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Gene expression regulatorymechanisms inmodels ofmiddle cerebral artery occlusion (MCAO) have been assessed in some studies,
but questions remain. The discovery of differentially expressed genes (DEGs) between MCAO and control rats analyzed by next-
generation RNA sequencing is of particular interest. These DEGs may help guide the clinical diagnosis of stroke and facilitate
selection of the optimal treatment strategy. Twenty rats were equally divided into control andMCAO groups. Three rats from each
group were randomly selected for RNA sequencing analysis. Sequence reads were obtained from an Illumina HiSeq2500 platform
and mapped onto the rat reference genome RN6 using Hisat2. We identified 1,007 significantly DEGs with p<0.05, including 785
upregulated (fold change [FC]>2) and 222 downregulated (FC<0.5) DEGs, in brain tissue from MCAO rats compared with that
from control rats, and numerous immune response genes were identified. Gene ontology (GO) analysis revealed that the majority
of the most enriched and meaningful biological process terms were mainly involved in immune response, inflammatory response,
cell activation, leukocyte migration, cell adhesion, response to external stimulus, cell migration, and response to wounding. Also
enrichedwere immune-relatedpathways and neural-relatedpathways. Similar to GOmolecular function terms, the enriched terms
were mainly related to cytokine receptor activity. Six DEGs were verified by quantitative real-time polymerase chain reaction (qRT-
PCR). Protein-protein interaction analysis of these hits revealed that MCAO affects complement and coagulation cascades and
chemokine signaling pathway. Our study identified novel biomarkers that could help further elucidate MCAO mechanisms and
processes.

1. Introduction

Ischemic stroke is a leading cause of global mortality and
morbidity. Immediately following the event, neurovascular
reperfusion to the infarcted area can injure the tissue,
resulting in more serious disability [1, 2]. Middle cerebral
artery occlusion (MCAO) is a widely usedmodel for studying
neuroprotective therapies. For example, it was used to test
the effectiveness of thrombolytic therapy [3, 4].Thrombolysis
is one of the most effective and economical treatments for
ischemic stroke [5]. It is well known that brain damage
can be exacerbated by reperfusion after thrombolysis [6].

Presumably, this secondary injury impacts multiple gene
functions. Most existing studies have analyzed the functions
of specific genes and signaling pathways. [7–9]. We propose
that a broad analysis of gene expression changes could be used
to develop better neuroprotectants for cerebral ischemia.

In recent decades, mRNA expression profiling performed
by microarray or high-throughput RNA sequencing (RNA-
seq) has been used to uncover molecular mechanisms and
explore diagnostic and predictive biomarkers, particularly in
complicated diseases such as diabetes, cancer, and stroke [10–
12]. RNA-seq was applied for global gene expression profiling
of the hippocampus following reperfusion with orexin-A [13].
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Gaowa et al. performedRNA-seq to investigate transcriptome
expression in a rat stroke model treated with the traditional
Mongolian medicine Eerdun Wurile [14].

Themain aim of this study was to identify protein-coding
genes regulation networks 4 days after MCAO. RNA-seq was
used to investigate the mRNA profiles in the brain tissue of
rats subjected to MCAO. By a series of bioinformatics analy-
ses,many immune-related pathways (B cell receptor signaling
pathway, primary immunodeficiency, Fc epsilon RI signaling
pathway, natural killer cell-mediated cytotoxicity, chemokine
signaling pathway, cytokine-cytokine receptor interaction,
complement and coagulation cascades, etc.) and neural-
related pathways (neuroactive ligand-receptor interaction,
neurotrophin signaling pathway) were identified, and six
key genes were verified by quantitative real-time polymerase
chain reaction (qRT-PCR).

2. Material and Methods

2.1. Animal Experiments and Sample Collection. Male
Sprague Dawley rats (180-230 g, SPF grade) were obtained
from the Experimental Animal Center of Anhui Medical
University by Animal Experiments of Anhui university
of Chinese medicine. All rats were anesthetized with
sodium pentobarbital during all surgical procedures to
minimize suffering, and the MCAO and sham surgeries
were performed as previously described [15]. Four days after
MCAO, the left hemispheres were collected and immediately
frozen in liquid nitrogen.

