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Abstract

Propensity score methods are common for estimating a binary treatment effect when treatment 

assignment is not randomized. When exposure is measured on an ordinal scale (i.e. low–medium–

high), however, propensity score inference requires extensions which have received limited 

attention. Estimands of possible interest with an ordinal exposure are the average treatment effects 

between each pair of exposure levels. Using these estimands, it is possible to determine an optimal 

exposure level. Traditional methods, including dichotomization of the exposure or a series of 

binary propensity score comparisons across exposure pairs, are generally inadequate for 

identification of optimal levels. We combine subclassification with regression adjustment to 

estimate transitive, unbiased average causal effects across an ordered exposure, and apply our 

method on the 2005–2006 National Health and Nutrition Examination Survey to estimate the 

effects of nutritional label use on body mass index.
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1 Introduction

Disclosure of ingredients and inclusion of a standardized label has been required on all US 

food and beverage since 1994 as a result of the National Labeling Education Act (NLEA1). 

The US Food and Drug Administration2 initially estimated, among other benefits, roughly 

725,000 avoided cases of cancer and chronic heart disease over a 20-year period and a health 

care savings between $4.4 and $26.5 billion through expected dietary changes resulting from 

the NLEA.
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Twenty years later, however, the effect of the NLEA on health outcomes remains largely 

unknown, as literature exploring the effect of label use has yielded mixed conclusions. 

While Variyam and Cawley3 and Loureiro et al.4 found a significant reduction in body mass 

index (BMI) among women label users, Drichoutis et al.5 found evidence that increased 

label use actually caused higher BMIs. However, both Variyam and Cawley and Loureiro et 

al. dichotomized label use, initially measured on a five-point scale, into “sometimes” 

frequency or above, making inference at a specific label use level impossible. Further, in 

dichotomizing an ordered exposure, both studies were more likely to suffer from bias due to 

confounded assignment mechanism.6

Estimating the effects of an exposure on an ordinal scale is useful for many public health 

interventions. For example, extensive clinical trials have contrasted the duration, length, and 

intensity levels of physical activity.7,8 Such research has aided in proposing 

recommendations for physical activity, including those touted by the US Surgeon General.9 

Obviously, these guidelines cannot be enforced; however, they were written in order to 

motivate people to live healthier lifestyles, and to identify the average effects that are 

expected due to different activity levels.

Similar guidelines on how often one should read nutritional labels have not been issued, 

despite label use being a priority for several US organizations. The US Food and Drug 

Administration,10 the American Heart Association,11 and the American Diabetes 

Association,12 for example, all include label use directions on their websites. The Mayo 

Clinic13 goes as far as urging patients to “practice” label use when food shopping. However, 

none of these organizations supply any specific guidelines of how often individuals should 

be reading nutritional labels.

Observational data that use a simple comparison of health outcomes across those at different 

label use levels have limitations, because subjects in these label use groups differ with regard 

to personal, socio-economic, and demographic characteristics. For example, readers of 

nutrition labels are, on average, more active and health-conscious.14,15 With two treatment 

groups, a common statistical tool used to adjust for differences in the covariates’ distribution 

in estimation of the treatment effect is the propensity score, defined by Rosenbaum and 

Rubin16 as the probability of receiving treatment conditional on a set of observed covariates. 

Most propensity score methods and applications deal with binary treatments, while exposure 

to label use is often measured using an ordinal scale. In the 2005–2006 National Health and 

Nutrition Examination Survey (NHANES) data, label use is measured on a five-point scale, 

never, rarely, sometimes, most of the time (often), or always. Drichoutis et al.5 employed 

binary propensity score methods across the 10 possible pairs of label levels in their analysis 

of the NHANES, which yielded pairwise causal effect estimates that were not transitive. 

Specifically, estimates suggest that while sometimes label use level yields lower BMI than 

rare level and that rare level causes lower BMI than never level, sometimes level frequency 

actually results in a significantly higher BMI (p < 0.05) than never level.

We extend the data set used by Drichoutis et al.5 and reanalyze it with a generalized 

propensity score (GPS) method that will result in transitive estimates of the causal effects of 

increased label use on BMI between all pairs of label use levels. In doing so, this manuscript 
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provides three important extensions to approaches which have been previously designed for 

ordinal exposures.17,18 Following the separation of the design and analysis paradigm in 

observational studies proposed by Rubin,19 we propose and implement novel graphical 

methods as well as introduce new metrics for assessing and depicting covariates’ similarity 

between individuals at different exposure levels. Second, we couple the subclassification-

based strategies of Imai and Van Dyk18 and Zanutto et al.20 with regression adjustments to 

estimate causal effects and to obtain more precise and accurate point estimates. Last, we use 

simulations to demonstrate the benefits of combining subclassification with regression 

adjustment, relative to either method alone and to other previously proposed methods for 

ordinal exposures. Although previous statistical literature has touched on some of the 

analysis phase methods, the combination of the design, simulation, and analysis phases 

presented here provide other investigators a complete case study for estimating causal effects 

from observational studies with ordinal treatments. Our method is implemented on the 

2005–2006 NHANES, and causal effect estimates suggest that reduction in BMI only occurs 

when reading labels often or always.

The outline of this paper is as follows. Section 2 introduces our notation, and Section 3 

details our use of subclassification with regression adjustment to estimate the set of causal 

effects across levels of an ordinal exposure. Section 4 implements the proposed method on 

the NHANES data, Section 5 summarizes our results, Section 6 details a simulation study, 

and Section 7 concludes.

2 Causal inference and the Rubin causal model

2.1 Notation for binary treatment

Splawa-Neyman21 first described treatment effects in the context of potential outcomes for a 

randomized experiment. This concept was expanded to observational studies in what was 

eventually termed the “Rubin causal model” (RCM).22,23

Let Yi, Xi, and Ti be the observed outcome, set of p covariate values, and binary treatment 

indicator, respectively, for each subject i = 1,…n, n < N, where n is the sample size and N is 

the population size which is possibly infinite, with treatment T i ∈ 𝒯, 𝒯 = 0, 1 .

A commonly made assumption in the RCM is the stable unit treatment value assumption 

(SUTVA).24 SUTVA specifies both that the set of potential outcomes for a subject depends 

only on the treatment that subject was assigned to, and not on the treatment assignment of 

others, and that within each treatment condition, there are not multiple versions of the 

treatment. Assuming SUTVA, the potential outcome for unit i can be written as Yi(Ti = t)= 

Yi(t), which represents subjecti’s outcome if he or she would have received treatment t.

One common estimand of interest is the population average treatment effect (PATE), which 

is often approximated by using the sample average treatment effect (SATE).

PATE = E[Y(1) − Y(0)] (1)
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SATE = 1
n ∑

i = 1

n
(Y i(1) − Y i(0)) (2)

In practice, however, each individual receives either the treatment or the control at the same 

point in time, but not both, and only Yi(1) or Yi(0) is observed for each unit, also known as 

the fundamental problem of causal inference.22 As a result, the RCM commonly relies on 

the assumption S1 to estimate 1 and 2.

S1: Strongly ignorable treatment assignment: (i) Pr({Y(0), Y(1)}|T, X) = Pr({Y(0), Y(1)}|

X); and (ii) 0 < Pr(T = t|X) for t ∊ {0,1}.16 Under strongly ignorable treatment assignment, 

the set of potential outcomes and treatment assignment are conditionally independent given 

X. Implicit in this assumption is that differences in outcomes between those with the same X 
are unbiased estimates of the treatment’s causal effect to units with that X.

To estimate causal effects from observational data, matching subjects with the same X who 

received different treatments is an effective way of reducing bias, but as the dimension of X 
increases, this is nearly impossible.25 Propensity scores enable inference under the RCM 

even in a high dimensional setting. Let e(X) = Pr(T = 1|X) be the propensity score. If 

treatment assignment is strongly ignorable given X, then it is also strongly ignorable given 

e(X), Pr({Y(0), Y(1)}|T, e(X)) = Pr({Y(0), Y(1)}|e(X)). Thus, the comparison of units with 

equal e(X)s is unbiased for estimating unit level effects, and averaging over the distribution 

of e(X) in the population results in an unbiased estimate of the PATE.16

2.2 Expansions for more than two exposure levels

Assuming SUTVA, for Z exposures or exposure levels, with 𝒯 = 1…Z , let 

𝒴i = Y i(1), Y i(2), …, Y i(Z) , where 𝒴i is the set of potential outcomes for unit i. With an 

ordinal exposure, possible estimands of interest are the PATEs between exposure levels t and 

s, PATEt,s, for all pairs {t, s}, where t, s ∈ 𝒯, which are commonly approximated by the 

sample average treatment effects, SATEt,s.

PATEt, s = E[Y(t) − Y(s)] (3)

SATEt, s = 1
n ∑

i = 1

n
(Y i(t) − Y i(s)) (4)

As with binary treatment, we cannot observe each SATEt,s because each unit only receives 

one treatment, and therefore SATEt,s is a random quantity due to the assignment mechanism 

being random. Assuming that the sample is randomly chosen from the population, then 

SATEt,s is an approximation for the PATEt,s. Because most applications are usually trying to 
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estimate effects generalizing to the population, from this point forward, we will define 

PATEt,s as our estimand of interest and assume that the observed data were sampled at 

random from the population.

To estimate the PATE across exposure pairs, S1 is expanded such that a strongly ignorable 

treatment assignment mechanism (also called strong unconfoundedness) for multiple 

exposures states that (i) Pr 𝒴 ∣ T = t, X = Pr 𝒴 ∣ X ; and (ii) 0 < Pr[T = t|X] > ∀ < 1 ∀ t. As 

in the binary treatment setting, SUTVA and a strongly ignorable treatment assignment 

mechanism enable us to estimate E[Y(t)], for all t, by conditioning on the observed 

covariates.

