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Summary

Although gene discovery in neuropsychiatric disorders, including autism spectrum disorder, 

intellectual disability, epilepsy, schizophrenia, and Tourette disorder, has accelerated, resulting in a 

large number of molecular clues, it has proven difficult to generate specific hypotheses without the 

corresponding datasets at the protein complex and functional pathway level. Here, we describe one 

path forward--an initiative aimed at mapping the physical and genetic interaction networks of 

these conditions, and then using these maps to connect the genomic data to neurobiology and, 

ultimately, the clinic. These efforts will include a team of geneticists, structural biologists, 

neurobiologists, systems biologists, and clinicians, leveraging a wide array of experimental 

approaches and creating a collaborative infrastructure necessary for long-term investigation. This 

initiative will ultimately intersect with parallel studies that focus on other diseases, as there is a 

significant overlap with genes implicated in cancer, infectious disease, and congenital heart 

defects.
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Introduction

The global burden of mental illness is enormous, whether measured in health care 

expenditures, lost productivity, or personal suffering. Worldwide, neuropsychiatric disorders 

(NPDs) rank number five among the top 10 categories contributing to overall disease burden 

as measured by global disability-adjusted life years (DALYs) as well as the leading cause of 

non-fatal burden of disease (Whiteford et al., 2013). In the United States, these disorders as 

a group account for 6 of the top 30 leading contributors to DALYs, and total costs exceed 

those of any other area of medicine (Murray et al., 2013; Whiteford et al., 2013). This public 

health emergency is exacerbated by poor access to care, particularly in much of the 

developing world; persistent stigma that still plagues those suffering from these conditions, 

as well as their families; a striking lack of insight into the underlying pathobiology of these 

syndromes; and a limited armamentarium of efficacious treatments (Krystal and State, 

2014).

Recent advances in gene discovery have set the stage for a transformation in our 

understanding of NPDs. A confluence of high-throughput genomic technologies, team 

science, and very large patient cohorts has identified dozens of definitive risk alleles and 

genes for many NPDs (Lehner et al., 2015). The importance of this recent shift in 

neuropsychiatric genetics--away from unreliable candidate gene studies to highly 

reproducible exome-wide and genome-wide methodologies--cannot be overstated. For the 

first time, the scientific community has access to an expanding set of reliable molecular 

clues to the etiology of NPDs including autism spectrum disorders (ASD), intellectual 

disability (ID), epilepsy (EP) and epileptic encephalopathies (EE), Tourette disorder (TD), 

attention-deficit/hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), 

schizophrenia (SCZ), bipolar disorder (BD), major depressive disorder (MDD), and 

developmental disorders (DDs) as a group.

While there is justifiable excitement about the progress in gene discovery, translating these 

findings to an understanding of the underlying pathobiology of NPDs remains largely 

unrealized. This is due to multiple factors. First, risk-associated genetic variants likely affect 

brain development, an extraordinarily complex process wherein our understanding of 

molecular, cellular and circuit level organization is strikingly limited (Figure 1). 

Furthermore, many of the causal genes likely have pleiotropic biological effects. 

Consequently, the pertinence of a phenotype downstream of a disease-associated 

perturbation in a model system is unclear. Second, the proximal cause of NPD is likely 

alterations in activity patterns in the neural circuits that support mental processes; linking 

genes to these alterations requires that we understand the relevant underlying biological 

pathways, the corresponding cell types and neural circuits in which these pathways are 

present, and the complex interactions between the pathways and the circuits underlying 

these conditions. Only then will we be able to predict the developmental consequences of 

risk-associated genetic variants, as well as understand if the resulting changes are actionable 

later in life. This is a difficult challenge given the functional diversity of genes, cells, and 

circuits associated with NPDs, and our relatively limited knowledge of pathobiology with 

which to make sense of this diversity.
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One particularly promising approach to addressing this challenge rests on the notion of 

convergence. A convergent framework posits that multiple diverse biological perturbations 

carrying risk for a given disorder are likely to converge mechanistically in the path from 

genome to clinical phenotype (Geschwind and State, 2015; State and Šestan, 2012; Willsey 

and State, 2015). Importantly, this common pathway can manifest at many levels, from gene 

and protein networks within a cell to common patterns of neuronal network dysfunction that 

manifest in the complex distributed networks of the brain. Indeed, it is now clear that across 

individuals, similar functional networks can be built out of cells that have widely varying 

patterns of gene and protein expression (Prinz et al., 2004). The converse is also likely to be 

true: dysfunctional networks may show common modes of dysfunction that arise from very 

different cellular-level pathways.

Accordingly, parallel investigations of multiple genes and mutations are critical. Ideally, 

such studies would yield functional data for all NPD risk genes and alleles across multiple 

levels of investigation, including molecular, cell taxonomic, morphological, and neural 

circuit. Data would include both spatial and temporal dimensions, with a particular focus on 

function in human brain development. Such data would likely identify the strongest points of 

functional convergence, the most relevant pathobiology, and an understanding of the 

functional connections between risk-associated genes. This utility of this knowledge is 

exemplified in hypertension: large effect mutations converged on salt handling in the kidney, 

with vectoral effects predicting direction of blood pressure, greatly informing therapy 

(Lifton et al., 2001).