2.2. RNA Extraction and Sequencing. Total RNA was
extracted using mirVana� miRNA Isolation kit (Cat#
AM1561, Ambion, Foster City, CA) following the
manufacturer’s instructions. RNA sample quantity and
quality were determined using a NanoDrop 2000 (Thermo
Fisher Scientific, Waltham, MA) and an Agilent 2100
bioanalyzer (Agilent Technologies, Santa Clara, CA).
TruSeq� Stranded Total RNA Sample Preparation kits
(Illumina, San Diego, CA) were used to prepare libraries
following the manufacturer’s instructions. Purified libraries
were quantified by a Qubit� 2.0 Fluorometer (Life
Technologies, Carlsbad, CA) and Agilent 2100 bioanalyzer.
Clusters were generated by cBot with the library and
sequenced on an Illumina HiSeq 2500 platform (San Diego,
CA). All sequencing was performed at Origin-Biotech Inc.
(Ao-Ji Biotech, Shanghai, China).

2.3. DEG Analysis. FastQC was conducted for Quality
control (QC) of RNA-seq reads (v. 0.11.3) (http://www
.bioinformatics.babraham.ac.uk/projects/fastqc). Trimming
was performed by seqtk for known Illumina TruSeq
adapter sequences, poor reads, and ribosome RNA reads
(https://github.com/lh3/seqtk).The trimmed reads were then
mapped to the Rattus norvegicus reference genome (rno6) by
the Hisat2 (version: 2.0.4) [16, 17]. StringTie (version: 1.3.0)
was performed for each gene count from trimmed reads [17,
18]. Gene counts were normalized by trimmed mean of M-
values (TMM) [19], and fragments per kilobase of transcript

per million mapped reads (FPKM) in Perl script [20]. edgeR
was performed for determining differential expression genes
[21] and threshold with p<0.05 and absolute values of log2
(fold change) >1 [22].

2.4. Functional Enrichment Analysis. GO and KEGG path-
ways were enriched by R package (v 3.5.1) to better under-
stand the functions of theDEGs [23]. In our study, clusterPro-
filerwas applied to analysis of GO terms andKEGGpathways,
and the top 30 GOs and pathways are presented [24].

2.5. PPI Network Construction and Module Analysis.
STRING is a database that provides comprehensive
information about interactions between proteins, including
prediction and experimental interaction data [25]. In our
study, the STRING tool was used to map PPIs among
the DEGs considering interactions of combined scores
≥0.4. Then, Cytoscape was used to visualize the network
[26]. The PPI network was used to filter modules based
on the Molecular Complex Detection plug-in (MCOD) in
Cytoscape [27] with standard set following degree cut-off=2,
k-core=2, node score cut-off=0.2, and max depth=100.
An MCODE score ≥4 and node ≥10 were considered for
functional enrichment analysis of the modules. GO and
KEGG enrichment for DEGs in the four modules were
performed in clusterProfiler.

2.6. Validation of Differentially Expressed mRNAs from the
qRT-PCR Sequencing Profile. qRT-PCR is the gold stan-
dard of mRNA detection and was performed to verify the
RNA-seq results. Glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH) served as the internal control. RelativemRNA
expression was determined using the 2-ΔΔCT method. Six
genes were analyzed: Top2a, Cdk1, Ccna2, Ccnb1, Th, and
Esr1. Brain tissue was sequenced from theMCAOand control
groups (n=3/group), and each experiment was performed in
triplicate.