The propensity score has been expanded to multiple exposures through the GPS, r(t, X) = 

Pr(T = t|X = x).18,26,27 While propensity scores for binary treatment enable us to condition 

on a scalar in order to estimate treatment effects, the GPS with a discrete exposure may 

consists of multiple dimensions, thus requiring to condition on an entire vector of treatment 

assignment probabilities, r(X) = (r(1, X),…, r(Z, X)). As a result, two individuals with the 

same r(t, X) for one specific treatment level may not be equivalent with regard to their entire 

r(X). Thus, differences in outcomes between subjects with different exposure levels and 

similar r(t, X), but differing r(X), are not generally unbiased causal effect estimates.26

Joffe and Rosenbaum17 and Imai and van Dyk18 noted that modeling an ordinal exposure 

using an ordered logit model, also referred to as the proportional odds model,28 can provide 

a shortcut to conditioning on a multidimensional r(X). The ordered logit model is 

appropriate for exposures measured in doses (e.g. low, medium, high). For example, with Z 
total treatments (exposure levels), assuming

log
P(T i < t)
P(T i ≥ t) = θt − βTXi, t = 1, …, Z − 1 (5)

and defining the balancing score, b(X), as a function of the covariates such that Pr(T = t|
b(X)) = Pr(T = t|b(X), X), the proportional odds model provides a scalar b(X). Specifically, 

for βT = (β1,… βp)T, βT X is a balancing score, such that

Pr(T = t ∣ βTX) = Pr(T = t ∣ X, βTX) for t = 1, …Z (6)

The combination of equation (6) with the assumption of a strongly ignorable treatment 

assignment mechanism allows us to establish that 𝒴 and the treatment assignment are 

conditionally independent given βT X (for a proof, see Imai and van Dyk18)

Pr 𝒴 ∣ T = t, βTX = Pr 𝒴 ∣ βTX (7)

Under the expanded versions of SUTVA and S1, differences in observed Ys between 

subjects with different exposure levels but equal βT X are unbiased estimates of causal 

Lopez and Gutman Page 5

Stat Methods Med Res. Author manuscript; available in PMC 2018 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



effects at that βT X. To estimate the PATEt,s for all treatment pairs {t, s}, we want to average 

E[Y(t) − Y(s)|βT X] over the distribution of βT X. Formally, we would estimate E[Y(t) − 

Y(s)] using the following

E Y(t) − Y(s) = E E(Y(t) − Y(s) ∣ X) = E E(Y(t) − Y(s) ∣ X, βTX)

= E E(Y(t) − Y(s) ∣ βTX) (by equation (6))

= ∫ (E Y(t) ∣ T = t, βTX − E Y(s) ∣ T = s, βTX )Pr βTX d(βTX)

(8)

Direct computation of equation (8), however, is difficult because it requires integrating over 

the probability distribution of βT X.

One approach for approximating the PATEt,s is to partition subjects with similar values of βT 

X into subclasses, estimating the effect within each subclass, and combining these effects 

using a weighted average. A second alternative could be the use of radius matching29 to pair 

subjects with roughly equivalent βT Xs and average across pairs. However, individual 

matching techniques are not as well suited for multiple treatments.26 A third approach, 

which is discussed in Section 3.3, uses inverse probability weighting.

3 Subclass-weighted causal effects for an ordinal exposure

3.1 Design phase

Estimation of causal effects using observational data is composed of two phases: the design 

phase and the analysis phase.30 The design phase is done without the outcome in sight, and 

with the intent of obtaining the same treatment effects which would have been obtained in a 

completely randomized design.19 As suggested by Joffe and Rosenbaum17 and implemented 

by Lu et al.,31 we first use equation (5) to fit Pr(T|X) and generate an estimated βXi for each 

individual, where β is the maximum likelihood estimate of β. The goal in the design phase is 

to group subjects that are similar with respect to the observed covariates.19 Thus, we are not 

concerned with assessing the fit of treatment assignment (e.g. testing the proportional odds 

assumption), but whether balance on all covariates is obtained across treatment groups.

3.1.1 Covariate choice—The choice of which covariates to include in the GPS model 

should be made with the intent of satisfying the assumption of strong ignorability. Primarily, 

previous scientific research should be used to instruct choice of X,30 with all measured pre-

treatment variables associated with both the treatment assignment and the outcome included.
32 In addition, when in doubt, Stuart25 recommends a “liberal” inclusion variables associated 

with either the treatment assignment or the outcome, because exclusion of variables which 

are associated with the treatment assignment mechanism can increase bias.

While it cannot be verified that the chosen X satisfies the assumption of strong ignorability, 

Stuart25 argues that strong ignorability is often more valid than it appears because 

controlling for observed covariates also controls for correlated but unobserved ones. As part 

of the covariate selection, we propose to examine if any covariates that were not included in 
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the treatment assignment model are also balanced across subclasses. Exact implementation 

will be described in Section 5.

3.1.2 Common support—As with propensity score analysis for binary treatment, it is 

important to eliminate subjects outside the range of common support.33 With binary 

treatment, a common support is often considered to be the range of propensity scores of 

those receiving both treatments. For an ordinal exposure, an extension is to use a common 

support region of the linear predictor, which eliminates subjects with βTX beyond the range 

of βTX values among those on other treatments. It is recommended that the propensity score 

model be re-fit after subjects are dropped to ensure that the estimated propensity scores are 

not disproportionately impacted by those outside the common support.34 Dropping units also 

changes the estimand of interest to include only units with a large enough probability of 

receiving any of the treatments. This is a different estimand than the PATEt,s, which cannot 

be estimated without making unassailable assumptions. Thus, it is good practice to describe 

the population which the estimand is generalizable to using the observed covariates.

The remaining subjects that are not discarded are partitioned into K subclasses, where each 

subclass contains subjects with similar βTX. This partitioning is aimed at generating similar 

covariates’ distributions for all treatment levels in each subclass. The choice of K is flexible, 

and it has been suggested to examine the covariate balance for multiple values of K.30 

Higher K will yield better within-subclass homogeneity of the covariates, resulting in 

smaller within-subclass bias. Too large of a K will result in low numbers of subjects within 

each subclass, which could restrict our ability to estimate causal effects when there are no 

units at a specific treatment level to compare to. For simplicity, we partition units into 

subclasses such that an equal number of units are within each subclass. Cochran and 

Rubin35 found little improvement when comparing the bias reduction of optimal 

subclassification to equally spaced subclassification with a single covariate and a binary 

treatment, and Rosenbaum and Rubin36 provided similar recommendations when estimating 

the treatment effect with multiple covariates and binary treatment. Our recommendation is to 

use equally spaced subclasses with ordinal treatments and multiple covariates, but this is an 

area of further research.

Let nk be the number of subjects in subclass k, k = 1,…, K. With binary treatment and p 
covariates in the propensity score model, it has been recommended to keep (i) at least three 

subjects at each combination of the subclass and treatment; and (ii) nk > p + 2.34 Our related 

recommendation is to generate the largest K possible with both (i) at least 3 + Z subjects at 

each exposure level in each subclass; and (ii) nk > p + Z.

3.1.3 Balance checks—To ensure that subclassification reduced the covariates’ bias 

across the different treatment groups, it is important to check the within-subclass 

distributions of each covariate before looking at within-subclass outcomes.19,30 This process 

examines how closely each subclass mimics a randomized experiment in which the 

distributions of covariates at each exposure level are similar in expectation.
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The following two-step procedure was used to examine the covariate distributions within 

each subclass. First, tabular and graphical approaches assess the distributions of both βTX
and the continuous covariates in X by exposure level within each subclass.37 These checks 

include side-by-side boxplots of the balancing scores and continuous variables at each 

exposure level in each subclass.

Second, the dependencies between exposure level and covariate within each subclass, for all 

covariates, will be compared to both the dependencies in the original data and the 

hypothetical distribution of the statistics which would have occurred in a randomized 

experiment. Here, we use Kendall’s τb, abbreviated as τ from this point forward, which is a 

rank correlation coefficient, where positive τ values indicate that higher ranks of one 

covariate are positively associated with higher ranks of the exposure. Under the null 

distribution that the covariate and exposure are independent, τ = 0, and sample τ statistics 

are approximately distributed as standard Normal, making τ useful for examining non-linear 

correlations. We plot histograms of sample τ test statistics for each covariate at each 

subclass to check for normality, as well as to identify the proportion of τ statistics which 

remain significant after subclassification, relative to nominal level α.

Examining all of the τ values for each covariate in each subclass may be extensive with a 

large number of covariates. One way to summarize the benefits of subclassification is to 

average the within-subclass τ estimates for each variable over the number of subclasses, and 

compare these results to the values found in the original data. Formally, let τpk be the 

estimated τ between exposure level and covariate p in subclass k, and let wk =
nk
n  be the 

proportion of subjects in subclass k. We define τ‒p, the weighted subclass-averaged τ, as

τp = ∑
k = 1

K
τpkwk

Contrasting the τ‒p values with the τ statistics from the original data can indicate if covariate 

imbalances still exist.

Section 4.2 details these checks through real data analysis. If these checks display covariate 

imbalances which deviate from a randomized experiment, one option would be to re-fit the 

ordered logistic model, possibly including interaction terms. Noticeable variations in the 

distributions of βTX or significant τ dependencies within each subclass, for example, would 

suggest that the covariates are not properly balanced. If balance on X cannot be obtained, 

causal effects should not be calculated.

3.2 Analysis phase

Under strong ignorability, if the empirical distribution of the covariates is equal in 

expectation between those at different exposure levels within each subclass, estimated mean 

outcomes for each treatment level can be computed as weighted averages of the within-

subclass sample means, with weights equal to the relative subclass size. Let y‒kt and y‒ks be 
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the observed sample means in subclass k among those receiving treatments t and s, 

respectively. To test for a global difference in subclass-weighted mean outcomes between the 

exposure levels, Zanutto et al.20 use a randomized block analysis of variance model of 

outcome on subclass and exposure, treating subclass as the blocking variable. If the global 

difference in means hypothesis is rejected, pairwise PATEt,ss can be estimated using 

subclass-weighted mean differences, as in equation (9).