To date, functional data of NPD risk genes remains strikingly limited across many levels, 

including the protein level. While emerging datasets exist that allow one to trace the 

expression of any gene transcribed in the developing and adult human brain and, 

consequently, to investigate convergence across risk genes (Tebbenkamp et al., 2014; 

Willsey and State, 2015), we still lack foundational data regarding how the proteins encoded 

by risk-associated genes interact with other proteins, or DNA. Moreover, we do not 

understand how the vast majority of risk-associated mutations alter protein structure, 

function, and physical interactions. Since perturbations of the coding genome strongly 

contribute to NPD risk (Cappi et al., 2017; Deciphering Developmental Disorders Study, 

2017; EuroEPINOMICS-RES Consortium et al., 2014; Fromer et al., 2014; Hamdan et al., 

2014; de Ligt et al., 2012; Rauch et al., 2012; Sanders et al., 2015; Satterstrom et al., 2018; 

Willsey et al., 2017), determining how genetic variations impact these domains should be a 

high priority.

Fortunately, much of the technology needed to build such resources already exists, and 

therefore, it is time to establish NPD initiatives similar to the Cancer Cell Mapping Initiative 

(CCMI1) (Krogan et al., 2015) and the Host Pathogen Mapping Initiative (HPMI2) (Shah et 

al., 2015). For example, our group has recently formed the Psychiatric Cell Map Initiative 

(PCMI3), which is focused on a number of NPDs. Each of these initiatives aim to (1) 

1http://www.ccmi.org
2http://hpmi.ucsf.edu
3http://pcmi.ucsf.edu
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comprehensively map the networks of physical interactions among relevant proteins; (2) 

map the genetic interactions between risk genes; and (3) establish computational tools to 

reveal higher order relationships (Figure 2). As described below, we propose starting with 

ASD and other early-onset NPDs, due to the substantial number of risk genes of large effect 

already identified. We argue that these efforts are a critical component of an even broader 

effort that would understand how these interactions alter neuronal circuit function and 

behavior and how eventual integration with other data sources (e.g. patient data) has the 

potential to lead to new and rationally designed treatments for NPD.

The Current State of Gene Discovery in Neuropsychiatric Disorders

Unprecedented progress has been made recently in the genetics and genomics of NPDs 

(Figure 3A). Multiple definitive risk-carrying copy number variations (CNVs), protein-

altering mutations, and/or non-coding alleles have been identified in ASD, ID, EP, EE, TD, 

SCZ, MDD, BD and other disorders such as structural brain abnormalities (Bilguvar et al., 

2010; Cross-Disorder Group of the PGC, 2013; Deciphering Developmental Disorders 

Study, 2017; eQTLGen et al., 2018; EuroEPINOMICS-RES Consortium et al., 2014; 

Fromer et al., 2014; Hamdan et al., 2014; Hou et al., 2016; Huang et al., 2017; International 

League Against Epilepsy Consortium on Complex Epilepsies, 2014; Kataoka et al., 2016; de 

Ligt et al., 2012; Power et al., 2017; Rauch et al., 2012; Sanders et al., 2015; Schizophrenia 

Working Group of the PGC, 2014; Willsey et al., 2017). Additional progress is imminent in 

characterizing the underlying genetics of OCD (Cappi et al., 2017; IOCDF-GC and OCGAS, 

2017), ADHD (Garcia-Martínez et al., 2017; Satterstrom et al., 2018), and other NPDs. 

Much of this progress is due to technological and methodological advances, and parallel 

changes in the culture of science, such as team science and open data sharing (Lehner et al., 

2015). The large-scale studies that have resulted, combined with high-throughput and cost-

effective genomic assays, have been the key to reproducible and reliable gene discovery.

Success in identifying specific genetic risk factors has emerged in two broad areas: (1) 

discovery of rare, large effect de novo variants affecting the coding regions of the genome 

(Figure 3A), and (2) identification of common variants of small effect, often mapping to the 

non-coding genome. Initial insights from successful genomic investigations suggest that 

while each disorder involves a wide variety risk alleles types, the specific architecture of 

different syndromes varies considerably. For example, for ASD, ID, TD, and EE, the lion’s 

share of progress in identifying specific loci has been via the identification of highly 

penetrant de novo protein-altering mutations and genic CNVs (Figure 3A) 

(EuroEPINOMICS-RES Consortium et al., 2014; Hamdan et al., 2014; Sanders et al., 2015; 

Willsey et al., 2017). Conversely, for SCZ, MDD, EP, and BD, much of the progress has 

emerged from genome-wide association studies (GWAS) focusing on common alleles of 

small individual effect (eQTLGen et al., 2018; Hou et al., 2016; International League 

Against Epilepsy Consortium on Complex Epilepsies, 2014; Power et al., 2017; 

Schizophrenia Working Group of the PGC, 2014). The trajectory of discovery for OCD, 

ADHD, post-traumatic stress disorder (PTSD), anxiety, and eating disorders is not yet clear. 

The enrichment of rare variants with large effect size within certain NPDs (ASD, TD, ID, 

EE) may be reflective of greater phenotypic severity and earlier onset of these disorders (i.e. 

in early childhood versus adulthood), the combination of which could contribute to a larger 
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impairment of reproductive fitness. In this situation, common variants of relatively high 

frequency would be unlikely due to selection pressure.

Nonetheless, there is striking overlap of genes with rare de novo damaging mutations (Cappi 

et al., 2017; Fromer et al., 2014; Sanders et al., 2015; Satterstrom et al., 2018) (Figure 3, 

Table S2 and Table S3), genes found in large multigenic CNVs (Sanders et al., 2015), and 

common variants implicated by GWAS across these conditions (Autism Spectrum Disorders 

Working Group of The PGC, 2017; Cross-Disorder Group of the PGC, 2013; Cross-Disorder 

Group of the PGC et al., 2013). As additional genetic data accumulates in these conditions, a 

growing list of risk genes will be identified, generating new opportunities to understand 

individual NPDs as well as the relationships between them. Given the overlap in risks 

already observed between these conditions, we anticipate discovery of converging 

pathobiological mechanisms not only within disorders, but also across them.

