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Aims Sudden cardiac arrest (SCA) accounts for 10% of adult mortality in Western populations. We aim to identify po-
tential loci associated with SCA and to identify risk factors causally associated with SCA.

...................................................................................................................................................................................................
Methods
and results

We carried out a large genome-wide association study (GWAS) for SCA (n = 3939 cases, 25 989 non-cases) to
examine common variation genome-wide and in candidate arrhythmia genes. We also exploited Mendelian ran-
domization (MR) methods using cross-trait multi-variant genetic risk score associations (GRSA) to assess causal
relationships of 18 risk factors with SCA. No variants were associated with SCA at genome-wide significance, nor
were common variants in candidate arrhythmia genes associated with SCA at nominal significance. Using cross-trait
GRSA, we established genetic correlation between SCA and (i) coronary artery disease (CAD) and traditional
CAD risk factors (blood pressure, lipids, and diabetes), (ii) height and BMI, and (iii) electrical instability traits (QT
and atrial fibrillation), suggesting aetiologic roles for these traits in SCA risk.

...................................................................................................................................................................................................
Conclusions Our findings show that a comprehensive approach to the genetic architecture of SCA can shed light on the deter-

minants of a complex life-threatening condition with multiple influencing factors in the general population. The
results of this genetic analysis, both positive and negative findings, have implications for evaluating the genetic archi-
tecture of patients with a family history of SCA, and for efforts to prevent SCA in high-risk populations and the
general community.
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Introduction

Sudden cardiac arrest (SCA) is a major cause of cardiac mortality,
affecting over 300 000 people in the US every year.1 Clinical and
autopsy studies have demonstrated a predominant, common
pathophysiology in Western populations: the most common electro-
physiologic mechanism for SCA is ventricular fibrillation (VF) and the
most common pathologic substrate is coronary artery disease
(CAD). Despite recent increases in SCA survival rates,2 survival
remains low, and an important way to impact SCA mortality is
through risk stratification and prevention. Although observational
studies have identified numerous clinical and subclinical risk factors
for SCA, understanding which of these associations are causal will
help target prevention strategies.

Family history of SCA is a strong risk factor for SCA in the gen-
eral population, suggesting that genetic variation may influence
SCA risk.3–5 While patients with inherited arrhythmias (e.g. long
QT syndrome) are at increased SCA risk,6–8 the vast majority
of SCA occurs outside of this high-risk population. Whether
common variation in ion channel genes or other genomic regions

influences SCA risk and identifies those at higher risk remains
largely unknown.

Examining the genomic architecture of SCA allows us not only to
examine genomic risk markers for SCA but also to assess causal rela-
tionships of clinical and subclinical risk factors with SCA. Mendelian
randomization (MR) methods exploit the fact that genetic variants
are largely determined at conception and randomly distributed in
populations, to determine whether an exposure may be causally
associated with the outcome, and to estimate the effect size of that
causal association.9–11 Here, we use a multi-single nucleotide
polymorphism (SNP) Genetic Risk Score Association (GRSA) model
to compare genetic associations of known SCA risk factors to genetic
associations with SCA as an effective way to understand the potential
underlying causal pathways and processes that modulate SCA risk.

To determine whether genetic variants are associated with SCA
risk, we performed a genome-wide association study (GWAS) for
SCA. We additionally examined whether common variation in inher-
ited arrhythmia genes was associated with SCA risk in the general
population. We then evaluated the relationships between SCA and
multi-SNP GRSAs for each risk factor.
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Methods

Study populations and phenotype definition
The overall study design is summarized in Supplementary material online,
Figure S1. Briefly, nine studies of European-descent individuals (3939 cases
and 25 989 non-cases) comprised a GWAS ‘discovery’ stage, and 12 stud-
ies with individuals of European, African, and Asian descent (4918 add-
itional cases and 21 873 controls) comprised a ‘replication’ stage. Study
descriptions, along with study-specific SCA definitions and genotyping
methods, are detailed in the Supplementary material online, Appendix. All
studies were approved by appropriate local institutional review boards.