PATE(t, s) = ∑
k = 1

K
(yktwk − ykswk) (9)

Without regression adjustment, however, subclass-weighted means may not eliminate the 

entire bias caused from differences in the covariates’ distribution, jeopardizing the accuracy 

of treatment effects estimated using equation (9). The intuition behind this is that while 

differences in outcomes are unbiased estimates of causal effects at exact values of the linear 

predictor, differences in covariates by exposure level could still exist when different linear 

predictors are pooled together. Several authors38–40 have noted that combining regression 

adjustment with matching for a binary treatment reduces bias relative to either method alone. 

An additional benefit of regression adjustment is that even in the case that the theoretical 

covariate balance of a completely randomized design is achieved within each subclass, 

regression adjustment can improve the precision of the causal estimates.34

We start the analysis by testing for a global effect of exposure using a randomized block 

analysis of covariance (ANCOVA) model of outcome on subclass, exposure, and X, treating 

subclass as the blocking variable. If the null hypothesis of no difference in means by 

exposure is rejected, we calculate pairwise causal effects.

Let Yik be the observed outcome of subject i in subclass k and let Yik(t) be the potential 

outcome of that subject at exposure level t. Next, letting Xik be the observed covariates of 

subject i in subclass k and I(Ti = t) be an indicator function for individual i receiving 

treatment t, we use the following steps to estimate PATE(t,s) for all pairs {t, s}.

Step 1: Assuming Yik(t)|Xik ~ N(E(Yik|Xik, T),σ2), model Yik|{Xik, T} within each subclass 

using the following regression model

E(Y ik ∣ Xik, T) = ∑
t = 1

Z
αktIt(T i = t) + γkXik

= αk1I(T i = 1) + ⋯ + αkZI(T i = Z) + γkXik

(10)

Step 2: Estimate PATEk(t,s), the PATE(t,s) within-subclass k, using αkt and αks, the maximum 

likelihood estimates of αkt and αks, respectively, from model (10)

PATEk(t, s) = αkt − αks (11)
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Step 3: Estimate the variance of PATEk(t, s), Var(PATEk(t, s)), within each subclass, from 

regression model (10)

Let αk′ = (αk1, …, αkZ) with Var(αk) = Σk. Based on equation (10), αk~𝒩(αk, Σk), and letting c 

= (0, I(T = t), 0, − I(T = s), 0), where I(T = t) and I(T = s) are indicators for treatments t and 

s, respectively, with 0 =(0,… ,0), we have

Var(PATEk(t, s)) = Var(αkt − αks) = Var(cαk) = cΣkc′ (12)

Step 4: Using wk =
nk
n , estimate PATEt,s by averaging over K:

PATE(t, s) = ∑
k = 1

K
wk(PATEk(t, s)) (13)

SE(PATE(t, s)) = ∑
k = 1

K
wk

2(Var(PATEk(t, s))) (14)

Using our framework, αkt − αks, the estimated average treatment effect between level t and s 

in subclass k, is an unbiased estimate for PATEk(t,s) (For proof, see Appendix 1). It is 

important to note that because nk and the linear predictors are both based on the GPS model 

estimated from the data, responses within and between subclasses are dependent.41 As a 

result, the above aggregation of subclass-weighted standard errors can underestimate the true 

sampling variances, although regression adjustment usually helps in this regard.41,42

3.3 Alternative approaches

In addition to subclassification-based methods, other inference procedures exist for 

estimating causal effects from an ordinal exposure. Lu et al.31 used non-bipartite matching 

to pair subjects at lower exposure levels with ones at higher levels. However, the causal 

effect estimand generated using non-bipartite matching is not clearly defined, and a 

significant effect using this method would not specify an optimal exposure level.

The approach used by Drichoutis et al.,5 initially described by Lechner,43 is also common 

for estimating treatment effects from multiple exposures. Letting nt be the number of 

subjects receiving treatment t, this method implements a set of binary comparisons (SBC) 

attempting to estimate the PATE on the treated, PATTt|(t,s) = E[Y(t) − Y(s)|T = t], for all 

exposure pairs {t,s}, using propensity score matching for binary treatment on the population 

of subjects receiving either t or s. Because SBC yields causal effects conditional on a subject 

receiving one of two treatments, the resulting set of causal effects are usually not transitive. 

Specifically, the population receiving t which PATTt|(t,s) generalizes to likely differs from the 
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population receiving s which PATTs|(s,r) generalizes to, and, as a result, it would be 

erroneous to use PATTt|(t,s) and PATTs|(s,r) to contrast treatments r and t.

Another approach for approximating the PATE between each exposure pair uses the inverse 

of the estimated probabilities from a statistical model of treatment assignment (e.g. 

multinomial logistic, proportional odds) as weights.26,44 Feng et al.45 used this procedure to 

estimate PATEt,s by weighting subjects by the reciprocal of their GPS.

PATEt, s = E Y(t) − E Y(s)

where E Y(t) = ∑
i = 1

n I(T i = t)Y i
r(t, Xi)

∑
i = 1

n I(T i = t)
r(t, Xi

)

−1
and

E Y(s) = ∑
i = 1

n I(T i = s)Y i
r(s, Xi)

∑
i = 1

n I(T i = s)
r(s, Xi)

−1

(15)

One issue with this approach is that extreme weights can result in erratic causal estimates,
46,47 an issue that becomes more likely as the number of treatments increases and treatment 

assignment probabilities decrease. While trimming has been shown to decrease the influence 

of extreme weights on causal estimates,48 trimming the extreme weights estimated from a 

GPS model can yield covariate bias’ in unknown directions.49

Nonetheless, our subclassification estimators can be viewed as weighted estimators, with 

weights coarsened by averaging them through subclasses. For binary treatment, this 

smoothing of the weights results in estimates which, compared to weighted methods, are 

more precise and less likely to be influenced by a misspecification of the propensity score 

model.34,50

4 Nutritional label use and BMI

4.1 Data description

The NHANES is a nationally representative research program of 15 US counties that 

measure demographic, health, nutritional, and behavioral variables, including nutritional 

label use and BMI. The 2005–2006 NHANES version measured label use via a 

questionnaire and BMI through a physical examination. Subjects were presented with an 

example of a food label and asked the question “How often do you use the Nutrition Facts 

panel when deciding to buy a food product? Would you say always, most of the time, 

sometimes, rarely, or never?” (See http://www.cdc.gov/nchs/data/nhanes/nhanes_05_06/

sp_dbq_d.pdfhttp://www.cdc.gov/nchs/data/nhanes/nhanes_05_06/sp_dbq_d.pdf for more 

information.)

In a separate physical examination, trained medical personnel measured the height and 

weight of these subjects.

Thirty pre-treatment covariates that are possibly associated with label use exposure and 

BMI, including demographic, lifestyle, nutritional awareness, and health status information, 
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were chosen after careful examination of the NHANES and a vast literature review.14,51 All 

of the variables recommended by Drichoutis et al.5 were included. We added squared terms 

for Metabolic equivalence and Meals away from home to account for the skewed nature of 

the original variables.30 The covariate Weight thoughts, which measures an individual’s 

categorized opinion of their weight (underweight, about the right weight, or overweight), 

was also included. Last, we included the variable Prior BMI, which is calculated using a 

self-reported estimate of a subject’s weight from a year prior to the survey and the subject’s 

current measured height.

The data set included a total of 4644 subjects with recorded label use and a measured BMI. 

As in Drichoutis et al.,5 we excluded the 298 subjects with missing covariates values. 

Including Prior BMI as a covariate eliminated an additional 74 subjects, yielding a sample 

size of 4272. Because dealing with missing covariates is not the focus of this paper, we made 

the naive assumption that data for these subjects were missing completely at random.52 

Other options include introducing missing indicators for categorical covariates,53 using 

weighting methods based on the probability for missingness (as in Wooldridge54), or using 

multiple imputations to create complete data sets, where causal effect estimates are 

calculated across each of the data sets and combined using Rubin’s rules for multiple 

imputation.55 Because these techniques have not yet been used with GPS methods under 

multiple exposure levels, it is an important area for further research. Selected demographic 

variables of subjects dropped using these criteria and those remaining in the study 

population are shown in Appendix A2.1.

Table 1 lists our covariates, their τ statistics with label use, and a p-value testing the null 

hypothesis of no dependency between label use and each covariate. (There are 33 rows in 

Table 1, as we separated the variable for race into four categories. For a more complete 

description of these covariates, see Appendix A2.3.) Using these covariates, the ordered 

logistic model was used to estimate the probability of label use (the treatment).

4.2 Balance assessment

Subjects were partitioned into K equal size subclasses, with subclass boundaries defined by 

equally spaced quantiles of βTX. There were 33 covariates in the propensity score model. To 

meet the restrictions of (i) at least 3 + Z subjects at each label use level within each subclass; 

and (ii) nk > p + Z, up to K = 15 subclasses were examined. Balance checks are presented 

for K = 5, 10, and 15.