In ASD, for example, studies leveraging the statistical power afforded by rare de novo 

putatively damaging variants have identified more than 65 strongly associated genes 

(Sanders et al., 2015). The most deleterious variants (likely gene disrupting or LGD) in the 

highest confidence subset of these genes (N = 30) as a group confer approximately 20-fold 

increases in risk, with LGD variants in the highest confidence genes carrying even greater 

risks. To date, there is very little evidence for a multi-hit hypothesis vis-á-vis these highly 

damaging de novo coding mutations. Indeed, a single highly protein-disrupting mutation 

appears sufficient to confer these very large risks, almost certainly operating in conjunction 

with a polygenic background of common alleles. The strong effects imparted by 

heterozygous LGD variants implies that haploinsufficiency is a predominant mechanism of 

pathogenesis. Indeed, in more than half of the top 65 ASD-associated genes heterozygous 

LGD mutations are predicted to produce haploinsufficient phenotypes based on the paucity 

of these mutations in large databases (34 of the 57 represented in the dataset or 52.31%). 

This represents a strong enrichment compared to the rate of 18.65% (2,984 of 15,998 genes) 

observed genome-wide (p = 7.8 × 10−12, hypergeometric test) (Cassa et al., 2017). A lack 

of recurrent variants at the same position also makes it unlikely that these variants are 

contributing risk through gain of function.

Challenges of Moving From Genes to Pathobiology

A driving motivation for gene discovery is the hope that existing knowledge about newly 

identified genes will inform our understanding of the underlying pathobiology of a given 

disorder. However, there are numerous challenges in translating genetic findings into an 

actionable understanding. These challenges differ somewhat based on the types of genetic 

changes that have been discovered. First, the number of genes involved in each disorder is 

quite large. For example, with respect to rare mutations of large effect there are 100’s to 

1000’s in ASD and TD (Sanders et al., 2015; Willsey et al., 2017). Second, disruption of 

each gene may impart multiple, context-dependent effects (pleiotropy) that manifest at 

multiple levels of organization of the brain. These effects may also show variable 

expressivity, particularly in the setting of dosage effects, resulting in varied phenotypic 

consequence. As a result, it can be difficult to pinpoint the relevant pathobiology among 

many potential downstream perturbations. Third, the human brain is a tremendously 
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complex organ, and the inaccessibility of this tissue coupled with incomplete knowledge of 

its molecular, cellular and circuit level organization further complicates understanding the 

roles that specific genes play in these various levels. Together, these are substantial barriers 

in generating and testing pathobiological hypotheses and, ultimately, developing rational, 

targeted therapeutics. Investigation of common variants of small effect suffers from all of 

these issues and further adds extreme polygenicity, difficulty in identifying main versus 

interactive effects, and linking (mostly non-coding) variants to specific genes.

Neurodegenerative diseases exemplify the challenge of translating genetic findings into 

specific biological underpinnings and corresponding therapeutic interventions. Tremendous 

progress has been made in identifying genetic risk factors, including autosomal dominant 

genetic determinants like HTT in Huntington disease (The Huntington’s Disease 

Collaborative Research Group, 1993) or APP, PSEN1, and PSEN2 in Alzheimer’s disease 

(Goate et al., 1991; Levy-Lahad et al., 1995; Sherrington et al., 1995) and powerful, semi-

dominant risk factors such as APOE4 (Corder et al., 1993; Strittmatter et al., 1993). 

However, the development of effective treatments during the past 30 years has eluded the 

field of neurodegeneration despite considerable progress in understanding these conditions 

and the relatively simple underlying genetic architecture (Noble and Burns, 2010).

Leveraging convergent biology is critical for translating a list of genes into biological 

insights. The goal is to integrate a complex set of many observations from one (typically 

“lower”) level of analysis (e.g. risk-associated genetic variants) in order to generate simpler 

hypotheses on another (often “higher”) level of analysis (e.g. cellular processes perturbed in 

NPDs; Figure 1). Central to this concept is the idea that confounds due to pleiotropy can be 

minimized by focusing on points of strong convergence, which are expected to indicate the 

biology most relevant to the disorder in question. For example, a superficial analysis 

suggests convergence of many of the 65 most strongly associated ASD genes into three 

distinct cellular roles: (1) chromatin modification/regulation, (2) synaptic function (De 

Rubeis et al., 2014), and (3) ubiquitination (unpublished data). Additionally, ASD-associated 

genes also show enrichment of protein-protein interactions (De Rubeis et al., 2014) and 

protein-DNA regulatory relationships (Cotney et al., 2015), further suggesting converging 

mechanisms. Finally, recent developments in systems biology approaches have identified 

convergence of ASD genetic findings along the spatial, temporal, and cellular axes of human 

brain development (Willsey and State, 2015). ASD-associated genes appear to be highly co-

expressed during specific developmental epochs and in specific brain regions and cell types, 

most notably in the mid-fetal prefrontal cortex and glutamatergic excitatory neurons, 

particularly deep layer (layer (L) 5/6) projection neurons (Willsey and State, 2015). While 

estimates of the number of genes involved in ASD risk range from hundreds to thousands 

(Sanders et al., 2015), these findings suggest that a large number of risk genes in ASD will 

converge on a smaller number of biological pathways, cell types, and modes of network 

dysfunction. If true, understanding the underlying pathobiology and developing effective 

therapeutics may be broadly feasible in ASD. In a similar vein, despite different pathological 

hallmarks, converging biology has emerged across various neurodegenerative diseases 

associated with distinct genetic variants. These common mechanisms include protein quality 

control and degradation mechanisms, RNA metabolism and stress granules, and innate 
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immunity (Wang et al., 2018). However, identification of more specific pathobiological 

pathways is crucial for translational biology in these disorders.