Genome-wide association study
Genome-wide genotype data was imputed to the HapMap2-CEU refer-
ence panel, following study-level quality control checks (Supplementary
material online, Table S1A). Each ‘discovery’ study performed regression
analysis adjusted for age, sex, and study-specific covariates, and results
were meta-analysed using inverse-variance meta-analysis implemented in
METAL.12 Meta-analysis was performed with results from 9 GWASs
comprising a total of 3939 European-ancestry cases and 25 989 controls
(Supplementary material online, Table S1A), with additional genotyping of
26 SNPs in up to 4918 cases and 21 879 controls of European, African,
and Asian descent (Supplementary material online, Table S1B). For SNP
rs1554218, ARIC samples were not included in the discovery data leaving
3815 cases and 17 107 controls for the discovery stage. These ARIC sam-
ples were used only in the replication data resulting in 5218 cases and
35 957 controls for the replication stage for analysis involving this SNP
only. The replication set included an additional�120 ARIC cases not pre-
sent in the discovery set. Therefore, the decision was made to remove
the ARIC samples from the discovery dataset to use them in the replica-
tion dataset for this SNP. The top 26 SNPs were examined in a ‘replica-
tion’ population (Supplementary material online, Table S1B). Findings
from ‘discovery’ and ‘replication’ stages were then meta-analysed
(Supplementary material online, Table S2, Figure S3A). Additionally, ex-
ploratory GWASs restricted to men, women, individuals under age 65,
and cases with VF/shockable rhythm were performed (Supplementary
material online, Table S3, Figure S3B–E).

Candidate genes
Using results from the GWAS meta-analysis, we examined variants in 54
inherited arrhythmia genes using the ‘logistic-minsnp-gene-perm’ function
in FASTv1.8.13 This best single-SNP permutation based P-value is cor-
rected for gene size by performing up to 1 million permutations per gene.
Gene boundaries were defined by RefSeq gene coordinates on build
GRCh37 with ±10 kb flanking sequence.

Mendelian randomization instrument
Observational studies examine association of an exposure [e.g. body
mass index (BMI)] with an outcome (e.g. SCA) but cannot assess causal-
ity. Unobserved variables affecting both exposure and outcome may con-
found these associations and lead to biased estimates of association.
Mendelian randomization is based on the assumption that because genet-
ic variants are determined at conception and are randomly distributed in
large populations, they are unassociated with potential confounders.
Therefore, under certain assumptions such as the absence of genetic plei-
otropy, genetic variants used as instrumental variables can determine
whether an exposure is potentially causally associated with the outcome,
and estimate the size of that association (see Supplementary material on-
line, Appendix). Here, we use a multi-SNP GRSA model to compare gen-
etic associations with SCA with those of known SCA risk factors as an

effective way to understand the underlying causal pathways and proc-
esses that influence SCA risk.

Genetic Risk Score Association
We estimated a separate GRSA for each of the following: (1) CAD and
traditional CAD risk factors, including type 2 diabetes (T2D), fasting glu-
cose adjusted for BMI (FGadjBMI), fasting insulin adjusted for BMI
(FIadjBMI), diastolic blood pressure (DBP), systolic blood pressure
(SBP), total cholesterol (TCH), and triglycerides (TG); (2) cardiac elec-
trophysiologic factors, including atrial fibrillation (AF), heart rate (HR),
QRS interval (QRS), and QT interval (QT); and (3) anthropometric
traits, including BMI, waist circumference adjusted for BMI
(WCadjBMI), waist to hip ratio adjusted for BMI (WHRadBMI), and
height. Supplementary material online, Table S4 details the 18 traits,
and the source published GWAS used to construct the GRSA models
for these traits.

To estimate GRSAs for each putative SCA risk factor, we examined
genome-wide SNPs associated with the risk trait following stringent
linkage disequilibrium (LD)-pruning (Supplementary material online,
Appendix). The associations of these SNPs with the risk factors and the
SCA outcome are used to calculate an inverse-variance weighted multi-
SNP GRSA as implemented in the R-package ‘gtx’.14 This GRSA can be
interpreted as an inverse-variance weighted, meta-analysed (over SNPs)
estimate of the causal log odds ratio (OR) for SCA associated with a 1 SD
higher value of the risk factor from a MR analysis.15 It is computationally
equivalent to the slope estimate from a zero-intercept linear regression
with log OR for the association of an additional variant allele in SNPs with
SCA (bSCA) as the dependent variable and the mean difference associated
with one additional variant allele in SNPs on the risk factor trait (btrait) as
the independent variable, weighted by the standard error of the bSCA