4.2.1 Distributions of βTX and balance checks for continuous covariates—

Boxplots of βTX by label use within each subclass show that while the linear predictors are 

distributed similarly among those at different label use levels for K = 10 and K = 15, those 

with higher label use levels have higher βTX within each subclass for K = 5. For example, in 

subclass 4 with K = 5, the boxplots indicate a pattern of increasing βTX by label use level 

(Figure 1). However, when these subjects are further split on βTX, as in subclasses 7 and 8 

with K = 10, the linear predictor appears more evenly distributed across label use levels 

(Figure 1).
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Overlap and similarities in the distributions of continuous covariates by label use were also 

compared via side-by-side boxplots, both overall and within each subclass. Extreme 

continuous covariates’ values may have large influence on the causal estimates, particularly 

if the overlap of continuous variables is not roughly equal across label use levels. One option 

is to perform the analysis on a common support of continuous variables, by eliminating 

subjects whose covariates are beyond the range of those at other label use levels. For 

example, sample cutoff lines used with these inclusion criteria for the variable Prior BMI are 

shown in Figure 2, which eliminated, along other subjects, a subject with a Prior BMI of 

87.5. This elimination was done before the propensity score model was estimated and would 

be done prior to any elimination of extreme linear predictors. Another option was to exclude 

subjects with extreme continuous variables within each subclass, but in the NHANES data 

set, this would eliminate more than 30% of the participants, and thus this strategy was not 

attempted. Elimination changes the population for whom the results can be generalized to, 

but it reduces the need for extrapolation and making assumptions which cannot be defended.

4.2.2 Within-subclass associations between X and T using Kendall’s τ—As an 

example of balance assessment using τ, let Drug user be a binary variable for whether or not 

a subject indicated using hashish, marijuana, cocaine, heroin, or methamphetamine in the 

past 12 months. One significant sample τ statistic occurred with Drug user in subclass 2, for 

K = 10 (Table 2). In this example, τ = 0.09, suggesting an increase in label use is associated 

with an increase in the likelihood of using drugs, as the z-statistic for this association is 2.00.

With several hundred such tests, however, we expected to find these associations by chance, 

as well. Figure 3 depicts the distributions of the test statistics plotted against a normal curve, 

and Table 3 shows the proportion of significant tests observed after subclassification at level 

α, α ∊ {0.01, 0.05}. In Figure 3, we look for normality in the histograms, and in Table 3, 

because the distribution of p-values is uniform under the null, we check that the proportion 

of significant tests is near α. Results are presented across three choices of K for the 

following three mechanisms of subject elimination, E1–E3:

E1: No subject elimination, n = 4272

E2: Eliminate subjects with extreme linear predictors, n = 4142

E3: Eliminate subjects with extreme continuous X or extreme linear predictors, n = 

4076

These checks show that while there were significant within-subclass covariate imbalances 

beyond that which would have occurred in a randomized design when K = 5, the proportion 

of significant tests of dependency dropped for K = 10 and K = 15. The variables Age, Drug 
user, Healthy diet, Heard of food guide pyramid, Pregnant, Prior BMI, Weight thoughts, and 

Doct. advice 3: eat less fat for disease risk displayed the strongest (p < 0.05) tests of within-

subclass dependency for K = 10 and 15.

Last, we compare τ statistics before any subclassification with subclass-weighted τ‒p

statistics, for K = 5 and 15, under elimination mechanism E3 (Figure 4). This figure is an 

extension of the “Love” plot proposed for binary treatment, which is popular for showing 

post-matching decrease in each covariates’ bias.56 Twenty six of 33 |τ| statistics using the 
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original data are greater than 0.02, and 19 of these correlations are greater than 0.10. For K = 

15, no ∣ τ‒ ∣ is of magnitude greater than 0.016, and 29 of the 33 ∣ τ‒ ∣ are less than 0.01. 

Dependencies appear to still exist within-subclasses for K = 5, where 10 ∣ τ‒ ∣ are greater than 

0.02. For K = 10 (not shown), the largest ∣ τ‒ ∣ is 0.019 (Metabolic Equivalence).

These results suggest that subclassifying with K = 10 and K = 15 eliminated most of the 

differences in observed covariate distributions across label use categories which were found 

in the original data. Because our checks deem covariates to be plausibly balanced for these 

Ks only, we do not estimate within-subclass causal effects for K = 5.

4.3 Subclass-weighted causal effect estimates of label use on BMI with regression 
adjustment

Let BMIik(t) be the potential outcome BMI of subject i in subclass k at label use t, for i = 1, 

…, n, k = 1, …, K, K ∊ {10, 15}, and t ∊ {1 = never, 2 = rare, 3 = some, 4 = most of the time 
(often), 5 = always}. With Z = 5 and Yik(t) = BMIik(t), equations (10) to (14) were used to 

estimate the PATE(t,s) and their variances for all pairs {t, s}.

Estimates for three forms of subject elimination (E1–E3) and two regression model 

adjustments (A1,A2) are shown in Table 4. The regression adjustment models were used to 

adjust for lingering bias that was not eliminated using subclassification. Model A1 included 

the set of covariates with questionable balance as judged by within-subclass τ statistics, as 

described in Section 4.2, and model A2 included all covariates in Table 1.

A1: X = Age, Drug user, Healthy diet, Heard of food guide pyramid, Pregnant, Prior 
BMI, Weight thoughts, and Doct. advice 3: eat less fat for disease risk (See Appendix 

A2.3 for variable definitions)

A2: X = All covariates in Table 1

Two other sets of causal effects are presented in Table 4. First, estimates calculated using 

SBC, as detailed in Section 3.3 and calculated by Drichoutis et al.5 with this same data set, 

are displayed. (Drichoutis et al.5 used several matching algorithms in their analysis. The 

estimates shown in Table 4 reflect those using one-to-one nearest-neighbor matching.) 

Second, we calculated Inverse Probability of Treatment Weighted (IPTW) estimates of the 

PATEs, as in Feng et al.45 and equation (15). (As in Feng et al.,45 we used bootstrap 

sampling to estimate the variance of the IPTW causal effects.)

5 Results

Using a randomized block ANCOVA model with K = 10 and K = 15 subclasses as blocks, at 

the 0.05 nominal level, we rejected the global null hypothesis of no differences between the 

mean BMIs at each label use (p < 0.01 for both K, using each combination of unit discarding 

rule (E1–E3) and regression adjustment method (A1,A2)). Examining the estimated PATEs 

between the 10 pairs of label levels suggest that often or always label use may yield lower 

BMI than rare or sometimes usage. However, the majority of comparisons is not significant 

at the 0.05 level; the one comparison that was significant across most models examined 

suggests that an often usage yields a lower BMI than a rare one. Effect estimates are similar 
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for different unit discarding rules (E1–E3), choice of K, and regression adjustment method 

(A1,A2). IPTW estimates are mostly inconclusive, save for limited evidence that often levels 

cause lower BMI than rare and sometimes levels.

The marginal increase in BMI with low levels of label use, relative to no label use, is a bit of 

a surprise; one possibility is that subjects who read labels at a minimum level falsely believe 

that they are acting sufficiently healthy, and respond with behaviors or eating habits which 

increase BMI. Another possibility is that the strong ignobility assumption is violated, which 

implies that subjects reading at the rare levels are unique in a dimension not captured by the 

observed covariates. However, this violation is less plausible when a large number of 

covariates are being balanced.

The causal estimates provided are only unbiased under the assumptions specified in Section 

2. SUTVA seems reasonable for the NHANES. However, we caution that merging label use 

categories into two levels (as in Variyam and Cawley3 and Loureiro et al.4) may violate the 

multiple version of treatment assignment assumption. The NHANES data also included 

other covariates that were not included in the GPS model because we felt that other variables 

served as sufficient proxies. As a sensitivity analysis, we examined six of these covariates: 

cocaine use, marijuana use, marital status, an indicator for excessive alcohol consumption, 

blood pressure problems, and desires for weight control (listed in Appendix A 2.2, along 

with their pre-subclassification Kendall’s τ with label use). Using our split of subjects into 

15 subclasses, we tested for within-subclass dependency between label use and these 

covariates using Kendall’s τ. Of the 90 tests, 1 (1.1%) and 4 (4.4%) were significant at α = 

0.01 and α = 0.05, respectively, roughly what would have occurred in a randomized design. 

Thus, it appears that we were able to balance observed covariates even when they were not 

explicitly included in the GPS model.

Our decision to eliminate subjects with extreme linear predictors or continuous variables 

(E2, E3) results in estimands that are different than PATEs, and the estimates provided in 

Table 4 each generalize to different populations. However, under both E2 and E3, fewer than 

5% of subjects were eliminated. Two variables, education level and familiarity with the food 

guide pyramid, offered the strongest insight into why subjects were not retained. Of the 130 

subjects eliminated under E2 and the 196 subjects dropped under E3, 61 had the lowest 

education level and had no knowledge of the food guide pyramid. An additional 46 

eliminated subjects had the highest education level and were familiar with the food guide 

pyramid. These types of subjects were less likely to be observed at all label use levels and 

would require extrapolation.

Compared to other methods for ordinal exposures applied to this data set, subclassification 

with regression adjustment provides important advantages. In the IPTW analysis, 309, 313, 

and 307 subjects were given a weight greater than 10 under E1, E2, and E3, respectively, 

yielding causal effects with larger variances in comparison to our proposed method. The 

maximum weights under the three elimination mechanisms were 129 (E1), 108 (E2), and 57 

(E3). Subclassification-based estimates are also transitive and generalizable to the entire 

study population that is not discarded, whereas estimates using a SBC generalize to separate 

subsets of the population and are not transitive. Here, transitivity refers to the additive effects 
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of causal estimates across different exposure levels. For example, using our method, but not 

that of a SBC, the additive effects of often to some and some to rare label use frequency is 

equivalent to comparing often to rare usage.

6 Simulation

In real data, true causal effects are not known because each subject receives only one 

treatment or exposure dose at a specific time point. If complete sets of potential outcomes 

were known for all subjects, however, it would be straightforward to compare competing 

methods to see which most accurately and precisely estimates the true PATE. Thus, we 

created two full data sets that include the full set of potential outcomes which could have 

occurred if we had observed the subjects at all label use levels. The two sets of full data, Set 

1 and Set 2, used the 2005–2006 NHANES with label use as exposure and BMI as outcome. 

