Skip to main content
. 2018 Nov 20;16:19. doi: 10.1186/s12953-018-0147-3

Fig. 11.

Fig. 11

Schematic representation of the regulated mechanism of QXN233 in response to long-term exposure to LP and HP conditions. Pi transporter proteins Q6GUH9, Q49B46, and C4JC09 were upregulated under LP condition but downregulated under HP condition. Some other relevant proteins including Pi-responsive proteins (B6SYB8 and A0A1D6QB24), SPX domain protein (A0A1D6HFX1) and two K+ transporters (A0A1D6N218 and W5UB74), and nitrate transporters (A0A1D6KAA6 and A0A1D6N629), were uniquely altered, together contributing to Pi absorption and homeostasis under different Pi conditions. A negative relationship between Na+ and Pi existed in plants under HP condition. Some other relevant proteins, including PAPs (B6SYB8 and A0A1D6QB24), SPX domain protein (A0A1D6HFX1) related to the regulation of PHR1 and two K+ transporters (A0A1D6N218 and W5UB74), and nitrate transporters (A0A1D6KAA6), were uniquely altered, together contributing to Pi absorption and homeostasis under different Pi conditions. In addition, it was shown that Pi had interactions with the micronutrients of As, Mo and B