitric oxide possibly
produce positive outcomes, and additional studies in this I/R condition should be investigated. @: positive effect; ©: negative effect;
?: inadequate evidence; T: increase; |: decrease; «<»: no change; ATP: adenosine triphosphate; CPK-MB: creatinine phosphokinase-
MB; Cr: creatinine; eNOS: endothelial nitric oxide synthase; nNOS: neuronal nitric oxide synthase; O,: oxygen.

infused throughout the operation demonstrated antioxi-
dant and anti-inflammatory properties [48, 49]. Sevoflur-
ane and other halogenated volatile anesthetics have
shown protective effects on the myocardium after cardiac
I/R [50]. However, the antioxidative effect of sevoflurane
and halothane were less than intravenous propofol in this
skeletal muscle I/R setting [51, 52]. Therefore, a reasoned
anesthetic technique for TKA with TQ is a combined
spinal anesthesia with small-dose propofol infusion [48,
49, 51-53]. A role of peripheral nerve blockade for
post-TKA pain control has received increasing attention,
but its effects on oxidative stress and inflammatory
responses have not been investigated. A comprehensive
summary of these findings is shown in Table 5.

7. Effects of Pharmacological Intervention on
TQ-Induced I/R Injury in TKA

ROS from the TQ-related I/R can be modulated by antioxi-
dants. The antioxidants may reduce the cellular level of oxy-
gen free radicals either by inhibiting ROS production,
enhancing antioxidant enzymes, or reacting with the free
radical intermediates in chain reactions [54]. Besides the
antioxidants, interventions preventing mitochondrial dys-
function and local and systemic inflammation processes pos-
sibly play an important role in skeletal muscle I/R protection.

Previous studies [11, 30, 31, 53, 55] concerning the
preventive effects of vitamin C, mannitol, N-acetylcysteine
(NAC), inhaled nitric oxide (iNO) and a low concentra-
tion of oxygen on I/R injury following TKA have been
investigated. Vitamin E and vitamin C are natural nonen-
zymatic antioxidants that effectively scavenge lipid peroxyl
radicals and terminate the lipid peroxidase chain reaction
[56]. Administrated intravenously for ten minutes before
TQ deflation and 20 minutes after reperfusion, high-dose
vitamin C significantly reduced serum malondialdehyde
(MDA) levels, a toxic metabolite of lipid peroxidation.
Furthermore, vitamin C showed protective effects on the
myocardium by significantly reducing troponin I levels at
eight hours after the operation compared to the level
observed in the controls [31]. Mannitol, a scavenger of
hydroxyl free radicals, did not decrease the effects of reperfu-
sion injury on skeletal muscle [11] although a dose-
dependent attenuation of oxidative stress induced lung injury
following liver I/R has been reported [57]. The exogenous
administration of NO lessened the reperfusion inflammatory
response in knee surgery patients having general anesthesia
[58]. However, with the spinal anesthesia technique, neither
local nor systemic signs of endothelial cell activation or
inflammatory response were detected at two hours after TQ
release. Therefore, the presence of intraoperative iNO did
not have a positive effect in this setting [55]. A lower oxygen
tension during spinal anesthesia may be an explanation
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because the formation of isofurans, a free radical mediated
peroxidation of arachidonic acid, increased concomitantly
with elevated O, concentrations occurring during general
anesthesia [53]. Regarding NAGC, it is a direct precursor to
glutathione (GSH) which directly scavenges ROS and indi-
rectly supports GSH peroxidase [59]. The beneficial effect
of NAC on TQ-related I/R injury has been reported [60,
61]. However, a high dose of NAC significantly increased
urine markers indicating renal tubular damage [30]. There-
fore, techniques of administration including optimal dose,
route, and timing of pharmacological interventions should
be carefully validated in the skeletal muscle I/R model. A
comprehensive summary of these findings is shown in
Table 6.

8. Conclusions

Use of a TQ during TKA resulted in skeletal muscle I/R
injury to localized skeletal muscle, systemic circulation, and
distant organs. In the skeletal muscle, changes in protein
metabolism suggest inhibition of protein synthesis and
enhancement of protein breakdown. During I/R, genes
related to the cell stress pathways are upregulated in skeletal
muscle cells without evidence of mitochondrial dysfunction.
In terms of circulation, oxidative injuries and inflammatory
responses are more intense in the reperfused area than in
the systemic circulation. As regards remote organs, no signif-
icant myocardial, cerebral, or lung injuries were reported but
the renal proximal tubular function was impaired.

Several studies investigated the protective effects of IPC,
anesthetic agents, and other pharmacological interventions.
Sedative doses of propofol have antioxidative and anti-
inflammatory properties. However, biochemical outcomes
of the use of IPC and other medication to prevent I/R damage
were diversified depending on the technique of administra-
tion. The optimal technique of therapeutic interventions
and the biochemical results thereof should be further verified
and correlated to clinical outcomes after TKA.

The effects of TQ-induced I/R injury on localized skeletal
muscle, circulation, and remote organs and the effects of
therapeutic interventions on the skeletal muscle I/R in TKA
are summarized in Figure 1.
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