3. Results

3.1. DEG Screening. EdgeR software was used to screen
DEGs with p<0.05 and |log

2
FC|>1. We identified 1,007

DEGs: 785 upregulated and 222 downregulated. Differential
mRNA expression between the MCAO and control groups
was represented in volcano and scatter plots (Figures 1(a)
and 1(b)). Hierarchical clustering of DEGs was visualized
(Figure 1(c)). The top 20 up- and downregulated DEGs are
listed in Tables 1 and 2.

3.2. GO Functional Enrichment Analysis of DEGs. GO
enrichment analysis was performed with 1,007 DEGs in
clusterProfiler. The DEGs between the MCAO and control
groups were enriched to 54 subclasses of GOs, and the top
30 subclasses are shown in Figure 2(a). The top 10 enriched
GO biological processes were immune system process,
immune response, cell activation, leukocyte migration,
response to external stimulus, cell migration, response
to wounding, inflammatory response, cell adhesion, and

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://github.com/lh3/seqtk
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Figure 1: Differentially expressed genes between the MCAO and control groups. (a) DEGs displayed on a volcano plot. Blue and red indicate
>twofold decreased and increased expression in MCAO, respectively (p<0.05). Gray indicates no significant difference. (b) Differentially
expressed genes were displayed on a scatter plot. Blue and red indicate >twofold decreased and increased expression in MCAO, respectively
(p<0.05). Gray indicates no significant difference. (c) Hierarchical clustering; numbers were the samples used for RNA sequencing.
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Figure 2: Gene Ontology (GO) enrichment analysis results for all DEGs. (a) Classification of GO enrichment terms. (b) Top 30 classes of
GO enrichment terms.



BioMed Research International 5

Table 1: Detailed information of the top 20 upregulated mRNAs in MCAO brain.

gene id gene name log2FC P value
ENSRNOG00000051911 Rbp3 9.837019121 2.34E-05
ENSRNOG00000011672 Tph1 8.512322575 8.73E-05
ENSRNOG00000009907 Mmp8 8.080531694 8.84E-05
ENSRNOG00000010478 LOC299282 7.867067702 3.61E-05
ENSRNOG00000015336 Isl2 7.734722642 0.001563164
ENSRNOG00000007889 Aipl1 7.722506427 0.000503613
ENSRNOG00000000507 Tulp1 7.615402628 0.002259611
ENSRNOG00000007178 Cd8a 7.570686941 0.000201036
ENSRNOG00000007159 Ccl2 7.440623365 5.30E-05
ENSRNOG00000061895 LOC690045 7.288812262 0.000261728
ENSRNOG00000019296 Gnat2 7.142710312 0.000377842
ENSRNOG00000045729 AC117058.1 7.138284224 0.000129134
ENSRNOG00000014787 Cabp5 7.034279622 0.003090557
ENSRNOG00000022859 Trem1 6.919106867 0.003415102
ENSRNOG00000009334 Knstrn 6.883192814 3.60E-05
ENSRNOG00000006365 Asb15 6.822955248 0.004125641
ENSRNOG00000017625 Htr2b 6.556162157 0.003028595
ENSRNOG00000059237 AABR07068851.1 6.516677359 0.005448754
ENSRNOG00000046216 RGD1561778 6.269597389 0.001656204
ENSRNOG00000046962 Pde6g 6.208987117 0.000981813

Table 2: Detailed information of the top 20 downregulated mRNAs in MCAO brain.