The resolving power of these types of broad, annotation-focused approaches is often 

constrained or led astray by the assumption that proteins have mostly one function. Many 

physiological proteins and, perhaps even more so, pathogenic proteins, have a diversity of 

actions and interactions, most of which still remain unknown. Therefore, we propose that it 

is imperative to generate hypothesis-free data (based on hypothesis-free genetic findings) 

characterizing the physical and genetic interactions among these genes in cell types present 

in the human brain across both spatial/anatomical and temporal/developmental dimensions 

and, furthermore, to integrate findings across such contexts.

A Convergent Systems Biological Approach to Understanding 

Neuropsychiatric Disorders

The NIMH defines convergent neuroscience as an approach that aims to establish directional 

bridges across different levels of analysis (e.g., genetic, molecular, cellular, circuit) in order 

to fully explain emergent phenomena, and ultimately, pathobiology.4 In this framework, we 

view a bottom-up convergent approach as generating the foundational functional data and 

insights necessary to begin to bridge the knowledge gap between the genome and the clinic 

(Figure 1 and Figure 2). In the initial phase, we suggest that one key area of focus should be 

risk genes for early-onset NPDs since rare, large effect, coding variants offer substantive 

advantages over the investigation of CNVs, non-coding variants, or common variants in 

proteomic and other functional studies. This focus avoids the challenges of interpreting 

multiple genes at once, intergenic loci, and variants of small effect, respectively. ASD is an 

attractive starting point as there is an extensive list of ASD genes with rare coding variants 

(Figure 3A). To concretize what further steps might look like, we describe critical goals 

below, separated into two major categories: (1) Data and Insights and (2) Higher-Level 

Integrations. Furthermore, we discuss potential synergies with initiatives focused on other 

disease areas.

Data and Insights

Interactomes vary among cell type, developmental stage, and physiological context. 

However, it is difficult to choose the contexts in which to characterize risk gene function in a 

given NPD. One attractive approach would therefore be to generate low resolution data 

across a diversity of cell types of the human brain (e.g. iPSC-derived neural progenitor cells, 

cortical excitatory neurons, inhibitory interneurons, microglia, and astrocytes), and then 

focus on the points (cell types) of strongest convergence (e.g. the cell type with the most 

significant enrichment for protein-protein interactions between risk genes). We hypothesize 

these will be the most pathologically relevant cell type(s). Other data can also inform the 

choice of cell type(s). Co-expression networks and specific expression analyses are powerful 

tools for identifying the context(s) most relevant to a given NPD (Willsey and State, 2015). 

Gene expression profiling of bulk tissue and single cells from the developing human brain, 

4See NIH FOA at https://grants.nih.gov/grants/guide/pa-files/PAR-17-176.html for a detailed explanation.
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model organisms, primary human neuronal cell culture, or iPSC-derived cells will therefore 

be crucial data for continuing to identify important biological contexts enriched for NPD 

genes.

Mapping Physical Interaction Networks

A convergent bottom-up approach aims to group risk genes into pathways, and subsequently 

understand the relationships between these pathways (Figure 2). Systematically mapping 

high-resolution physical interaction networks of risk genes--by characterizing the protein-

protein interactions (PPI) and, where relevant, protein-DNA interactions (PDI)--will 

elucidate the pairwise relationships between these genes and other human genes. 

Understanding these specific relationships, and how they are grouped into higher-order 

cellular systems, will help place these genes into their specific functional roles. This level of 

understanding will likely generate testable hypotheses for downstream experiments as we 

can predict the effects of mutations in a particular gene, or the outcome of pharmaceutical 

manipulation of a specific pathway. Given the confounds discussed earlier, generating these 

data in a hypothesis-free manner, searching for the strongest points of convergence, and 

minimizing the extent to which this process is based on existing knowledge/assumptions is 

critical. Importantly, recent gene discovery studies combine data from both LGD and 

missense mutations, setting the stage for studies of allelic series that include both complete 

and partial loss of function mutations.

Indeed, missense variants could be particularly useful for characterizing shifts in interactions 

or structural changes in key protein complexes, which may be more illuminating than 

complete null alleles. Ion channels that harbor both LGDs and missense mutations are 

particularly attractive in this regard, as missense effects on channel function can be 

quantified and compared to LGD variants (e.g., SCN2A, (Ben-Shalom et al., 2017)). 

Knowledge of physical interactions would have an additional benefit in improving gene 

discovery as integration of network-level data identifies additional risk genes based on their 

relationship to currently known risk genes (Cotney et al., 2015; Liu et al., 2014).

Protein-Protein Interaction Networks—While there are extensive PPI databases (e.g. 

