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Abstract

Background—Hospital-acquired pressure injuries are a serious problem among critical care 

patients. Some can be prevented by using measures such as specialty beds, which are not feasible 

for every patient because of costs. However, decisions about which patient would benefit most 

from a specialty bed are difficult because results of existing tools to determine risk for pressure 

injury indicate that most critical care patients are at high risk.

Objective—To develop a model for predicting development of pressure injuries among surgical 

critical care patients.

Methods—Data from electronic health records were divided into training (67%) and testing 

(33%) data sets, and a model was developed by using a random forest algorithm via the R package 

“randomforest.”

Corresponding author: Jenny Alderden, PhD, APRN, CCRN, CCNS, Boise State University School of Nursing, 1910 University Dr, 
Boise, ID 83725 (jennyalderden@boisestate.edu). 

HHS Public Access
Author manuscript
Am J Crit Care. Author manuscript; available in PMC 2018 November 21.

Published in final edited form as:
Am J Crit Care. 2018 November ; 27(6): 461–468. doi:10.4037/ajcc2018525.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results—Among a sample of 6376 patients, hospital-acquired pressure injuries of stage 1 or 

greater (outcome variable 1) developed in 516 patients (8.1%) and injuries of stage 2 or greater 

(outcome variable 2) developed in 257 (4.0%). Random forest models were developed to predict 

stage 1 and greater and stage 2 and greater injuries by using the testing set to evaluate classifier 

performance. The area under the receiver operating characteristic curve for both models was 0.79.

Conclusion—This machine-learning approach differs from other available models because it 

does not require clinicians to input information into a tool (eg, the Braden Scale). Rather, it uses 

information readily available in electronic health records. Next steps include testing in an 

independent sample and then calibration to optimize specificity. (American Journal of Critical 
Care. 2018; 27:461–468)

Hospital-acquired pressure injuries (HAPIs) occur among 3% to 24% of critical care patients 

in the United States, and patients with these injuries have longer stays, increased costs, and 

more human suffering than do patients without such injuries.1,2 Although pressure injuries 

are common, some can be prevented by using measures such as specialty beds, which are 

not feasible for every patient because of the costs.3 In addition, recognizing patients at 

highest risk for a HAPI is important because clinicians can then conduct thorough skin 

assessments to identify pressure injuries at the earliest, reversible stage.4

Recommended standards of practice include assessing each patient’s risk for pressure injury 

at admission and with any change in the patient’s clinical status.5 Unfortunately, 

identification of high-risk patients in the inten sive care unit (ICU) is difficult because 

currently available risk-assessment tools have high sensitivity but low specificity in critical 

care patients and tend to indicate that most patients are at high risk.6

Machine learning can effectively and efficiently use large amounts of data from the 

electronic health record to predict development of pressure injuries.

Machine learning is a type of artificial intelligence that can be used to build predictive 

models, but it is rarely used in research on pressure injuries.7 Raju et al7 advocated for a 

machine-learning approach to build a useful model for predicting pressure injuries because 

machine-learning techniques can effectively and efficiently use large amounts of clinical 

data that are routinely collected in electronic health records (EHRs). Raju et al specifically 

recommended a type of machine learning called random forest, a method that uses an 

ensemble decision tree, in which random subsets are drawn from the data with replacement. 

The advantages of a random-forest approach are that all of the data can be used for training 

and validation while avoiding the decision-tree tendency to overfit the model and that the 

approach is relatively powerful when multicollinearity occurs and when data are missing.8,9 

The purpose of our study was to use a big-data/machine-learning approach to develop a 

model for predicting pressure injuries among critical care patients.

Methods

Data Preprocessing

The institutional review board at the University of Utah Hospital, Salt Lake City, Utah, 

approved the study. A biomedical informatics team assisted us in our data discovery process. 
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We queried an enterprise data warehouse for EHR data consistent with our sampling criteria 

and variables of interest. We used an iterative approach to refine our query via validation 

procedures and review by domain experts, data stewards, and the biomedical informatics 

team. We validated the data extracted from the EHRs by manually comparing the values and 

date/time stamps found in the extracted data with those displayed in the the clinicians’ view 

of the electronic health record for 30 randomly selected cases, including 15 with pressure 

injury and 15 without such injury. On implementing the fully developed query for all 

manually validated cases, we found consistent values and date/time stamps (within 10 

minutes) for all 30 cases (100% agreement). We cleaned individual variables by using Stata 

13 software (StataCorp LLC) and then compiled the analysis data set by using SAS, version 

9.4, software (SAS Institute Inc).