gene id gene name log2FC P value
ENSRNOG00000008890 Slc18a2 -4.443186456 0.00106392
ENSRNOG00000059292 AABR07064373.1 -4.454664062 0.012966988
ENSRNOG00000012647 Nkx2-4 -4.580004547 0.013461308
ENSRNOG00000005367 Slc12a1 -4.940598177 0.001152078
ENSRNOG00000020410 Th -4.990029512 0.000109126
ENSRNOG00000024729 Pax5 -4.996430332 0.027951932
ENSRNOG00000003880 Tph2 -5.191719646 0.00042696
ENSRNOG00000060020 C1ql4 -5.489455912 0.023686047
ENSRNOG00000003695 Mgat4d -5.785311542 0.000949915
ENSRNOG00000011335 Gpr50 -5.787166984 0.005797422
ENSRNOG00000004451 Mc3r -5.997698916 0.001320591
ENSRNOG00000016613 Hoxc4 -6.046260393 0.00436611
ENSRNOG00000010053 Calcr -6.355736461 6.56E-07
ENSRNOG00000003476 Slc6a4 -6.847488383 0.000207349
ENSRNOG00000007608 Fezf1 -7.085814019 4.92E-05
ENSRNOG00000037600 Sim1 -9.291469805 1.05E-08
ENSRNOG00000017302 Slc6a3 -9.332130194 2.70E-05
ENSRNOG00000021225 Oxt -9.69339756 7.12E-11
ENSRNOG00000021229 Avp -9.81990178 1.10E-08
ENSRNOG00000004632 Pmch -10.02651105 4.67E-05

regulation of immune system process. The top 10 enriched
cellular components were extracellular space, chromosome,
cell surface, extracellular region, nucleosome, vesicle,
external side of plasma membrane, kinetochore, condensed
chromosome kinetochore, and protein-DNA complex. The
enriched GO molecular functions were protein binding
(GO:0005515), protein complex binding (GO:0032403),

protein heterodimerization activity (GO:0046982),
oxygen transporter activity (GO:0005344), lipid binding
(GO:0008289), protein dimerization activity (GO:0046983),
oxygen binding (GO:0019825), glycosaminoglycan binding
(GO:0005539), cytokine receptor activity (GO:0004896),
and iron ion binding (GO:0005506). These data are shown
in Figure 2.
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Figure 3: KEGG pathway enrichment analysis results for all DEGs. (a) Classification of pathway enrichment terms. (b) Top 30 classes of
pathway enrichment terms.

3.3. Pathway Enrichment Analysis of DEGs. Pathway enrich-
ment analysis of DEGs could provide further insight into the
function of genes and their interactions. The DEGs between
the MCAO and control groups were enriched to 31 subclasses
of pathways in 5 broad categories (cellular processes, genetic
information processing, organic systems, metabolism, and
environmental information processing) after these were ana-
lyzed using the KEGG database (Figure 3(a)). We performed
KEGG pathway enrichment analysis for DEGs and found
237 pathway terms including 77 that were significant (p<
0.05).The top 10 pathways with the greatest enrichment were
Staphylococcus aureus infection (rno05150), osteoclast differ-
entiation (rno04380), complement and coagulation cascades
(rno04610), malaria (rno05144), leishmaniasis (rno05140),
chemokine signaling pathway (rno04062), Chagas disease
(American trypanosomiasis) (rno05142), hematopoietic cell
lineage (rno04640), amoebiasis (rno05146), and phagosome
(rno04145).The top 30 enrichment pathways are presented in
Figure 3(b).

3.4. PPI Network. Significantly altered DEGs were used to
construct a PPI network based on the STRING database.
The network comprises 744 nodes and 5,266 interactions
(Figure 4). More than 100 genes of connectivity degrees were
>100, and the details of the top 10 genes with connectivity
degrees were listed (Table 3), including Top2a (topoiso-
merase [DNA] II alpha, degree=121, FC=38.80), Cdk1 (cyclin-
dependent kinase 1, degree=104, FC=25.09), Ccna2 (cyclin
A2, degree=98, FC= 28.73), Ccnb1 (G2/mitotic-specific
cyclin-B1, degree=96, FC=8.072), Th (tyrosine hydroxylase,
degree=46, FC=0.03147), and Esr1 (estrogen receptor 1,
degree=18, FC=0.2192).

A total of 25 modules were obtained using default
criteria in MCODE. Modules were listed in descending
order by MCODE score. Four modules with MCODE score
≥4 and nodes ≥10 were named modules 1, 2, 3, and
4. These were selected for module network visualization,
GO enrichment analysis, and KEGG pathway enrichment
analysis (Figures 5–8). Most DEGs in these modules were
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Table 3: Top 10 degrees of up- and downregulated DEGs.