squared (SE2
SCA) (Figure 1A) (more details in Supplementary material on-

line, Appendix). We evaluated the use of other MR methods, including
MR-Egger, simple median, and median-weighted. However, we found
while these produced similar GRSA estimates as the inverse-weighted
(IVW) method, these other methods had lower power (Supplementary
material online, Figure S4 and Table S5). We therefore only report the
results from the IVW method. We also used the intercept test from the
MR-Egger method to evaluate the presence of pleiotropy in our analyses
(Supplementary material online, Table S5).

The validity of this analysis requires that SNPs included can only af-
fect the outcome through their effects on the risk factor (i.e. no hori-
zontal pleiotropy). If there is no pleiotropy, the SNPs contributing the
GRSA estimate should all estimate the same magnitude causal associ-
ation between risk factor and SCA. We use the heterogeneity
independent instrument (HEIDI)-outlier method from the ‘gsmr’ R
package to detect and remove potentially pleiotropic SNPs.16 Note
that we report GRSA estimates from analyses only including SNPs that
meet a stringent genome-wide significant (GWS) P-value cut-off
(P < 5� 10-8), GRSAGWS, as SNPs at this significance level likely are
true positives and reliable instruments. However, the power for MR is
dependent on the variance explained by the SNPs included in the
GRSA, and for complex traits, the majority of the true signals may lie in
SNPs that do not meet genome-wide significance. Therefore, we iden-
tified a somewhat arbitrary P-value cut-off based on visual inspection
of the variance explained plots that largely maximizes variance
explained while minimizing the number of SNPs (Supplementary ma-
terial online, Figure S5). We found that all the traits fell between a 0.2
and 0.4 P-value cut-off, but the results within a trait were robust to
cut-offs chosen between 0.2 and 0.4. We use a GRSA constructed
with this custom P-value cut-off (GRSAmax) to assess only the signifi-
cance of the GRSA (Pmax), as this model has the greatest power to
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..assess the significance of an association. Pmax is determined by permu-
tation due to inflated test statistics (Supplementary material online,
Figure S6 and Supplementary material online, Appendix). At less strin-
gent P-values, false-positive SNPs may be included resulting in a bias of
the estimate toward the confounded association level. Therefore, we
do not use the GRSAmax to determine the magnitude of the GRSA as-
sociation, only its direction and significance. We performed two analy-
ses, one using GRSAGWS to evaluate significance and effect size, and
secondarily using the GRSAmax to evaluate potential associations and
directions of effect at maximal power (Pmax). We performed multiple-
testing adjustment on all resulting P-values (PGWS and Pmax) using a
false discovery rate (FDR) cut-off of FDR < 0.05.

We similarly computed risk factor GRSAs on the outcome of CAD.
We use a 1-degree of freedom Wald test to test for difference in
GRSAGWS magnitudes between SCA and CAD.

Sex-specific analyses
We performed sex-specific SCA GWAS analyses to construct
trait GRSAs separately by sex. Genetic risk score associations were

constructed from the same set of LD-pruned SNPs used for overall
GRSAGWS analyses. P-values for difference in GRSAGWS between sexes
were obtained from a 1-degree of freedom Wald test.

Results

Genome-wide association study
Meta-analysis was performed with results from 9 GWASs of 3939
European-ancestry cases and 25 989 controls (Supplementary mater-
ial online, Table S1A, Figure S3A) with additional genotyping of 26 SNPs
in up to 4918 cases and 21 879 controls of European, African, and
Asian descent (Supplementary material online, Table S1B). No SNPs
were associated with SCA (P < 5� 10-8) (Supplementary material on-
line, Table S2) in the main analysis or in subgroup analyses limited to
European-descent individuals, men, women, younger participants
(<_65 years), or cases with documented VF/shockable rhythm
(Supplementary material online, Tables S2 and S3, Figure S3B–E).