Intomics (Li et al., 2017), Bioplex (Huttlin et al., 2015), STRING (Szklarczyk et al., 2015)), 

data from human-brain-specific cells are limited. One approach to generate these data is to 

leverage affinity tag-purification mass spectrometry (AP-MS) to systematically map PPIs in 

iPSC-derived cells, followed by validation of a subset of these interactions in animal model 

systems and in human primary tissue and cells. We have successfully used this system in 

other contexts (Davis et al., 2015; Jager et al., 2011; Krogan et al., 2006; Mirrashidi et al., 

2015). These newly generated data could be integrated with existing data to further improve 

discovery and to understand similarities and differences between interactions in cells of the 

brain versus other tissues.

Protein-DNA Interaction Networks—ASD risk genes tend to function in chromatin 

modification and transcriptional regulation. For example, a protein encoded by strongly 

associated ASD gene, CHD8, appears to regulate other ASD risk genes during a critical mid-

fetal developmental window in the prefrontal cortex (Cotney et al., 2015). ChIP-Seq based 

Willsey et al. Page 9

Cell. Author manuscript; available in PMC 2019 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



characterization of NPD-associated regulatory networks through systematic evaluation of 

implicated chromatin modifiers, transcriptional regulators, and other DNA-binding proteins 

in iPSC-derived cell types would therefore identify potential downstream pathways likely 

relevant to pathobiology. Integrating these data with PPI data would be synergistic, as we 

hypothesize that many of the DNA-binding proteins will associate into chromatin-modifying 

or transcriptional complexes (De Rubeis et al., 2014). We also anticipate that PDIs may 

functionally relate to PPIs--for example, regulatory complexes may control the expression of 

genes encoding interacting synaptic proteins.

Mapping Genetic & Chemogenetic Interaction Networks

AP-MS captures physical interactions between proteins, but misses functional relationships 

between network nodes that do not interact physically (Beltrao et al., 2010) (Figure 2). For 

example, enzymes in a metabolic pathway may have strong functional interaction without 

interacting physically. Furthermore, PPIs do not provide the directionality necessary to 

define a pathway. While PDIs do have directionality and provide important information 

about regulatory relationships between genes, they may be too broad to point directly to 

specific biological pathways. Genetic and chemogenetic interaction mapping are therefore 

natural complements to physical interaction datasets as they facilitate interpretation of gene-

gene relationships in terms of epistasis and pathway hierarchy.

Genetic Interactions—Large-scale systematic genetic interaction (GI) maps were 

pioneered in model organisms such as Saccharomyces cerevisiae (yeast) (Beltrao et al., 

2010), and have recently been implemented in mammalian cells (Bassik et al., 2013; Roguev 

et al., 2013), including approaches using CRISPR and CRISPRi (Boettcher et al., 2018; Du 

et al., 2017; Kampmann et al., 2013; Shen et al., 2017). Beyond detecting GIs between 

individual gene pairs, large-scale GI maps make it possible to group genes into clusters 

based on the similarity of their genetic interaction patterns with other genes. One can also 

identify additional interactions that were not evident in the primary physical interaction data. 

For example, GI maps have defined functionally distinct protein complexes that contain a 

large number of common protein subunits that had eluded definition by PPI methods (Bassik 

et al., 2013; Roguev et al., 2013). Thus, GI and PPI maps could provide complementary 

insights and can be used to recursively refine functional models.

Chemogenetic Interactions—Combining a small molecule as a perturbagen with other 

small molecules or with genetic perturbation is a powerful way to gain functional insight 

behind physical and genetic interaction maps and may suggest novel therapeutic strategies. 

The effects of small molecules on these systems can be considered in two main ways. First, 

systematic perturbation with selected small molecules and then organization of molecules by 

the signatures they induce (e.g. changes in gene expression, shifts in physical interactions). 

Leveraging system-wide shifts in co-expression or physical interactions may help to 

characterize previously unknown off-target effects and diverse mechanisms of action, which 

could otherwise confound these experiments. Second, small molecules, targeting a specific 

protein, can be used as agents that are finely tunable in dosage, timing, and combination--as 

compared to genetic manipulations (Zhao et al., 2011). Again, careful consideration of the 

full spectrum of effects would be critical to reduce confounds.
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Higher-Level Integrations

Hierarchical Modular Analysis

Many approaches to organize network data are based on clustering or community detection 

(Brohée and van Helden, 2006; Vandin et al., 2012), yielding lists of gene clusters or 

‘modules’ which roughly correspond to protein complexes or pathways. However, cells are 

not merely modular (e.g. a list of functions or complexes) but also hierarchical and multi-

scale, in which these subsystems nest within larger units which nest within pathways and 

organelles. Previously, it has been shown that molecular networks embed such hierarchical 

structure, such that analysis of these networks can capture, to large degree, the hierarchy of 

biological processes and components encoded by the cell (Dutkowski et al., 2013). Indeed, 

hierarchies of cell components formulated entirely from systematic physical and genetic 

interaction networks parallel the hierarchies of cell biology built through manual curation 

approaches such as the Gene Ontology (GO) project (The Gene Ontology Consortium et al., 

2000), but are potentially less biased and can identify previously undocumented subsystems. 

Additionally, leveraging the GO as a standard reference that can be aligned to these novel 

hierarchies has proven to be a powerful approach to extracting meaning (Dutkowski et al., 

2013). Hence, by organizing a collection of systematic network data with these tools, 

constructing a complete hierarchy of neurodevelopmental processes and relating them to 

phenotype may be quite plausible (Yu et al., 2016). Clearly, a comprehensive hierarchical 

model of neurodevelopment would represent a major resource with potential to impact a 

broad cross-section of research. Moreover, such work would provide important proof-of-

concept for automated construction of gene ontologies for a wide range of cellular 

processes.