Gene name log2FC P value Up/down PPI node degree
Top2a 5.278098 2.91E-05 UP 121
Cdk1 4.649292 0.000415 UP 104
Ccna2 4.844517 4.87E-05 UP 98
Ccnb1 3.01E+00 0.005115 UP 96
Cdc20 2.615553 0.007635 UP 86
Kif11 4.063773 6.35E-05 UP 83
Ccl2 7.440623 5.3E-05 UP 79
Itgam 2.150151 0.004347 UP 78
Ndc80 3.562942 0.005167 UP 78
Plk1 2.267746 0.013009 UP 78
Th -4.99003 0.000109 DOWN 46
Esr1 -2.18964 0.005317 DOWN 44
Nps -∞ 0.035781 DOWN 36
Htr2a -1.0935 0.002992 DOWN 26
Ppef1 -2.41715 0.038577 DOWN 24
Prkg2 -1.00732 0.029108 DOWN 24
Pcsk1 -1.04925 0.04309 DOWN 22
Calb2 -2.19721 0.005492 DOWN 20
Ret -1.7584 0.004092 DOWN 20
Avp -9.8199 1.1E-08 DOWN 19

Table 4: Primer sequences.

Gene Sequences PCR product length (bp)
GAPDH F: CCTGGTATGACAACGAATTTG 131

R: CAGTGAGGGTCTCTCTCTTCC
Top2a F: CAGCAGAAGGTCCCAGAAGA 100

R: GGTAGTTGAAGGTCGGTCCA
Cdk1 F: GTACGGCAATCCGGGAAATC 98

R: GAGATACAGCCTGGAGTCCT
Ccna2 F: AGCTCTCTACACAGTCACAGG 106

R: GGTCTGGTGAAGGTCCATGA
Ccnb1 F: CAGGGTCACTAGGAACACGA 121

R: AGCAGTTCTCGATCTCAGCA
Th F: GTCGGAAGCTGATTGCAGAG 129

R: TAGCATAGAGGCCCTTCAGC
Esr1 F: CCAGCTCCTCCTCATCCTTT 101

R: GGTCATAGAGAGGCACGACA

upregulated in the MCAO group, especially in modules 1
and 2.

3.5. qRT-PCR Verification of the DEGs. Top2a, Cdk1, Ccna2,
and Ccnb1 were overexpressed in the MCAO group (Fig-
ure 9). Th and Esr1 had lower expression in the MCAO for
both RNA-seq and qRT-PCR. We successfully verified that
theRNA-seq and qRT-PCR resultswere consistent, indicating
that the RNA-seq results were reliable. The primers are listed
in Table 4.

4. Discussion

Weanalyzed the protein-codingmRNAexpression profiles in
cerebral hemispheres from experimental and control rats by
high-throughputRNA-seq.This identified 1,007DEGs,which
were subjected to GO, KEGG pathway, PPI, and PPI module
analysis to provide a better understanding of pathological
mechanisms that occur after MCAO.

4.1. Cell Cycle. Pathway enrichment analysis identified 21
DEGs enriched for the cell cycle (P value=1.25E-05), namely,
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Figure 4: PPI network of the DEGs. Node size is related to node degree. Pink and green nodes denote up- and downregulated genes,
respectively. PPI: protein-protein interaction; DEGs: differentially expressed genes.