Sample

The sample consisted of data on patients admitted to the adult surgical or surgical 

cardiovascular ICU at University of Utah Hospital, an academic medical center with a level I 

trauma center, either directly or after an acute care stay between September 1, 2008, and 

May 1, 2013, who met inclusion criteria. We included patients younger than 18 years who 

were admitted to the adult ICU in an effort to include all patients admitted to the adult 

surgical or adult surgical cardiovascular ICU. In an effort to avoid misattribution of 

community-acquired pressure injuries as HAPIs, we excluded data on patients who had a 

pressure injury at the time of admission to the ICU and patients in whom a pressure injury 

developed within 24 hours of ICU admission. Among patients with more than 1 

hospitalization during the study period, we included data from the first hospitalization only.

Treatment protocols for all patients included targeted interventions based on parameters of 

the Braden Scale (eg, use of moisture-wicking pads and barrier creams for patients with 

moist skin). In addition, the standard of care in the ICUs was turning and repositioning at 

least every 2 hours for patients who were unable to turn themselves.

Measures

Variables were selected on the basis of a combination of input from clinicians and relevant 

publications. The predictor variables selected are detailed in Tables 1 and 2. Data on vital 

signs were obtained from electronic monitors (oxygen saturation by pulse oximetry and 

blood pressure) and, because of concern about spurious values that occur sporadically with 

continuous monitoring, were included only if the low value was evident 3 or more times in a 

row. The outcome variables were HAPIs classified as stage 1 to 4, deep-tissue injury, or 

unstageable and HAPIs classified as stage 2 to 4, deep-tissue injury, or unstageable. We 

included stage 1 injuries in our first outcome variable because pressure injuries at the earliest 

stage are reversible, and therefore early recognition of this stage is ideal.4 We excluded stage 

1 injuries from the second outcome variable because of concern that nurses might 

misidentify transient redness as a stage 1 injury.10

Analysis

Random Forest.—The random forest algorithm is derived from the classification tree, in 

which a training set of data is successively split into partitions, or nodes, so that ultimately a 
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previously unseen record can be accurately assigned to a class11 (in this study, development 

of a HAPI or no HAPI). Advantages of decision trees include ease of use and interpretation, 

resistance to outliers (ie, the statistics do not change, or change a tiny amount, when outliers 

are added to the mix), the ability to work efficiently with a large number of predictor 

variables, and built-in mechanisms for handling missing data by using correlated variables.
7,11 In the decision-tree approach, the best-fitting variable is used at each node, and therefore 

the resulting model fits nearly perfectly (a situation that is problematic, because the model is 

overfitted).7

The random forest approach retains the advantages of a classification tree but addresses the 

problem of overfit via bootstrap aggregation, also known as bagging.11 Bagging refers to the 

collection of many random subsamples of data with replacement, so that for each sample 

(bootstrap) taken, samples that were not included will be left behind. A new decision tree is 

developed (or trained) on each sample. Instead of using the best-fitting variable in the data 

set at each node, a number equal to the square root of the number of features are selected at 

random, and the node is split by using the best fit out of that group.12 The random forest 

approach generates many individual decision trees, and ultimately each tree gets 1 vote for 

the class (in this study, yes or no for pressure injury). Although the approach does not 

provide an effect size for each variable, as in hypothesis-based research, output does include 

the importance of each variable in rank order. The importance of a variable may be due to 

complex interactions with other variables rather than to a direct, causal relationship.12

The random forest model uses bootstrap aggregation, which is collection of many 

random subsamples with replacement.