Letting BMIi(t) be the potential outcome BMI under treatment t for subject i, we imputed 

two fixed sets of potential outcomes as follows:

SET 1: PATE(t,s) = 0 for all {t, s}. Here, BMIi(t) = BMIi for all t ∈ 𝒯, where BMIi is 

the observed BMI for unit i in the data set.

SET 2: PATE(t,s) ≠ 0 for all pairs {t, s}. Imputation of these potential outcomes were 

obtained using the following algorithm.

(1) The principal components of X, the matrix of covariates listed in Table 1, 

were calculated. (Here, we excluded the squared terms for Metabolic 
equivalence and Meals away from home, as the inclusion of these variables 

led to erratic principal components. For more information on the principal 

components procedure, see Jolliffe57.)

(2) All subjects were projected to the eigenvector (V1) that corresponded to the 

largest eigenvalues of X, PC1i = V1
TXi.

(3) BMIi(Ti), the potential outcome at subject is observed treatment 

assignment, was set as the observed outcome, BMIi.

(4) For t ≠ Ti, the potential outcomes were imputed using the observed BMI 

outcomes of the subjects receiving other treatment levels whose PC1s were 

closest to that of subject i. Specifically, BMIi(t) = BMIj(t) = BMIj, ∀ t = Tj 

= Tj′ ≠ Ti, where |PC1i − PC1j| ≤ |PC1i − PC1j′| ∀ j′.

For Set 2, the resulting population average causal effects for the different usage level 

comparisons were: −0.14 (rare vs. never), −0.18 (some vs. never), −1.20 (often vs. never), 
and 0.32 (always vs. never).

At each simulation step, we applied the following algorithm:

(1) Randomly select 15 of the covariates listed in Table 1 without replacement, and 

let Xsim be the matrix with these covariates
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(2) Estimate γ t, the maximum likelihood estimate of γ from the multinomial logistic 

regression model log( P(T = t)
P(T = z) = γtXsim) based on the observed T and Xsim.

(3) Let r sim, i(t, Xsim) be the estimated probability that unit i received treatment t, 

based on the model in the previous step with γ = γ , and sample Tsim,i based on 

r sim, i = (r (1, Xsim, i), …, r (5, Xsim, i)).

(4) Set the observed outcome BMIsim,i = BMI(Tsim,i).

It is important to note that both the treatment assignment mechanism and the outcome model 

are different than the GPS model and the linear regression model, respectively. We used 

BMIsim, Tsim, and Xsim to compare seven methods of estimating the PATE across pairs of 

label use dosages. The seven methods included four variations of subclassification and three 

commonly used comparison approaches. Subclassification techniques were generated by 

combining two factors, the number of subclasses used (K = 5, 15) and whether or not 

regression adjustment for all covariates in X was used within each subclass (yes, no). The 

three commonly used estimation methods included the naive differences in the sample 

means of BMIsim between those at different treatment levels, 

PATEt, s = 1
nt

(Σi = 1
n BMI(sim, i) ∗ I(Tsim = t)) − 1

ns
(Σi = 1

n BMI(sim, i) ∗ I(Tsim = s)). The second 

method used standard regression adjustment of BMIsim on Tsim and X, with the causal 

effects estimated using the coefficients on Tsim. The last method relied on IPTW with 

normalized weights (equation 15). In this calculation, subjects receiving level t were 

weighted by 1/(Pr(Tsim = t)), where Pr(Tsim = t) was calculated using the proportional odds 

model.

At each simulation m, m = 1,…,2000, we estimated PATEm(t, s) and its standard error, 

SE(PATEm(t, s)), for each of the seven estimating procedures and dose comparisons. This 

yielded simulated bias (biasm) and coverage indicators (coveragem, all coveragem) for each 

procedure at each m:

biasm(t, s) = PATEm(t, s) − PATE(t, s)
coveragem(t, s) = 1 if PATEt, s ∈ PATEm(t, s) ± 1.96 ∗ SE(PATEm(t, s)), 0 otherwise

all coveragem = 1 if coveragem(t, s) = 1 for all pairs t, s , t ≠ s, 0 otherwise

The mean bias, biast, s = 1
2000Σm = 1

2000 biasm(t, s), was calculated for each of the 10 pairs of dose 

comparisons, as well as the standard deviation of bias. We present results for the four dose 

comparisons with never label use, as results for other mean bias calculations are similar. Two 

summary statistics for coverage rates, Average and Complete coverage, are also shown for 

each method, where
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Average= 1
20000 ∑

m = 1

2000
∑
t, s

10
coveragem(t, s)

Complete= 1
2000 ∑

m = 1

2000
all coveragem(t, s)

Because we did not adjust for multiple interval estimations, Complete coverage is expected 

to be lower than both Average coverage and the nominal level.

Results of the simulations are depicted in Table 5. Regression alone and subclassification 

with regression adjustment yielded the lowest bias for Set 1, PATEt,s = 0. All of the 

subclassification approaches showed lower bias and higher coverage rates for Set 2, PATEt,s 

≠ 0, compared to the other methods. Among the subclassification methods implemented, a 

higher number of subclasses and the inclusion of regression adjustment tended to yield 

higher coverage rates and lower bias. IPTW estimates showed higher bias and lower 

coverage, possibly due to the misspecified treatment assignment model or the sensitivity of 

this procedure to large weights. With a binary treatment assignment, misspecified treatment 

assignment models and extreme weights can yield causal effects with larger bias and higher 

mean squared error (MSE).47,50,58

The results of our simulations suggest that when the estimated treatment assignment 

mechanism, in this case the proportional odds model, does not reflect the true assignment 

mechanism, a method involving subclassification with regression adjustment can outperform 

competing estimators of PATE for ordinal exposures. Further, combining subclassification 

with regression adjustment yields lower bias and higher coverage rates when compared to 

either method alone.

7 Discussion

The analysis presented here adds to that of Variyam and Cawley3 and Loureiro et al.,4 who 

dichotomized label use as sometimes or higher and found significant health benefits of 

increased label use. We showed that a significant benefit of reading nutritional labels comes 

only with an often or always frequency, relative to reading at a rare frequency. Such a 

conclusion could not be reached after dichotomizing the exposure or by other previously 

proposed methods. In fact, we estimated the treatment effect in our data set after 

dichotomizing label use into sometimes or higher and rare or never levels. Under E1 

elimination mechanism, and using subclassification on the propensity score with K = 15 

subclasses followed by regression adjustment, the estimated effect was not significant at the 

0.05 nominal level (−0.05, 95% CI, −0.29, 0.19). Although the direction of this effect was 

similar to our findings, this analysis did not capture the potential benefits of reading labels 

frequently. We recommend that policies and instructions for label use be updated to specify 

the extent with which one needs to read labels to reap the health benefits of a lower BMI.

Subclassification on a GPS requires two assumptions, SUTVA and strong 

unconfoundedness. In our study, both assumptions seem reasonable given the design of the 
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NHANES and the large number of observed covariates that were sufficiently balanced 

within each subclass; however, the true validity of both of assumptions is unknown. 

Sensitivity approaches have been developed for binary treatment effects,59–62 and a useful 

area for further research would examine the validity of these assumptions with an ordinal 

treatment. Further, because the NHANES is not a random sample, but a stratified random 

sample, our treatment effects generalize specifically to the population created by the sample; 

see Hernán et al.63 and Pearl and Bareinboim64 for related discussions on the 

generalizability of observational data.

Inference using propensity scores is a preferred method of answering causal questions for 

comparative effectiveness research, but generalizations of propensity scores to the multiple 

treatment setting are limited.65,66 The balance and estimation procedures provided here are 

important extensions of propensity score analysis to causal effects estimation for 

observational studies when the exposure is ordinal. These procedures yield, under proper 

assumptions, unbiased and transitive estimates of average treatment effects.
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Appendix 1.: Proof of unbiasedness

Here, we show that PATEk(t, s) is unbiased for PATEk(t,s). With Y ik(t) ∣ Xik~N(μikt, σ2) as in 

equation (10), we model Yik|{Xik, T} within each subclass, where

μikt = ∑
t = 1

Z
αktIt(Ti = t) + γkXik

= αk1I(Ti = 1) + . . αkZI(Ti = Z) + γkXik
and PATEk(t, s) = αkt − αks

Using αkt and αks, the maximum likelihood estimates of αkt and αks, we have 

E αkt − αks = E αkt − αks .67

Next, we show E[αkt − αks] = PATEk(t,s). As in Section 3.1, we assume the covariate 

distribution within each subclass is equal in expectation between those at different doses, 

that

E Xik ∣ T = t = E Xik ∣ T = s (16)

Lopez and Gutman Page 19

Stat Methods Med Res. Author manuscript; available in PMC 2018 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



By properties of the Normal distribution, E[Yik|Xik, T = t] = αkt + γkXik and E[Yik|Xik, T = 

s] = αks + γkXik, thus

E αkt − αks = E αkt − E αks

= E E Yik(t) ∣ Xik, T = t − E Yik(s) ∣ Xik, T = s (by equation(16))

= E E Yik(t) ∣ Xik − E Yik(s) ∣ Xik (by unconfoundedness)

= E Yik(t) − E Yik(s) )

= PATEk(t, s)

Appendix 2

A2.1. Study population and those excluded

The below table gives study characteristics of subjects included and excluded from our study 

for having missing covariate values (% shown unless otherwise indicated).