Figure 1 Genetic Risk Score Association (GRSA) estimation. The plot (A) illustrates the process by which the QT-SCA Genetic Risk Score
Association is calculated using SNPs associated with QT at P < 5� 10-8. The points represent the effect of each SNP on QT (in units of standard devi-
ation of QT) on the x-axis and the log odds effect on sudden cardiac arrest risk (corresponding 95% confidence intervals in grey) on the y-axis.
The estimate of the genetic risk score association is the slope of the zero-intercept weighted regression line (solid red line). For the Genetic Risk
Score Association used in our analyses, the model contains a genome-wide LD-pruned SNP set (details in Methods section). The top directed acyclic
graph (B) represents a scenario in which the trait of interest has a causal effect on the outcome. If the Genetic Risk Score Association, comprised of
trait-associated variants (e.g. QT), has a significant effect on the outcome (e.g. sudden cardiac arrest), it supports a causal role for the trait on the out-
come. The bottom directed acyl graph (C) presents the case where an association is observed between the trait and outcome, but the Genetic Risk
Score Association comprised of trait-associated variants is not significantly associated with the outcome, suggesting that the observational association
is likely being mediated by a confounding variable and the trait does not have a causal impact on the outcome.
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..Candidate gene and candidate SNP
analyses

Despite sufficient power to detect relative risks of 1.15 (80% power,
allele frequency 0.30, at alpha = 0.05, after Bonferroni correction for
multiple-testing; more details in the Supplementary material online,
Appendix) in a candidate gene analysis, we did not find common var-
iants in inherited arrhythmia genes associated with SCA in the general
population (Supplementary material online, Table S6). Examining
SNPs previously associated with SCA in smaller studies, no SNP was
found to be associated with SCA at the genome-wide significance
threshold. (Supplementary material online, Table S7).

Genetic Risk Scores Associations
To explore whether clinical and subclinical risk factors are causally
linked with SCA, we examined genetic risk score associations

(GRSA) between SCA and: (1) CAD and traditional CAD risk fac-
tors; (2) cardiac electrophysiologic factors; and (3) anthropomet-
ric traits. While the results reported below were computed using
the IVW method, we used the intercept test of the MR-Egger
method to evaluate the possible presence of pleiotropy. While
high-density lipoprotein (HDL) was nominally significant (P = 0.02),
all other traits were not found to be significantly influenced by
pleiotropy.

CAD and CAD risk factors

Prevalent CAD is an important SCA risk factor with �80% of male
SCA survivors having underlying CAD.17 From GRSAGWS analysis
we show that the difference in CAD status is causally associated with
SCA (OR in SCA risk per log odds difference in CAD, 1.36; 95% CI
1.19–1.55; PGWS = 9.29� 10-5) (Figure 2, Supplementary material on-
line, Table S8). While traditional CAD risk factors (blood pressure,

Figure 2 Genetic Risk Scores Association (GRSA) estimates for sudden cardiac arrest. These data points represent the exponentiated Genetic
Risk Score Association estimates of 18 traits on sudden cardiac arrest (SCA) and corresponding 95% confidence interval values. The Genetic Risk
Score Association estimates in the top panel for the binary traits are in log odds units. Values in bottom panel are in SD units of the quantitative traits.
Genetic Risk Score Association estimates and significance are derived from SNPs associated with each trait at P < 5� 10-8. The significance of the
GRSAGWS estimates (false discovery rate adjusted PGWS) are represented as ‘*’ for P < 0.05, ‘**’ for P < 0.01, and ‘***’ for P < 0.001. The significance
of the secondary analysis using GRSAmax estimates (false discovery rate adjusted permuted Pmax) are represented as ‘þ’ for P < 0.05, ‘þþ’ for
P < 0.01 and ‘þþþ’ for P < 0.001. For details on values of Genetic Risk Score Association estimates and P-values, see Supplementary material online,
Tables S8 and S9. AF, atrial fibrillation; BMI, body mass index; CAD, coronary artery disease; DBP, diastolic blood pressure; FGadjBMI, fasting glucose
adjusted for BMI; FIadjBMI, fasting insulin adjusted for BMI; HDL, high-density lipoproteins; HR, heart rate; LDL, low-density lipoproteins; QRS, QRS
interval; QT, QT interval; SBP, systolic blood pressure; TCH, total cholesterol; TG, triglycerides; T2D, type 2 diabetes; WCadjBMI, waist circumfer-
ence adjusted for BMI; WHRadBMI, waist-to-hip ratio adjusted for BMI.
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.
lipids, and diabetes) were not significantly associated with SCA at the
more restrictive GRSAGWS threshold, using GRSAmax to maximize
power, several additional associations were detected, including type
2 diabetes (Pmax < 0.001), low-density lipoprotein (Pmax = 0.005),
total cholesterol (Pmax < 0.001), triglycerides (Pmax < 0.001), DBP
(Pmax = 0.0170), and SBP (Pmax = 0.0230) (Supplementary material
online, Table S9). In the GRSAmax analysis, variants associated with
higher diabetes risk, higher cholesterol and triglyceride levels, and
higher SBP and DBP were all associated with higher SCA risk.