Data Processing.—We used R, version 3.3.2, via the RStudio interface, version 

1.0.136,13 to analyze all data. (The complete procedure is described in the Supplement—

available online only at www.ajcconline.org). First, we examined relationships among the 

available predictor variables and identified (through QR decomposition of the matrix of 

predictors) a potential linear combination of variables that kept the variable matrix from 

being of full rank. After identifying the variable vasopressin infusion as the problem, we 

removed vasopressor infusion and the set of predictors was restored to full rank. Next, we 

looked for patterns of missingness and determined that the data were not missing completely 

at random by applying the “missing completely at random” test of Little14 within the R 

package BaylorEdPsych (P < .001). Because data were not missing completely at random, 

we used multiple imputation (using the R package Amelia),15 an approach that imputes 

missing values while allowing for a degree of uncertainty; for example, a multiple 

imputation algorithm may code missing sex as “80% likely to be male” instead of simply 

“male.”16

Model Creation.—We divided our data into training (67%) and testing (33%) data sets by 

using the R package caTools17 and developed a random forest algorithm via the R package 

randomForest18 on the training data set for each of the 2 outcome variables (HAPIs ≥ stage 2 

and HAPIs ≥ stage 1). We used the training data set to develop the random forest model, and 

then we tested the model’s performance with the testing (or held out) data set.
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We determined that 4 was the best number of features to be used for each tree (where M = 

total number of features and m = best number of features for each tree, m = M or 

4.47 = 20 [rounded to 4]). We determined that the optimal number of iterations (or trees in 

the forest) was 500, because after that value, the estimated “out-of-bag” error rate was 

sufficiently stabilized. We included all of the predictor variables except vasopressin and 

sampled participants with replacement. We set the cutoff value at 0.5 so that each tree 

“voted” and a simple majority won. After building the model with the training set, we 

applied the algorithm to the data in the testing data set. Next, we used the R package 

randomForest18 to rank importance of each variable; we then constructed visual 

representations of relationships between variables to assess directionality. Finally, we used 

the R package ROCR19 to assess receiver operating characteristic curves (ROC curves) and 

the area under the curve for each of our models by using the testing data set.

Results

Sample

The query produced 7218 records. We omitted 841 records because of incomplete patient 

identification (eg, a date instead of an identification number or single-digit numbers). The 

final sample therefore consisted of the records of 6376 patients admitted to the adult surgical 

or cardiothoracic ICU. The mean age was 54 (SD, 19) years. The sample consisted of 2403 

women (37.7%) and 3924 men (61.5%); sex data were missing for 49 patients (0.8%). The 

majority of the sample was white (n = 4838, 75.9%). The mean length of stay was 10 days 

(SD, 12 days; range, 1–229 days).

Predictor and Outcome Variables

Pressure injuries of stage 2 or greater developed in 257 patients (4.0%). Injuries of stage 1 or 

greater developed in 516 patients (8.1%); among these, 259 patients had injuries of stage 1, 

and 257 had injuries of stage 2 or greater). Frequency data for predictor variables are 

presented in Tables 1 and 2.

Predictive Model: Stage 1 and Greater Pressure Injuries

We developed a random forest to predict development of stage 1 and greater pressure 

injuries among critical care patients in the training data set and then applied the model to the 

test data set. We used the testing data set to fit the ROC curve. The area under the curve was 

0.79 (Figure 1). Figure 2 shows the mean decrease in accuracy for each variable; although 

some variables were clearly more important than others according to the mean decrease in 

accuracy, all variables were included and were assessed in the model. The mean decrease in 

accuracy is measured by removing the association between a predictor variable and the 

outcome variable and determining the resulting increase in error. The mean decrease in 

accuracy does not describe discrete values, so we also constructed visual representations to 

assess directionality.
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Predictive Model: Stage 2 and Greater Pressure Injuries

Next, we repeated the random forest analysis for stage 2 and greater pressure injuries. We 

used the testing data set to fit the ROC curve. The area under the curve was 0.79 (Figure 3). 

Figure 4 shows the mean decrease in accuracy for each variable.

Limitations

We were unable to access some variables in the EHRs that may be important for 

development of pressure injuries. Specifically, we were unable to obtain nursing skin 

assessments (general skin condition, edema, moisture) and treatment-related data (surfaces 

and repositioning schedules).