Cellular Phenotypes

Hierarchical modular analysis, or other similar approaches, would help group genes 

(proteins) based on their functional relationships to each other. This would in turn generate 

testable hypotheses and anchor investigations of higher-order phenotypes (Yu et al., 2016); 

for example, high-resolution cellular phenotyping coupled to machine learning (Finkbeiner 

et al., 2015) to investigate cell-level consequences of mutations in a functionally related 

group of genes. Sophisticated computational approaches such as deep learning offer exciting 

and relatively unbiased ways to discover novel phenotypes and reference cell maps will be 

critical reference datasets (e.g. Cell Atlas) (Horwitz and Johnson, 2017; Thul et al., 2017). 

Longitudinal single cell approaches that can capture the dynamic changes in networks and 

the order of events in a cascade would likely be necessary to understand the temporal 

dynamics of development of pathobiology. These data would help resolve changes in 

networks that are primary pathogenic events from those that might be adaptive or 

maladaptive responses (Finkbeiner et al., 2015). These experiments could be conducted in 

cells derived from isogenic iPSCs with induced perturbations and from patient-derived 

iPSCs, as well as in higher-level model systems such as 3D iPSC culture, bioengineered 

tissue models, primary slice tissue culture, and model organisms. The development of in 
vitro engineered models that recapitulate the microenvironmental context of cell-cell 

interactions would accelerate these efforts.
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Interfacing with Clinical Efforts

Eventually, comparing patient-derived and typically-developing tissue will be necessary to 

fully understand pathobiology and may also yield strategies to stratify patients into 

phenotypic subgroups. Appropriate clinical data will be key in order to relate molecular 

modules to higher level phenotypes (Figure 1). Therefore, it will be crucial to work with 

clinicians to collect these data during recruitment and to be able to re-contact patients.

Neural Circuitry and Systems-Level Investigation

Higher-level cell-cell interactions, as well as systems-level neural circuitry represent a 

promising avenue of convergent investigation, particularly for extending insights gained 

from a convergent bottom-up approach (Figure 1). Neuronal circuits exhibit emergent 

behavior that reflects the collective properties of multiple cell types, likely distributed across 

multiple brain regions. Furthermore, homeostatic mechanisms operating at the circuit level 

may alter the properties of one cell type in order to regulate activity in a distinct population 

(Davis, 2006; Nelson and Valakh, 2015). As a result, circuits represent logical loci for the 

manifestation of convergence, in which changes in diverse genes, protein networks, cell 

types, or developmental stages may elicit similar changes in circuit function. Identifying 

such convergence requires the development of specific assays of circuit function; currently, 

these are being developed at both the microscopic and mesoscopic scales. At the 

microscopic scale, rapid advances in genetically encoded calcium indicators and 

multielectrode recording technology have made it possible to measure simultaneous activity 

in many neurons at once (Akerboom et al., 2013; Jun et al., 2017). This, in turn, makes it 

possible to obtain a relatively unbiased screen of many aspects of circuit function that can be 

examined to discover conserved circuit changes (resulting from distinct etiological 

perturbations), which elicit common phenotypes (Luongo et al., 2016). At the mesoscopic 

scale, translational biomarkers observed in mouse models and human patients, e.g., 

synchronized oscillations within electroencephalographic (EEG) or 

magnetoencephalographic (MEG) recordings (Chang, 2015; Senkowski and Gallinat, 2015), 

could link dysfunction of specific cell types to behavioral phenotypes (Cho et al., 2015; 

Sohal, 2012). In vitro systems that allow for precise patterning of cell circuits may also 

facilitate useful controlled studies of neuronal activity and communication. Other 

technologies, such as electrocorticography (ECoG), hold similar potential for phenotyping 

as well (Chang, 2015). Taken together, these emerging methodologies represent an exciting 

opportunity to gain further, high-level insight into the pathobiology of NPDs.

In Vivo Models

Identifying the molecular networks underlying NPD risk genes in human in vitro models 

would provide a powerful framework for understanding cell-intrinsic processes, but may 

lack non-autonomous, circuit-level, and developmental context. The most utilized in vivo 
model for studying NPDs is mice (Mus musculus) (Razafsha et al., 2013). However, 

hypothesis-free characterization of many genes in parallel is cost-ineffective in mouse and 

other mammalian systems, especially because it is largely unclear which cell types, brain 

regions, or time points to investigate. Therefore, we propose an iterative investigation of in 
vitro and in vivo systems, starting with more simple and higher-throughput model organisms 
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(Figure 1). Recently resources have been developed to integrate data related to human genes 

and their variants across most model organisms (Wang et al., 2017).

The fruit fly, Drosophila melanogaster, offers an attractive and relatively simple in vivo 
model to tackle neurologic disease associated genes (Şentürk and Bellen, 2017). High 

throughput behavioral genetic screens have allowed the isolation of numerous genes 

including those that govern diurnal rhythmicity (Sehgal, 2017) and cause epilepsy (Parker et 

al., 2011). A large scale screen for neurodevelopmental and neurodegenerative mutations by 

Yamamoto et al. (2014), led to the isolation of 165 fly genes, 30% of which were associated 

with human disease genes in the OMIM database in 2014. This number has now risen to 

55% in 2018 because of sequencing efforts including those of the Center for Mendelian 

Genetics (Chong et al., 2015) and the Undiagnosed Disease Network (Ramoni et al., 2017). 