Cardiac electrophysiologic factors

To explore the influence of cardiac electrophysiology on SCA, we
examined genetics of electrophysiologic traits associated with SCA:
(1) atrial fibrillation, (2) QT interval (ventricular repolarization), (3)
QRS interval (ventricular conduction), and (4) heart rate. In the
GRSAGWS analysis, we show that longer QT interval, a risk factor for
SCA in the general population, is significantly associated with SCA
(OR in SCA risk per SD increase in QT, 1.44; 95% CI 1.13–1.83;
PGWS = 0.018) (Figure 2, Supplementary material online, Table S8).18

Using GRSAmax, in addition to QT, we also identified a significant as-
sociation of AF with SCA (Pmax < 0.001 for both QT and AF)
(Supplementary material online, Table S9). Variants associated with
longer QT interval and higher AF risk were associated with higher
SCA risk. In contrast, no significant association was seen with QRS or
heart rate, even at the more permissive and statistically powerful
GRSAmax.

Anthropometric measures

The BMI GRSAGWS was significantly associated with SCA (OR for
SCA risk per SD higher BMI 1.63; 95% CI 1.23–2.15; PGWS = 0.005)
(Figure 2, Supplementary material online, Table S8). Using
GRSAmax, we found a significant negative association between
height and SCA (Pmax < 0.001) (Supplementary material online,
Table S9). Variants associated with greater height are associated
with lower CAD risk,19 and we correspondingly observed a nega-
tive GRSA between SCA and height. No significant association was
seen with GRSAs composed of variants associated with measures
of central/abdominal adiposity, such as waist-to-hip ratio or waist
circumference.

Contrasting sudden cardiac arrest and
coronary artery disease Genetic Risk
Score Associations
Given the strong association of CAD with SCA, we compared the
magnitudes of risk factor GRSAGWS on the outcomes of SCA
(Figure 2) and CAD (Supplementary material online, Figure S7) to
identify traits where risk factors may be more strongly causally asso-
ciated with SCA than CAD. While the GRSAGWS for traditional
CAD risk factors (blood pressure and lipid traits) are larger for CAD
risk than SCA risk, we find that GRSAGWS for electrophysiologic
traits of QT interval (0.34 for SCA vs. 0.096 for CAD, P for differ-
ence = 0.06) and AF (0.097 for SCA vs. -0.029 for CAD, P for differ-
ence = 0.017), there was a suggestion of a larger association
with SCA than CAD risk (Figure 3, Supplementary material online,
Table S8).

Sex differences
Sex differences in SCA incidence, underlying SCA pathophysiology,
and prevalence of certain risk factors have been well documented,20

yet little is known about whether the effect of risk factors on SCA dif-
fers by sex. Among GRSAsGWS where a main effect association was
identified, we found a nominally significant difference in association
between women and men for diabetes (0.240 for women vs. 0.021
for men, P for difference = 0.05) and HDL (-0.417 for women vs.
0.026 for men, P for difference = 0.04) (Supplementary material on-
line, Table S10).

Discussion

Our SCA GWAS demonstrates that while SCA is a complex disease
with multiple risk factors, a comprehensive genetic approach can
shed light on causal vs. correlational associations. Using MR, we es-
tablish that differences in CAD, BMI, and QT interval are causally
associated with SCA. Secondary analyses further implicate type 2 dia-
betes, additional traditional CAD risk factors such as lipids and blood
pressure, as well as height and AF.