In study Eliminated

Covariate Description n = 4272 n = 372

Age Mean (SE) 47.3 (18.5) 53.2 (20.8)

BMI Mean (SE) 28.8 (6.8) 28.7 (6.4)

Metabolic equivalence Mean (SE) 8.6 (12.1) 7.9 (4.5)

Diabetic 74 74

Drug user 8 5

Heard of diet guidelines 43 29

Gender Males 48 48

Nutritional label use Never 32 45

Rare 10 10

Some 22 20

Most of the time 19 12

Always 17 14

Race Hispanic 22 39

White 51 39

Black 23 19

Other 4 3

A2.2. Covariates not included in propensity score model

The below table shows variables not included in our propensity score model (which were 

eventually balanced on through subclassification), and their original Kendall’s τb correlation 

with label use
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Variable Description Kendall’s τb p

Blood pressure problems Binary 0.07 <0.001

Cocaine use Binary −0.01 0.60

Marijuana use Binary −0.05 <0.001

Marital status (Yes vs. No) Binary 0.03 0.03

Ever drink 5+ drinks per day Numeric -0.06 <0.001

Weight control Binary 0.11  <0.001

A2.3. Covariates used and a brief description

Type Variable name Description/levels

Numeric Age Years of respondent

Drinks per day # of alcoholic drinks consumed per day over the past 12 months

Household size # of people in household

Meals away from home # weekly meals prepared outside of home

Metabolic equivalence Total metabolic activity rate

Prior BMI Calculated using respondent’s estimate of their weight from one-year ago 
and their current height

Ordinal Born to be fat? Are people born to be fat? Respondent answers: strongly disagree, 
somewhat disagree, neither agree nor disagree, somewhat agree, or strongly 
agree

Education HS/GED, some college or associate’s degree, or college graduate

Food security Household food security: low, marginal, or full

Income Household income: Less than $24,999/year, between $25,000 and $54,999/
year, or greater than $55,000/year

Weight thoughts Respondent’s thoughts on his or her own weight: underweight, about the 
right weight, or overweight

Nominal Race Hispanic, non-Hispanic white (white), non-Hispanic black (black), Other

Diabetic Respondent has been told by a doctor of diabetes or pre-diabetic conditions

Diabetic medicine Respondent takes insulin or pills for diabetes

Doct. advice 1 Doctor’s advice to respondent: eat less fat for cholesterol

Doct. advice 2 Doctor’s advice to respondent: reduce weight for cholesterol

Doct. advice 3 Doctor’s advice to respondent: eat less fat for disease risk

Doct. advice 4 Doctor’s advice to respondent: reduce weight for disease risk

Drug user Respondent has used hashish, marijuana, cocaine, heroin, or 
methamphetamine in the past month

Gender Male, female

Healthy diet Respondent rates diet as good or better

Heard of 5-a-day program Respondent has heard of 5-a-day program

Heard of diet guidelines Respondent has heard of diet guidelines

Heard of food guide pyramid Respondent has heard of food guide pyramid

Heart disease Respondent suffers from coronary heart disease, stroke, or liver condition

Pregnant Respondent is pregnant

Safe sex Respondent has not had sex without a condom in the past year
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Type Variable name Description/levels

Smoker Respondent smokes cigarettes

References

1. Food and Drug Administration. Education Act of 1990. Public law 1990; 101: 104.

2. Food and Drug Administration. Regulatory Impact Analysis of the Final Rules to Amend the Food 
Labeling Regulations. Federal Register. 1993.

3. Variyam JN and Cawley J. Nutrition labels and obesity. Cambridge, MA: National Bureau of 
Economic Research, 2006.

4. Loureiro ML, Yen ST and Nayga RM, Jr. The effects of nutritional labels on obesity. Agric Econ 
2012; 43: 333–342.

5. Drichoutis AC, Nayga RM, Jr and Lazaridis P. Can nutritional label use influence body weight 
outcomes? Kyklos 2009; 62: 500–525.

6. Royston P, Altman DG and Sauerbrei W. Dichotomizing continuous predictors in multiple 
regression: a bad idea. Stat Med 2006; 25: 127–141. [PubMed: 16217841] 

7. Chambliss HO. Exercise duration and intensity in a weight-loss program. Clin J Sport Med 2005; 
15: 113–115.

8. Puetz TW, Flowers SS and OConnor PJ. A randomized controlled trial of the effect of aerobic 
exercise training on feelings of energy and fatigue in sedentary young adults with persistent fatigue. 
Psychother Psychosom 2008; 77: 167–174. [PubMed: 18277063] 

9. United States Public Health Service Office of the Surgeon General et al. Physical activity and 
health: a report of the surgeon. Darby, PA: DIANE Publishing, 1996.

10. U.S. Food and Drug Administration. How to understand and use the nutrition facts label. http://
www.fda.gov/Food (2013, accessed 19 September 2013).

11. American Heart Association. Reading food nutrition labels. http://www.heart.org/HEARTORG/
GettingHealthy/NutritionCenter (2013, accessed: 19 September 2013).

12. American Diabetes Association. Taking a closer look at labels. http://www.diabetes.org/food-and-
fitness/what-can-i-eat (2013, accessed: 19 September 2013).

13. Mayo Clinic. Nutrition and healthy eating. http://www.mayoclinic.com/health/nutrition-facts/
NU00293 (2013, accessed: 19 September 2013).

14. Neuhouser ML, Kristal AR and Patterson RE. Use of food nutrition labels is associated with lower 
fat intake. J Am Diet Assoc 1999; 99: 45–53. [PubMed: 9917731] 

15. Satia JA, Galanko JA and Neuhouser ML. Food nutrition label use is associated with demographic, 
behavioral, and psychosocial factors and dietary intake among African Americans in North 
Carolina. J Am Diet Assoc 2005; 105: 392–402. [PubMed: 15746826] 

16. Rosenbaum PR and Rubin DB. The central role of the propensity score in observational studies for 
causal effects. Biometrika 1983; 70: 41–55.

17. Joffe MM and Rosenbaum PR. Invited commentary: propensity scores. Am J Epidemiol 1999; 150: 
327–333. [PubMed: 10453808] 

18. Imai K and Van Dyk DA. Causal inference with general treatment regimes. J Am Stat Assoc 2004; 
99: 854–866.

19. Rubin DB. For objective causal inference, design trumps analysis. Ann Appl Stat 2008; 2: 808–
840.

20. Zanutto E, Lu B and Hornik R. Using propensity score subclassification for multiple treatment 
doses to evaluate a national antidrug media campaign. J Educ Behav Stat 2005; 30: 59–73.

21. Splawa-Neyman J, Dabrowska D, Speed T, et al. On the application of probability theory to 
agricultural experiments. Essay on principles. Section 9. Stat Sci 1990; 5: 465–472.

22. Holland PW. Statistics and causal inference. J Am Stat Assoc 1986; 81: 945–960.

Lopez and Gutman Page 22

Stat Methods Med Res. Author manuscript; available in PMC 2018 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.fda.gov/Food
http://www.fda.gov/Food
http://www.heart.org/HEARTORG/GettingHealthy/NutritionCenter
http://www.heart.org/HEARTORG/GettingHealthy/NutritionCenter
http://www.diabetes.org/food-and-fitness/what-can-i-eat
http://www.diabetes.org/food-and-fitness/what-can-i-eat
http://www.mayoclinic.com/health/nutrition-facts/NU00293
http://www.mayoclinic.com/health/nutrition-facts/NU00293


23. Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. J 
Educ Psychol 1974; 66: 688.

24. Rubin DB. Randomization analysis of experimental data: the Fisher randomization test comment. J 
Am Stat Assoc 1980; 75: 591–593.

25. Stuart EA. Matching methods for causal inference: a review and a look forward. Stat Sci 2010; 25: 
1. [PubMed: 20871802] 

26. Imbens GW. The role of the propensity score in estimating dose-response functions. Biometrika 
2000; 87: 706–710.

27. Lechner M Identification and estimation of causal effects of multiple treatments under the 
conditional independence assumption. Heidelberg: Springer, 2001.

28. McCullagh P Regression models for ordinal data. J R Stat Soc B 1980; 42: 109–142.

29. Caliendo M and Kopeinig S. Some practical guidance for the implementation of propensity score 
matching. J Econ Surv 2008; 22: 31–72.

30. Rubin DB. Using propensity scores to help design observational studies: application to the tobacco 
litigation. Health Serv Outcomes Res Methodol 2001; 2: 169–188.

31. Lu B, Zanutto E, Hornik R, et al. Matching with doses in an observational study of a media 
campaign against drug abuse. J Am Stat Assoc 2001; 96: 1245–1253. [PubMed: 25525284] 

32. Rubin D and Thomas N. Matching using estimated propensity scores: relating theory to practice. 
Biometrics 1996; 52: 249–264. [PubMed: 8934595] 

33. Dehejia RH and Wahba S. Causal effects in non-experimental studies: re-evaluating the evaluation 
of training programs. Cambridge, MA: NBER, 1998.

34. Imbens G and Rubin DB. Causal inference in statistics and the social sciences. Cambridge, UK: 
University Press, 2013.

35. Cochran WG and Rubin DB. Controlling bias in observational studies: a review. Sankhya 1973; 
Series A: 417–446.

36. Rosenbaum PR and Rubin DB. Reducing bias in observational studies using subclassification on 
the propensity score. J Am Stat Assoc 1984; 79: 516–524.

37. Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between 
treatment groups in propensity-score matched samples. Stat Med 2009; 28: 3083–3107. [PubMed: 
19757444] 

38. Rubin DB. Using multivariate matched sampling and regression adjustment to control bias in 
observational studies. J Am Stat Assoc 1979; 74: 318–328.

39. Lunceford JK and Davidian M. Stratification and weighting via the propensity score in estimation 
of causal treatment effects: a comparative study. Stat Med 2004; 23: 2937–2960. [PubMed: 
15351954] 

40. Abadie A and Imbens GW. Large sample properties of matching estimators for average treatment 
effects. Econometrica 2006; 74: 235–267.

41. Du J Valid inferences after propensity score subclassification using maximum number of 
subclasses as building blocks. Cambridge, MA: Department of Statistics, Harvard University, 
1998.

42. Benjamin DJ. Does 401 (k) eligibility increase saving?: evidence from propensity score 
subclassification. J Public Econ 2003; 87: 1259–1290.