In fruit flies, a simple and powerful strategy consists of introducing an artificial exon 

containing a Splice Acceptor-T2A-GAL4-polyA tail in introns of homologs of human genes 

using CRISPR. This nearly always creates strong loss of function mutations because of 

transcriptional arrest at the polyA tail. Expression of transactivator protein GAL4 by the 

endogenous regulatory elements of the tagged gene can then be used to assess the expression 

pattern of the gene with UAS-GFP (Lee et al., 2018) and rescue the mutant phenotype with 

UAS-homologous human-cDNA, humanizing the fly gene. This approach has already 

proven successful, and has provided an assessment of patient-derived variants and identified 

new human diseases. These and other sophisticated rescue strategies allow dissection of the 

basic biological functions of the human genes and can probe into molecular mechanisms 

using secondary screens based on unbiased protein interactions revealed by IP-MS and 

metabolomics (Şentürk and Bellen, 2017; Wangler et al., 2017).

Zebrafish is an alternative in vivo model organism which has recently emerged as a powerful 

system for identifying behavioral phenotypes downstream of NPD risk gene perturbation. 

Zebrafish exhibit complex social behaviors which can be easily assessed in the laboratory 

(Stewart et al., 2014). For example, high-throughput behavioral screening identified night 

time hyperactivity as a phenotypic outcome following loss of the ASD risk gene cntnap2 
(Hoffman et al., 2016). In this study, large-scale drug screening then identified estrogen 

receptor agonists to have a behavioral signature anti-correlated with cntnap2 knockout, with 

some compounds able to rescue this phenotype. A similar high-throughput screening 

approach using scn1a mutations in zebrafish identified clemizole as a potential treatment for 

Dravet syndrome, a common epileptic encephalopathy (Baraban et al., 2013). These kinds of 

large-scale screening efforts are not possible in mammalian systems, and highlight the 

promise of this aquatic species to reveal new behavioral insights and potential therapeutics. 

However, their duplicated genome complicates genetic and proteomic analyses.

The frog (Xenopus tropicalis) is a model organism that boasts all the advantages of zebrafish 

while being 100+ million years evolutionarily closer to humans and possessing a diploid 

genome (Hellsten et al., 2010; Wheeler and Brändli, 2009). Of the top 65 ASD-associated 

genes, 64 have well-annotated orthologs in X. tropicalis, with an average protein sequence 

identity to the human gene of 78 percent (NCBI Homologene). In comparison, mice have 64 

of 65 with 93 percent identity and zebrafish have 62 of 65 with 71 percent identity 

(calculated with closest homolog). Importantly, the basic features of vertebrate brain 
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development are conserved between frogs and humans. In fact, our understanding of neural 

induction comes from experiments in Xenopus, in which Noggin was identified as the key 

factor that acts by inhibiting BMP signaling (Lamb et al., 1993; Zimmerman et al., 1996). 

Many current protocols for inducing neural differentiation in human stem cells in vitro rely 

on this foundational knowledge. Furthermore, self-organizing structures, such as the eye, 

induced from human stem cells were first demonstrated in Xenopus (Eiraku et al., 2011; 

Thomsen et al., 1990). More recently, findings in Xenopus related to NPDs have proven 

translatable to other model systems, such as mice. For example, loss of FMRP (Fragile × 

Mental Retardation Protein) in Xenopus tadpoles leads to defects in neurogenesis that have 

also been observed in FMRP null mice (Faulkner et al., 2015; Guo et al., 2011; Luo et al., 

2010).

Another advantage of studying brain development in Xenopus is an ability to make animals 

in which only half of the brain is targeted by CRISPR reagents. The other half of the brain 

serves as an internal control, and comparison between sides allows for the identification of 

subtle phenotypes that may be difficult to detect in fully mutant animals. These animals can 

then be observed longitudinally over the course of brain development to assay neuroanatomy 

(e.g. b-tubulin-GFP (Marsh-Armstrong et al., 1999)), neural activity (e.g. GcAMP6s, 

National Xenopus Resource5), progenitor biology (e.g. Pax6-GFP (Hirsch et al., 2002)), and 

synapse formation (e.g. PSD95-GFP6) in vivo. Furthermore, like in zebrafish, drug 

screening is straightforward and easily scaled (Wheeler and Brändli, 2009). Finally, high-

throughput behavioral analyses have recently been developed for tadpoles, which show 

sophisticated and predictable responses to a wide variety of external cues (Blackiston and 

Levin, 2012; Rothman et al., 2016).

While these models allow for high-throughput screening in a model amenable to genetics, 

they lack the complex circuitry of the mouse or human brain and will not capture human- or 

mammalian-specific interactions. Therefore, these higher throughput models could be used 

to build hypothesis-free, foundational knowledge regarding cell types, brain regions, and 

time points that are important for pathobiology. Findings from these systems could then 

inform targeted experiments in human iPSCs, organoids, mouse models, and human brain 

slice cultures. Reciprocally, hypotheses formed from experiments in the other systems could 

be tested quickly in Xenopus or Drosophila without major investment. Comparing physical 

and genetic interaction networks in human cell lines to cell lines from these model 

organisms, and relating these comparisons to in vivo phenotypes in these systems may also 

be a powerful approach.