Despite adequate power to identify relatively modest associations
(OR > 1.3), our study did not find evidence that common variation in
Mendelian arrhythmia genes is associated with SCA risk in the general
population. Since underlying electrical instability is an important cause
of SCA, prior smaller studies have examined inherited arrhythmia
genes or variants associated with electrophysiological traits to iden-
tify genetic variants that influence SCA risk.21–23 While rare private
mutations in ion channel and other electrophysiology-related genes
increase arrhythmia risk in high-risk families and may also increase
SCA risk in the general population,24 our study suggests that com-
mon variants in these genes are not significant contributors to SCA in
the general population. This may be due to differing underlying genet-
ics between inherited arrhythmias vs. SCA in the general population.
In contrast, we do find that GRSA estimates of phenotypes associated
with electrical instability (AF and QT) are causally associated with
SCA risk, more so than they are causally associated with CAD. This
confirms our understanding of the pathophysiology of SCA; SCA is
not simply fatal CAD, but rather, electrical instability also plays a
prominent role in influencing SCA risk.

Intriguingly, not all electrophysiologic phenotypes observationally
linked to SCA are causally associated with SCA in our analyses. QRS
interval and heart rate, two traits observationally associated with
SCA,25,26 failed to show significant evidence of a shared genetic basis
with SCA. This lack of association may be due to inadequate power
to identify more modest correlations. Alternatively, it may be that
the associations from observational studies are confounded by other
factors, and not causative (Figure 1B,C). For instance, underlying CAD
can lead to both longer QRS interval and increased SCA risk; thus,
while observational studies show an association between SCA and
both traits (CAD and QRS interval), the association between SCA
and QRS interval may not be causal. Similarly, the observational asso-
ciation of higher heart rate with SCA risk may be confounded by
higher adrenergic state due to underlying heart disease and not itself
be causal. Thus, the GRSA approach to examining observational risk
factors assists in differentiating causative factors from confounded
associations.
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.Coronary artery disease is the most common underlying patho-
logic substrate for SCA. It is reassuring, therefore, that we find signifi-
cant estimated causal associations with SCA risk using GRSA models
constructed from CAD and traditional CAD risk factors, including
blood pressure, diabetes, and cholesterol traits.

Anthropometric measures appear to be causally associated with
SCA. Shorter stature is associated with increased SCA risk in obser-
vational studies; our findings support the conclusion that this obser-
vational association is causal. Observational data on BMI and SCA
risk have been conflicting, perhaps due to confounding from smoking
status and frailty. Previously,27 we have shown that increased BMI is
associated with increased SCA risk in non-smokers, but not smokers.
In this study, we find that differences in BMI, but not central/abdomin-
al obesity, were causally associated with SCA risk. This finding is espe-
cially interesting in the context of recent data that imply there is a
different biological process underlying BMI and central obesity.28,29

Finally, of the traits associated with SCA, we found that GRSAs for
diabetes and HDL were nominally significantly different between

men and women. While diabetes is a SCA risk factor among both
sexes, previous observational studies have consistently suggested a
stronger, albeit not statistically different, association among women
than men.30,31 These findings may reflect different underlying SCA
pathophysiology between men and women. While these differences
may be due to chance as they do not remain significant after multiple
test correction, it is also likely that our study is underpowered to de-
tect these differences.

Several limitations deserve consideration. First, without detailed
autopsy information, rhythm monitoring, and information on circum-
stances surrounding the cardiac arrest, the underlying aetiology and
mechanism of death may be heterogeneous and genetic associations
are likely to be diluted. Nonetheless, clinical and autopsy studies have
demonstrated a predominant, common pathophysiology of SCA in
Western populations: VF in the setting of CAD. Hence, it is reassur-
ing that our genetic studies suggest an important role for both CAD
and electrical instability in SCA. Second, despite ours being the largest
exploration of SCA genomics to date, the discovery sample size of