43. Lechner M Program heterogeneity and propensity score matching: an application to the evaluation 
of active labor market policies. Rev Econ Stat 2002; 84: 205–220.

44. McCaffrey DF, Griffin BA, Almirall D, et al. A tutorial on propensity score estimation for multiple 
treatments using generalized boosted models. Stat Med 2013; 32: 3388–3414. [PubMed: 
23508673] 

45. Feng P, Zhou XH, Zou QM, et al. Generalized propensity score for estimating the average 
treatment effect of multiple treatments. Stat Med 2012; 31: 681–697. [PubMed: 21351291] 

46. Little RJ. Missing-data adjustments in large surveys. J Bus Econ Stat 1988; 6: 287–296.

47. Kang JDY and Schafer JL. Demystifying double robustness: a comparison of alternative strategies 
for estimating a population mean from incomplete data. Stat Sci 2007; 22: 523–539.

Lopez and Gutman Page 23

Stat Methods Med Res. Author manuscript; available in PMC 2018 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



48. Huber M, Lechner M and Wunsch C. The performance of estimators based on the propensity score. 
J Econ 2013; 175: 1–21.

49. Kilpatrick RD, Gilbertson D, Brookhart MA, et al. Exploring large weight deletion and the ability 
to balance confounders when using inverse probability of treatment weighting in the presence of 
rare treatment decisions. Pharmacoepidemiol Drug Saf 2013; 22: 111–121. [PubMed: 22674782] 

50. Stuart EA and Rubin DB. Best practices in quasiexperimental designs. Best Pract Quant Methods 
2008; 155–176.

51. Lewis JE, Arheart KL, LeBlanc WG, et al. Food label use and awareness of nutritional information 
and recommendations among persons with chronic disease. Am J Clin Nutr 2009; 90: 1351–1357. 
[PubMed: 19776144] 

52. Rubin DB. Bayesian inference for causal effects: the role of randomization. Ann Stat 1978; 6: 34–
58.

53. D’Agostino RB. Tutorial in biostatistics: propensity score methods for bias reduction in the 
comparison of a treatment to a non-randomized control group. Stat Med 1998; 17: 2265–2281. 
[PubMed: 9802183] 

54. Wooldridge JM. Inverse probability weighted estimation for general missing data problems. J Econ 
2007; 141: 1281–1301.

55. Rubin DB. Multiple imputation after 18+ years. J Am Stat Assoc 1996; 91: 473–489.

56. Ahmed A, Husain A, Love TE, et al. Heart failure, chronic diuretic use, and increase in mortality 
and hospitalization: an observational study using propensity score methods. Euro Heart J 2006; 27: 
1431–1439.

57. Jolliffe I Principal component analysis. New York: Wiley Online Library, 2005.

58. Waernbaum I Model misspecification and robustness in causal inference: comparing matching with 
doubly robust estimation. Stat Med 2012; 31: 1572–1581. [PubMed: 22359267] 

59. Rosenbaum PR. Design sensitivity in observational studies. Biometrika 2004; 91: 153–164.

60. Daniels MJ and Hogan JW. Missing data in longitudinal studies: strategies for Bayesian modeling 
and sensitivity analysis. Vol. 109, Boca Raton, FL: Chapman and Hall/CRC, 2008.

61. Hosman CA, Hansen BB, Holland PW, et al. The sensitivity of linear regression coefficients 
confidence limits to the omission of a confounder. Ann Appl Stat 2010; 4: 849–870.

62. Liu T and Hogan JW. Inference about ATE from observational studies with continuous outcome 
and unmeasured confounding. arXiv preprint arXiv:13036165 2013.

63. Hernán MA, Alonso A, Logan R, et al. Observational studies analyzed like randomized 
experiments: an application to postmenopausal hormone therapy and coronary heart disease. 
Epidemiology 2008; 19: 766–779. [PubMed: 18854702] 

64. Pearl J and Bareinboim E. External validity: from do-calculus to transportability across 
populations. UCLA Department of Computer Science: DTIC Document, 2012.

65. Johnson ML, Crown W, Martin BC, et al. Good research practices for comparative effectiveness 
research: analytic methods to improve causal inference from nonrandomized studies of treatment 
effects using secondary data sources: the ISPOR Good Research Practices for Retrospective 
Database Analysis Task Force ReportPart III. Value Health 2009; 12: 1062–1073. [PubMed: 
19793071] 

66. Rubin DB. On the limitations of comparative effectiveness research. Stat Med 2010; 29: 1991–
1995. [PubMed: 20683890] 

67. Myers RH. Classical and modern regression with applications. Vol. 2, Belmont, CA: Duxbury 
Press, 1990

Lopez and Gutman Page 24

Stat Methods Med Res. Author manuscript; available in PMC 2018 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 

Boxplots of βTX (the linear predictor) by label use in subclass 4 (K = 5) and subclasses 7 

and 8 (K = 10).
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Figure 2. 
Boxplots of Prior BMI by label use, with cutoffs for “extreme” values.
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Figure 3. 
Histograms of z-test statistics of statistical dependency between covariates and label use 

using Kendall’s τ, for K subclasses and subject elimination E1–E3.

E1: no subject elimination, n = 4272; E2: eliminate subjects with extreme linear predictors, 

n = 4142; E3: eliminate subjects with extreme continuous X or extreme linear predictors, n = 

4076.
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Figure 4. 
Kendall’s τ between covariates and label use, before and after stratification (using K = {5, 

15}).
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Table 1.

Covariates and Kendall’s τ with nutritional label use.

Variable Type Kendall’s τ p

Gender, male Binary −0.19 <0.001

Race, Hispanic Binary −0.14 <0.001

Household size Numeric −0.13 <0.001

Born to be fat? Ordinal −0.07 <0.001

Drug user Binary −0.05 <0.001

Smoker Binary −0.04 0.003

Safe sex Binary −0.01 0.338

Race, black Binary 0.00 0.867

Heart disease Binary 0.00 0.816

Drinks per day Numeric 0.00 0.699

Race, other Binary 0.01 0.292

Pregnant Binary 0.01 0.430

(Meals away from home)2 Numeric 0.02 0.060

Meals away from home Numeric 0.02 0.048

Prior BMI Numeric 0.04 0.001

Age Numeric 0.06 <0.001

Diabetic medicine Binary 0.07 <0.001

Diabetic Binary 0.10 <0.001

Race, white Binary 0.11 <0.001

Doct. advice 2 (reduce weight for chol.) Binary 0.11 <0.001

Doct. advice 3 (less fat for disease risk) Binary 0.11 <0.001

Income Ordinal 0.12 <0.001

Weight thoughts Ordinal 0.12 <0.001

Food security Ordinal 0.13 <0.001

Doct. advice 1 (less fat for chol.) Binary 0.13 <0.001

Doct. advice 4 (reduce weight for disease risk) Binary 0.13 <0.001

Healthy diet Binary 0.16 <0.001

(Metabolic equivalence)2 Numeric 0.16 <0.001

Metabolic equivalence Numeric 0.18 <0.001

Heard of diet guidelines Binary 0.24 <0.001

Heard of 5-a-day program Binary 0.24 <0.001

Education Ordinal 0.25 <0.001

Heard of food pyramid Binary 0.28 <0.001

BMI: body mass index.
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Table 2.

Label use by drug user, subclass 2, K = 10.

Drug user Never Rare Some Often Always

Yes 11 7 15 7 7

No 148 48 85 54 36
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Table 3.

Proportion of significant (p < α) within-subclass balance tests.

Elimination K (# subclasses) α = 0.01 α = 0.05

E1

5 0.018 0.103

10 0 0.052

15 0.004 0.042

E2

5 0.012 0.115

10 0.009 0.079

15 0.006 0.053

E3

5 0.018 0.097

10 0.006 0.064

15 0.014 0.048

Stat Methods Med Res. Author manuscript; available in PMC 2018 November 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lopez and Gutman Page 32

Ta
b

le
 4

.

PA
T

E
 e

st
im

at
es

 (
st

an
da

rd
 e

rr
or

s 
in

 p
ar

en
th

es
is

) 
of

 B
M

I 
du

e 
to

 in
cr

ea
se

d 
nu

tr
iti

on
al

 la
be

l u
se

.

E
lim

in
at

io
n

K
A

dj
us

t.
R

ar
e 

vs
. n

ev
er

So
m

e 
vs

. n
ev

er
O

ft
en

 v
s.

 n
ev

er
A

lw
ay

s 
vs

. n
ev

er
So

m
e 

vs
. r

ar
e

O
ft

en
 v

s.
 r

ar
e

A
lw

ay
s 

vs
. r

ar
e

O
ft

en
 v

s.
 s

om
e

A
lw

ay
s 

vs
. s

om
e

A
lw

ay
s 

vs
. o

ft
en

E
1

10
A

1
0.

30
 (

0.
18

)
0.

13
 (

0.
14

)
−

0.
09

 (
0.

16
)

−
0.

09
 (

0.
17

)
−

0.
17

 (
0.

17
)

−
0.

39
 (

0.
19

)*
*

−
0.

39
 (

0.
20

)
−

0.
22

 (
0.

16
)

−
0.

22
 (

0.
16

)
0.

00
 (

0.
18

)

A
2

0.
26

 (
0.

18
)

0.
19

 (
0.

15
)

−
0.

07
 (

0.
17

)
−

0.
08

 (
0.

17
)

−
0.

07
 (

0.
18

)
−

0.
33

 (
0.

20
)

−
0.

35
 (

0.
20

)
−

0.
26

 (
0.

16
)

−
0.

27
 (

0.
17

)
−

0.
01

 (
0.

19
)

15
A

1
0.

29
 (

0.
18

)
0.

17
 (

0.
14

)
−

0.
08

 (
0.

17
)

0.
01

 (
0.