Although we used our testing (held out) data set to test our model, validation with an 

unrelated clinical sample, such as data on patients from a different hospital system, is still 

needed. When the model is used with a different clinical sample, most likely calibration will 

be required because of population-related differences (eg, patients in our level I trauma 

center are generally younger than patients in a surgical critical care unit at a non-trauma 

center).

Discussion

So far as we know, our study is the only one in which machine learning was used to predict 

development of pressure injuries among critical care patients. We applied the random forest 

technique, which is a particularly efficient use of large data sets because bootstrap replicates 

are used to train each classifier.7 Random forest is also advantageous because it is powerful 

when data are missing, a common problem in clinical data obtained from EHRs.8,9 In 

addition, random forest is relatively unaffected by moderate correlations among variables, an 

important characteristic because correlations among clinical variables are common in health 

research, and excising correlated variables can result in data destruction that introduces bias.
20

One way to consider our model’s performance is to place our results alongside the Braden 

Scale. The Braden Scale is the most commonly used tool in North America for predicting 

risk for pressure injury and measures cumulative risk for pressure injuries via 7 categories: 

sensory perception, activity, mobility, moisture, nutrition, and friction/shear. Total scores 

range from 9 (very high risk) to 23 (very low risk).21 Our model’s relatively strong 

performance (area under the ROC curve = 0.79 vs 0.68 for the Braden Scale22) suggests the 

model would be a useful way to differentiate among critical care patients in order to apply 

preventive measures that are not feasible for every patient because of cost, such as specialty 

beds.

The 5 variables deemed most important on the basis of the mean decrease in accuracy for 

stage 1 and greater pressure injuries were, in descending order, body mass index (calculated 

as weight in kilograms divided by height in meters squared), hemoglobin level, creatinine 

level, time required for surgery, and age. For stage 2 and greater pressure injuries, the 5 

variables deemed most important were body mass index, time required for surgery, 
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creatinine level, hemoglobin level, and age. The mean decrease in accuracy is calculated by 

removing a variable from the analysis and then assessing the decrease in the model’s 

performance, and is therefore a reflection of complex relationships among variables rather 

than the direct result of any single variable. Even so, our results are interesting, particularly 

related to time required for surgery, because surgical time has not been well studied as a 

potential contributor to risk for pressure injury among critical care patients.23

The variables deemed not important according to the mean decrease in accuracy are also 

informative. Perfusion is theoretically a key concept in development of pressure injuries 

because skin cannot survive without delivery of oxygen-rich blood.5 In our analysis, 

variables related to perfusion, including vasopressor infusions, oxygenation, and hypo-

tension, were not identified as important according to the mean decrease in accuracy, 

although those variables were important risk factors in other studies.22 However, we used a 

single-measure approach: Possibly, variables related to perfusion are better delineated by 

using a longitudinal approach, which would indicate the dynamic effects of an unstable 

hemodynamic status. Future researchers may consider a survival random forest approach, 

which would take into account repeated measures related to perfusion.

Our model’s performance was nearly identical for the stage 1 and greater outcome variable 

and the stage 2 and greater outcome variable, and both models had similar variables in terms 

of mean decrease in accuracy for each outcome. Although some studies exclude stage 1 

pressure injuries from analysis, our findings lend support to the clinical relevance of stage 1 

pressure injuries because of the similar etiologies in terms of predictor variables.

Conclusions

We developed a model to predict risk for pressure injuries among critical care patients by 

using a machine-learning, random forest approach. Our model relies on information that is 

readily available in EHRs and therefore does not require clinicians to enter values into a tool 

such as the Braden Scale. The next step will be using the model with an independent sample. 

At that point, calibration may be required to optimize specificity so that the model can used 

to identify patients who would benefit most from interventions such as specialty beds or 

continuous bedside pressure mapping that are not financially feasible for every patient. 

Finally, our finding that time required for surgery was an important variable in the analysis 

warrants further investigation.
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Figure 1. 
Receiver operating characteristic curve for stage 1 pressure injury random forest (PI-1 RF) 

classifier (test data).
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Figure 2. 
Importance of variables for pressure injuries of stage 1 or greater.