Figure 3 Comparison of Genetic Risk Score Association for sudden cardiac arrest and coronary artery disease. These data represent exponenti-
ated Genetic Risk Score Associations of all 17 traits. Genetic Risk Score Association estimates for sudden cardiac arrest and coronary artery disease,
are plotted in orange and teal, respectively. Bars around the estimates represent the 95% confidence interval. The Genetic Risk Score Association
estimates in the top panel for the binary traits are in log odds units. Values in bottom panel are in SD units of the quantitative traits. The level of signifi-
cance for 1 degree of freedom Wald test of difference in GRSAGWS estimates between sudden cardiac arrest and coronary artery disease is repre-
sented ‘*’ for P < 0.05, ‘**’ for P < 0.01, and ‘***’ for P < 0.001. AF, atrial fibrillation; BMI, body mass index; DBP, diastolic blood pressure; FGadjBMI,
fasting glucose adjusted for BMI; FIadjBMI, fasting insulin adjusted for BMI; HDL, high-density lipoproteins; HR, heart rate; LDL, low-density lipopro-
teins; QRS, QRS interval; QT, QT interval; SBP, systolic blood pressure; TCH, total cholesterol; TG, triglycerides; T2D, type 2 diabetes; WCadjBMI,
waist circumference adjusted for BMI; WHRadBMI, waist-to-hip ratio adjusted for BMI.
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only�4000 cases, in addition to the heterogeneity of the phenotype,
limited our ability to find genetic associations with low frequency var-
iants or variants of modest effect. Hence, while our data do not sup-
port screening individuals with a family history of SCA for common
variation in inherited arrhythmia genes, much larger samples sizes are
needed to address whether rare variation of modest effect in these
genes influence SCA risk. Third, the validity of the GRSA method as a
MR instrument rests on the assumption that the variant causes differ-
ences in the outcome only by its effects on the risk factor of interest,
and not directly or by influencing other risk factors. Although we did
not explicitly exclude SNPs associated with multiple risk factors (gen-
etic pleiotropy), we did utilize a goodness-of-fit approach to exclude
putative ‘pleiotropic’ effects from all GRSAs. Furthermore, we per-
formed a sensitivity analysis using the MR-Egger method, which tests
for the presence of pleiotropy. Only HDL was found to be significant-
ly influenced by pleiotropy (P = 0.02). Lastly, while genetic pleiotropy
can bias our conclusions, important influence is less likely when using
multiple SNPs aggregated in a genetic risk score.32 Finally, the lack of
common variants exhibiting large effect sizes associated with SCA
limits the potential clinical utility for risk prediction.

In conclusion, while we were not able to identify any common gen-
etic variants significantly associated with SCA risk through the
GWAS, as well as any common variation in specific inherited arrhyth-
mia genes associated with SCA risk, we have provided evidence for
causal associations between some, but not all, observational risk fac-
tors for SCA. We show that differences in CAD status, BMI, and QT
interval are causally associated with SCA risk. While SCA is a com-
plex disease with multiple influencing factors, a comprehensive genet-
ic approach can untangle risk factor relationships, enhancing our
understanding of SCA pathophysiology. Ultimately, genetic studies
will enhance efforts to prevent SCA in high-risk populations and the
general community.

Supplementary material

Supplementary material is available at European Heart Journal online.
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MK, Hindy G, Hólm H, Ding EL, Johnson T, Schunkert H, Samani NJ, Clarke R,
Hopewell JC, Thompson JF, Li M, Thorleifsson G, Newton-Cheh C, Musunuru K,
Pirruccello JP, Saleheen D, Chen L, Stewart A, Schillert A, Thorsteinsdottir U,
Thorgeirsson G, Anand S, Engert JC, Morgan T, Spertus J, Stoll M, Berger K,
Martinelli N, Girelli D, McKeown PP, Patterson CC, Epstein SE, Devaney J,
Burnett MS, Mooser V, Ripatti S, Surakka I, Nieminen MS, Sinisalo J, Lokki ML,
Perola M, Havulinna A, de Faire U, Gigante B, Ingelsson E, Zeller T, Wild P, de
Bakker PI, Klungel OH, Maitland-van der Zee AH, Peters BJ, de Boer A, Grobbee
DE, Kamphuisen PW, Deneer VH, Elbers CC, Onland-Moret NC, Hofker MH,
Wijmenga C, Verschuren WM, Boer JM, van der Schouw YT, Rasheed A,
Frossard P, Demissie S, Willer C, Do R, Ordovas JM, Abecasis GR, Boehnke M,
Mohlke KL, Daly MJ, Guiducci C, Burtt NP, Surti A, Gonzalez E, Purcell S,
Gabriel S, Marrugat J, Peden J, Erdmann J, Diemert P, Willenborg C, König IR,
Fischer M, Hengstenberg C, Ziegler A, Buysschaert I, Lambrechts D, Van de
Werf F, Fox KA, El Mokhtari NE, Rubin D, Schrezenmeir J, Schreiber S, Schäfer
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25. Jouven X, Zureik M, Desnos M, Guérot C, Ducimetière P. Resting heart rate as a
predictive risk factor for sudden death in middle-aged men. Cardiovasc Res 2001;
50:373–378.