17
)

−
0.

12
 (

0.
17

)
−

0.
36

 (
0.

19
)

−
0.

28
 (

0.
20

)
−

0.
24

 (
0.

16
)

−
0.

16
 (

0.
17

)
0.

08
 (

0.
19

)

A
2

0.
25

 (
0.

19
)

0.
17

 (
0.

15
)

−
0.

09
 (

0.
17

)
−

0.
03

 (
0.

18
)

−
0.

07
 (

0.
18

)
−

0.
34

 (
0.

20
)

−
0.

27
 (

0.
21

)
−

0.
26

 (
0.

17
)

−
0.

20
 (

0.
17

)
0.

06
 (

0.
19

)

E
2

10
A

l
0.

33
 (

0.
18

)
0.

14
 (

0.
14

)
−

0.
10

 (
0.

16
)

−
0.

08
 (

0.
17

)
−

0.
20

 (
0.

17
)

−
0.

43
 (

0.
19

)*
*

−
0.

41
 (

0.
19

)*
*

−
0.

23
 (

0.
15

)
−

0.
21

 (
0.

16
)

0.
02

 (
0.

18
)

A
2

0.
30

 (
0.

18
)

0.
17

 (
0.

15
)

−
0.

10
 (

0.
17

)
−

0.
10

 (
0.

17
)

−
0.

13
 (

0.
17

)
−

0.
40

 (
0.

19
)*

*
−

0.
39

 (
0.

20
)

−
0.

27
 (

0.
16

)
−

0.
26

 (
0.

17
)

0.
00

 (
0.

18
)

15
A

1
0.

32
 (

0.
18

)
0.

12
 (

0.
14

)
−

0.
08

 (
0.

17
)

−
0.

05
 (

0.
17

)
−

0.
20

 (
0.

17
)

−
0.

41
 (

0.
19

)*
*

−
0.

37
 (

0.
20

)
−

0.
20

 (
0.

16
)

−
0.

17
 (

0.
17

)
0.

04
 (

0.
19

)

A
2

0.
28

 (
0.

19
)

0.
14

 (
0.

15
)

−
0.

09
 (

0.
17

)
−

0.
08

 (
0.

18
)

−
0.

14
 (

0.
18

)
−

0.
37

 (
0.

20
)

−
0.

36
 (

0.
21

)
−

0.
22

 (
0.

16
)

−
0.

22
 (

0.
17

)
0.

01
 (

0.
19

)

E
3

10
A

1
0.

39
 (

0.
17

)*
*

0.
15

 (
0.

14
)

−
0.

08
 (

0.
16

)
0.

00
 (

0.
16

)
−

0.
24

 (
0.

16
)

−
0.

47
 (

0.
18

)*
*

−
0.

40
 (

0.
19

)*
*

−
0.

23
 (

0.
15

)
−

0.
15

 (
0.

16
)

0.
08

 (
0.

17
)

A
2

0.
36

 (
0.

18
)*

*
0.

19
 (

0.
14

)
−

0.
04

 (
0.

16
)

−
0.

02
 (

0.
17

)
−

0.
17

 (
0.

17
)

−
0.

40
 (

0.
18

)*
*

−
0.

38
 (

0.
19

)*
*

−
0.

23
 (

0.
15

)
−

0.
22

 (
0.

16
)

0.
01

 (
0.

17
)

15
A

1
0.

33
 (

0.
18

)
0.

15
 (

0.
14

)
−

0.
08

 (
0.

16
)

0.
01

 (
0.

17
)

−
0.

18
 (

0.
17

)
−

0.
40

 (
0.

18
)*

*
−

0.
32

 (
0.

19
)

−
0.

22
 (

0.
15

)
−

0.
14

 (
0.

16
)

0.
09

 (
0.

17
)

A
2

0.
25

 (
0.

18
)

0.
21

 (
0.

14
)

−
0.

10
 (

0.
16

)
−

0.
03

 (
0.

17
)

−
0.

04
 (

0.
17

)
−

0.
35

 (
0.

19
)

−
0.

28
 (

0.
20

)
−

0.
31

 (
0.

15
)*

*
−

0.
24

 (
0.

16
)

0.
06

 (
0.

18
)

SB
C

 (
as

 in
 

D
ri

ch
ou

tis
 

et
 a

l.5 )

−
0.

04
 (

0.
69

)
0.

95
 (

0.
43

)*
*

0.
60

 (
0.

54
)

0.
13

 (
0.

65
)

−
0.

45
 (

0.
55

)
0.

79
 (

0.
67

)
0.

54
 (

0.
69

)
0.

34
 (

0.
41

)
−

0.
63

 (
0.

51
)

−
0.

07
 (

0.
48

)

IP
T

W
 (

as
 in

 
Fe

ng
 e

t a
l.

45
, E

1)

0.
49

 (
0.

42
)

0.
39

 (
0.

31
)

−
0.

10
 (

0.
35

)
0.

53
 (

0.
42

)
−

0.
08

 (
0.

41
)

−
0.

58
 (

0.
42

)
0.

05
 (

0.
47

)
−

0.
50

 (
0.

29
)

0.
14

 (
0.

45
)

0.
63

 (
0.

43
)

IP
T

W
 (

as
 in

 
Fe

ng
 e

t a
l.

45
, E

2)

0.
52

 (
0.

46
)

0.
29

 (
0.

31
)

−
0.

24
 (

0.
36

)
0.

53
 (

0.
43

)
−

0.
23

 (
0.

46
)

−
0.

76
 (

0.
43

)
0.

01
 (

0.
49

)
−

0.
53

 (
0.

34
)

0.
24

 (
0.

44
)

0.
77

 (
0.

41
)

IP
T

W
 (

as
 in

 
Fe

ng
 e

t a
l.

45
, E

3)

0.
59

 (
0.

41
)

0.
61

 (
0.

31
)

−
0.

01
 (

0.
31

)
0.

54
 (

0.
38

)
0.

02
 (

0.
46

)
−

0.
61

 (
0.

36
)

−
0.

06
 (

0.
42

)
−

0.
62

 (
0.

29
)*

*
−

0.
08

 (
0.

40
)

0.
55

 (
0.

38
)

E
1:

 N
o 

su
bj

ec
t e

lim
in

at
io

n;
 E

2:
 E

lim
in

at
e 

su
bj

ec
ts

 w
ith

 e
xt

re
m

e 
lin

ea
r 

pr
ed

ic
to

rs
; E

3:
 E

lim
in

at
e 

su
bj

ec
ts

 w
ith

 e
xt

re
m

e 
co

nt
in

uo
us

 X
 o

r 
ex

tr
em

e 
lin

ea
r 

pr
ed

ic
to

rs
; A

1:
 X

 =
 s

el
ec

te
d 

co
va

ri
at

es
 (

se
e 

Se
ct

io
n 

4.
2)

; A
2:

 X
 =

 a
ll 

co
va

ri
at

es
; I

PT
W

: I
nv

er
se

 P
ro

ba
bi

lit
y 

of
 T

re
at

m
en

t W
ei

gh
te

d;
 S

B
C

: s
et

 o
f 

bi
na

ry
 c

om
pa

ri
so

n.

**
Si

gn
if

ic
an

t a
t 0

.0
5 

le
ve

l

Stat Methods Med Res. Author manuscript; available in PMC 2018 November 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lopez and Gutman Page 33

Table 5.

Simulated coverage, bias, and standard deviation of bias of seven PATE estimators using two hypothetical full 

data sets.

PATE Estimator Average
a

Complete
b Rare Some Often Always

Set 1 PATEt,s=0 Subclass only, K = 5 0.91 0.60 0.18 (0.41) 0.12 (0.34) −0.07 (0.35) 0.14 (0.34)

Subclass w/Regression, K = 5 0.91 0.72 0.01 (0.17) −0.01 (0.13) 0.01 (0.13) −0.01 (0.15)

Subclass only, K = 15 0.95 0.59 0.15 (0.43) 0.08 (0.35) −0.12 (0.35) 0.08 (0.34)

Subclass w/Regression, K = 15 0.96 0.74 0.00 (0.17) −0.00 (0.14) 0.00 (0.14) 0.02 (0.16)

Naive difference in means 0.77 0.22 0.45 (0.40) 0.50 (0.38) 0.44 (0.45) 0.66 (0.48)

Standard regression 0.94 0.70 0.01 (0.16) 0.00 (0.14) 0.00 (0.14) −0.00 (0.14)

IPTW 0.88 0.57 0.67 (0.36) 0.46 (0.4l) 0.06 (0.49) 0.58 (0.62)

Set 2 PATEt,s≠0 Subclass only, K= 5 0.97 0.80 0.08 (0.39) 0.05 (0.28) 0.06 (0.3l) 0.06 (0.35)

Subclass w/Regression, K= 5 0.96 0.80 0.03 (0.38) −0.02 (0.27) 0.03 (0.31) 0.03 (0.34)

Subclass only, K = 15 0.96 0.80 0.06 (0.41) 0.02 (0.30) 0.00 (0.32) 0.04 (0.37)

Subclass w/Regression, K = 15 0.97 0.78 0.03 (0.43) −0.01 (0.30) 0.02 (0.34) 0.04 (0.37)

Naive difference in means 0.83 0.26 0.29 (0.36) 0.41 (0.28) 0.73 (0.31) 0.24 (0.34)

Standard regression 0.90 0.52 −0.01 (0.36) 0.05 (0.25) 0.21 (0.27) −0.31 (0.3l)

IPTW 0.76 0.30 0.64 (0.37) 0.81 (0.33) 1.93 (0.36) 1.03 (0.40)

a
Fraction of all PATE intervals containing the true PATE.

b
Fraction of simulations with all 10 pairwise PATE intervals containing the true PATE.

IPTW: Inverse Probability of Treatment Weighted; PATE: population average treatment effect
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