Abbreviations: ASA score, American Society of Anesthesiologists physical status 

classification system; BMI, body mass index (calculated as weight in kilograms divided by 

height in meters squared); CAM, Confusion Assessment Method; Spo2, oxygen saturation 

by pulse oximetry.
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Figure 3. 
Receiver operating characteristic curve for stage 2 pressure injury random forest (PI-2 RF) 

classifier (test data).
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Figure 4. 
Importance of variables for pressure injuries of stage 2 or greater.

Abbreviations: ASA score, American Society of Anesthesiologists physical status 

classification system; BMI, body mass index (calculated as weight in kilograms divided by 

height in meters squared); CAM, Confusion Assessment Method; Spo2, oxygen saturation 

by pulse oximetry.
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Table 1

Predictor variables: number and percentage

Measure: variable No. (%) of patients

Delirium: Confusion assessment method

 Delirious 491 (7.7)

 Not delirious 2347 (36.8)

 Unable to assess 125 (2.0)

 Missing 3413 (53.5)

Hypotension: mean arterial pressure <60 mm Hg

 Not hypotensive 4186 (65.7)

 Hypotensive 2184 (34.3)

 Missing 6 (0.1)

Level of consciousness: Glasgow Coma Scale (lowest score)

  3 861 (13.5)

  4 15 (0.2)

  5 27 (0.4)

  6 86 (1.3)

  7 111 (1.7)

  8 111 (1.7)

  9 98 (1.5)

 10 305 (4.8)

 11 150 (2.4)

 12 19 (0.3)

 13 84 (1.3)

 14 317 (5.0)

 15 813 (12.8)

 Missing 3379 (53.0)

Oxygenation: oxygen saturation <90% by pulse oximetry

 Altered oxygenation 964 (15.1)

 Oxygenation not altered 5405 (84.8)

 Missing 7 (0.1)

Sedation: Riker sedation and agitation score (lowest score)

 1 686 (10.8)

 2 441 (6.9)

 3 504 (7.9)

 4 1342 (21.0)

 5 6 (0.1)

 Missing 3397 (53.3)

Severity of illness: American Society of Anesthesiologists severity-of-illness score (maximum score)

 1, Healthy person 43 (0.7)

 2, Mild systemic disease 241 (3.8)

 3, Severe systemic disease 958 (15.0)
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Measure: variable No. (%) of patients

 4, Severe systemic disease that is a constant threat to life 673 (10.6)

 5, Moribund 69 (1.1)

 6, Brain dead 10 (0.2)

 Missing 4382 (68.7)

Temperature: fever >38°C

 Fever 767 (12.0)

 No fever 5595 (87.8)

 Missing 7 (0.1)

Vasopressor medication received (any dose/duration)

 Dopamine 257 (4.0)

 Epinephrine 73 (1.1)

 Norepinephrine 695 (10.9)

 Vasopresssin 10 (0.2)

 Phenylephrine 23 (0.4)
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Table 2

Predictor variables: minimum-maximum, mean, and standard deviation

Variable Minimum-maximum Minimum-maximum Mean SD

Body mass index at admission
a 12.19–149.11 29.16 9.6

Laboratory value

Albumin, minimum, mg/dL 0.80–5.70 3.54 0.81

Creatinine, maximum, mg/dL 0.31–52.7 1.70 2.06

Glucose, maximum, mg/dL 52–1915 178.17 81.3

Hemoglobin, minimum, g/dL 3.10–18.6 9.6 2.36

Lactate, maximum, mg/dL 0.30–29 2.02 2.24

Prealbumin, minimum, mg/dL 3.0–40.1 13.4 6.9

Surgical time, min 0–366 287.24 234.64

SI conversion factors: to convert creatinine to μmol/L, multiply by 88.4; to convert glucose to mmol/L, multiply by 0.0555; to convert lactate to 
mmol/L, multiply by 0.111.

a
Calculated as weight in kilograms divided by height in meters squared. Data for 1423 patients (22.3%) were missing.
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