Mcm6, Ttk, Bub1b, Cdkn2c, Ccnb1, Bub1, Plk1, Orc1, Tgfb1,
Mcm3, Cdc6, Mcm5, Pttg1, Cdc20, Chek2, Ccnd1, Mcm2,
Espl1, Rbl1, Cdk1, and Ccna2. Most were upregulated in
MCAO. Following Cyclin A (Ccna2, FC= 28.73) or B (Ccnb1,
FC=8.07) binding and activating cyclin-dependent kinase
1 (Cdk1, FC=25.09), Cdk1 phosphorylates key substrates
leading the cell to G2-phase arrest, M-phase, and cytokinesis
promotion. Some studies reported that Cdk1 activation is
involved in multiple neuronal death by activating phospho-
rylation of Bad27 (a proapoptotic protein) or inhibitory
phosphorylation of Bcl-xL, Bcl-2, and Mcl-1, which are
antiapoptotic [28, 29]. Others described similar results in
transient ischemia [28, 30]. Besides the Bcl-2 family, Cdk1
also phosphorylates the transcription factor FOXO1, which is

also implicated in cell death [31]. We hypothesize that during
MCAO,Cdk1 induces ischemic neuronal death byBcl2 family
or Foxo1 promoting signaling pathways.

4.2. Inflammatory Response. GO enrichment analysis
revealed that more than 78 DEGs are involved in the
inflammatory response (p=0.0078), including 75 that were
upregulated. Several inflammatory response pathways
were activated like complement and coagulation cascades,
chemokine signaling pathway, natural killer cell-mediated
cytotoxicity, and leukocyte transendothelial migration.
Dozens of cytokines were dysregulated. The macrophage
recruitment factor CCL2 [32–34] was upregulated, and CD68
and CD163 were dysregulated. Therefore, we hypothesize
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Figure 7:Network, GOenrichment, and pathway enrichment ofDEGswere involved inmodule 3. (a) Significantmodule 3 of the PPInetwork.
(b) Classification of GO enrichment terms. (b) KEGG pathway enrichment terms. Pink and green nodes denote up- anddownregulated genes,
respectively. PPI: protein-protein interaction; DEGs: differentially expressed genes.

that MCAO could lead to the recruitment and induction of
macrophages, natural killer cells, and leukocytes. The specific
cell subsets will require further verification.

4.3. Neuroactive Ligand-Receptor Interaction. Pathway
enrichment analysis showed that 27 DEGs were involved
in the neuroactive ligand-receptor interaction (p=0.00832);
10 and 17 were up- and downregulated, respectively.

Upregulated receptors in MCAO were Htr2b, Gabrr1,
C5ar1, Cnr2, P2ry6, Htr2a, Galr1, C3ar1, Glra1, and Mc3r.
Downregulated receptors in MCAO were Gabrr3, Gabrq,
Brs3, Gabra6, Cckar, Trhr, Ptafr, Glra2, Chrnb4, Gpr50,
Gabre, Tspo, P2rx2, Ntsr1, Chrna6, Calcr, and Drd3. Lan et
al. found decreased serotonin receptor expression in MCAO
rats, which was improved with treadmill exercise [35]. We
found that Htr2a and Htr2b were upregulated in MCAO
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Figure 8: Network, GO enrichment, and pathway enrichment of DEGs involved inmodule 4. (a) Significantmodule 4 of the PPI network. (b)
Classification of GO enrichment terms. (b) KEGG pathway enrichment terms. Pink and green nodes denote up- and downregulated genes,
respectively. PPI: protein-protein interaction; DEGs: differentially expressed genes.
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Figure 9: qRT-PCR verification of DEGs. Brain tissue expression of
six genes was detected by qRT-PCR and is shown as expression fold
changes. GAPDH was the internal control.

group. We hypothesize that MCAO could induce Htr2a and
Htr2b overexpression leading to excitability in the early
stage of ischemia. Other studies have shown suppression
of GABAA and glycine receptors in rats with MCAO, and
receptor agonists could improve it [36, 37]. Our results show
that some subunits of GABBA (e.g., Gabrr3, Gabrq, Gabra6,
Gabre, and Gabrr1) were dysregulated following MCAO.

5. Conclusions

By high-throughput RNA-seq, we analyzed the protein-
coding mRNA expression profile in control and MCAO
groups in brain tissue. And some GOs, pathways, and
genes that were identified could play key roles with MCAO.
These findings may help us to understand the underlying
mechanism of protein-coding mRNAs with MCAO.
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