26. Laukkanen JA, Di Angelantonio E, Khan H, Kurl S, Ronkainen K, Rautaharju P.
T-wave inversion, QRS duration, and QRS/T angle as electrocardiographic
predictors of the risk for sudden cardiac death. Am J Cardiol 2014;113:
1178–1183.

27. Adabag S, Huxley RR, Lopez FL, Chen LY, Sotoodehnia N, Siscovick D, Deo R,
Konety S, Alonso A, Folsom AR. Obesity related risk of sudden cardiac death in
the atherosclerosis risk in communities study. Heart Br Card Soc 2015;101:
215–221.

28. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, Powell C, Vedantam
S, Buchkovich ML, Yang J, Croteau-Chonka DC, Esko T, Fall T, Ferreira T,
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Gräßler J, Grönberg H, Groves CJ, Gusto G, Haessler J, Hall P, Haller T,
Hallmans G, Hartman CA, Hassinen M, Hayward C, Heard-Costa NL, Helmer
Q, Hengstenberg C, Holmen O, Hottenga JJ, James AL, Jeff JM, Johansson Ö,
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RP, Strauch K, Tönjes A, Trégouët DA, Tremblay A, Tremoli E, Virtamo J, Vohl
MC, Völker U, Waeber G, Willemsen G, Witteman JC, Zillikens MC, Adair LS,
Amouyel P, Asselbergs FW, Assimes TL, Bochud M, Boehm BO, Boerwinkle E,
Bornstein SR, Bottinger EP, Bouchard C, Cauchi S, Chambers JC, Chanock SJ,
Cooper RS, de Bakker PIW, Dedoussis G, Ferrucci L, Franks PW, Froguel P,
Groop LC, Haiman CA, Hamsten A, Hui J, Hunter DJ, Hveem K, Kaplan RC,
Kivimaki M, Kuh D, Laakso M, Liu Y, Martin NG, März W, Melbye M, Metspalu
A, Moebus S, Munroe PB, Njølstad I, Oostra BA, Palmer CNA, Pedersen NL,
Perola M, Pérusse L, Peters U, Power C, Quertermous T, Rauramaa R,
Rivadeneira F, Saaristo TE, Saleheen D, Sattar N, Schadt EE, Schlessinger D,
Slagboom PE, Snieder H, Spector TD, Thorsteinsdottir U, Stumvoll M,
Tuomilehto J, Uitterlinden AG, Uusitupa M, van der Harst P, Walker M,
Wallaschofski H, Wareham NJ, Watkins H, Weir DR, Wichmann HE, Wilson JF,
Zanen P, Borecki IB, Deloukas P, Fox CS, Heid IM, O’Connell JR, Strachan DP,
Stefansson K, van Duijn CM, Abecasis GR, Franke L, Frayling TM, McCarthy MI,
Visscher PM, Scherag A, Willer CJ, Boehnke M, Mohlke KL, Lindgren CM,
Beckmann JS, Barroso I, North KE, Ingelsson E, Hirschhorn JN, Loos RJF,
Speliotes EK. Genetic studies of body mass index yield new insights for obesity
biology. Nature 2015;518:197–206.

29. Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, Mägi R,
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Grammer TB, Gräßler J, Grewal J, Groves CJ, Haller T, Hallmans G, Hartman CA,
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