Synergy with Other Initiatives

Excitingly, information flow between the PCMI and other established mapping initiatives 

has the potential to create exciting and productive synergies, including the repurposing of 

therapeutics. Many of the NPD genes harboring germline mutations are somatically mutated 

and drivers of cancer (38 genes are shared among 273 NPD genes and 556 Tier 1 Cancer 

5http://www.mbl.edu/xenopus/tropicalis-stocks
6Nicolas Marsh-Armstrong, unpublished data
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genes, p = 4.01 × 10−13; Figure 3B, Table S2 and Table S3). This suggests that 

understanding the molecular networks underlying cancer could also improve our 

understanding of specific aspects of NPDs, and vice-versa. With respect to the HPMI, there 

is mounting interest in a potential link between maternal immune activation during 

pregnancy and the development of NPDs, including ASD and schizophrenia (Blomström et 

al., 2016; Jiang et al., 2016; Scola and Duong, 2017), though there is conflicting evidence 

(Zerbo et al., 2017). This putative link is interesting given that 43 NPD genes have also been 

implicated as central to virus-related host-pathogen interactions (p = 1.16 × 10−15, n = 

43/273 NPD genes, 601 total HPI genes; Figure 3B, Table S2). Thus, data and insights 

gained from the HPMI could be critical to understanding this potential phenomenon.

Work by the Pediatric Cardiac Genetics Consortium (PCGC) has demonstrated striking 

overlap of genes harboring de novo damaging mutations in congenital heart disease (CHD) 

and in NPDs, and that CHD and NPDs show a high prevalence of co-occurrence (Homsy et 

al., 2015; Jin et al., 2017; Zaidi et al., 2013). For example, 19 genes have de novo LGD 

mutations in both CHD and NPDs, and 48 have damaging mutations (LGD + probably 

damaging missense variants) in both. These events are highly unlikely by chance (p <10−6). 

Similarly, we observe here that established NPD risk genes overlap significantly with CHD 

risk genes (p = 1.67 × 10−9, n = 14/273 NPD genes, 92 total CHD genes; Table S2 and 

Table S3). Genes that are mutated in both CHD and NPDs tend to be highly expressed in 

both developing heart and brain (Homsy et al., 2015). Moreover, CHD probands with de 

novo LGD mutations in the overlapping gene set (Figure 3B) are markedly more likely to be 

diagnosed with NPD, and those with LGD mutations in chromatin modifiers are particularly 

prone to develop NPDs (87%) (Jin et al., 2017). Importantly, because children with CHD 

come to clinical attention in the newborn period, if not in utero, those with mutations that 

impart high likelihood of subsequently developing ASD or other NPDs can be identified at 

birth, affording the opportunity for both observational studies of probands before a clinical 

presentation of NPD, as well as efforts to mitigate neurodevelopmental consequences via 

early intervention. Xenopus has also proven to be a powerful model system for studying 

overlapping NPD genes in the context of CHD (Duncan and Khokha, 2016), again 

suggesting synergistic overlap in understanding the pathobiology of both classes of 

disorders. Notably, CHD genes also overlap with genes from the other initiatives (Figure 

3B).

Conclusions and Outlook

The goal of the PCMI is to uncover new molecular and functional interaction data and 

pathway-level insights as they relate to NPD risk genes, which would have a variety of 

important applications. First, these data would likely facilitate a higher-order understanding 

of NPDs at the molecular, cellular, and circuit level. Second, they would likely reveal new 

targets for future therapeutics development. There are numerous examples of pathway-level 

insights translating to biological mechanisms and therapies, including in cancer research 

(Krogan et al., 2015), infectious diseases (Shah et al., 2015), and hypertension (Lifton et al., 

2001). Identification of in vitro biomarkers through improved pathway-level understanding 

would greatly help therapeutics discovery, and can enable high-throughput phenotypic 

screening with large-scale small molecule libraries. However, the identification of clinically 
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reliable and relevant biomarkers will likely require additional preclinical work in model 

systems. Third, these data would likely feed back into gene discovery by identifying 

physical and genetic interaction partners not yet revealed by genomic methods. This has 

been explored in ASD through approaches layering genetic association data with gene co-

expression and regulatory networks (Cotney et al., 2015; Ideker et al., 2011; Liu et al., 

2014). Fourth, findings could be utilized in conjunction with phenotypic data to explore 

disorder subtypes (Yu et al., 2016).

The approach described here is not envisioned to be the only avenue of investigation of 

NPDs, as there are limitations. First, there are concerns about context; it is difficult to 

determine the appropriate biological context from the outset (e.g., cell types and time 

points). Furthermore, in vitro monoculture methods do not fully reflect the in vivo cellular 

environment in which NPDs develop, particularly given the complex nature of neural tissues. 

Parallel in vivo investigation followed by testing specific hypotheses in more complex in 
vivo (e.g., mice) and in vitro systems (e.g., organoids, bioengineered tissue models) will 

help address concerns about predictive validity of models. Finally, analyses will ultimately 

have to include a comparison of cases and controls, but the most critical (causal) differences 

between these groups likely emerge during very early, preclinical stages (including those in 
utero), making access to truly informative human samples a huge challenge that remains to 

be addressed. As mentioned earlier, children with CHD come to clinical attention very early 

on, and therefore, those with mutations that substantially increase the risk for ASD or other 

NPDs can be identified at birth; perhaps, this may partially mitigate this limitation by 

facilitating ascertainment and study of probands before a clinical presentation of NPD. 

Alternatively, if iPSC-derived models turn out to have good predictive validity, they may 

help overcome this obstacle. Nevertheless, we frame this approach as an important 

foundational tool for beginning to unravel NPDs, the results of which will have to be 

interpreted in context and confirmed in the clinic. A second set of concerns relates to scope. 

Investigations at the pathway level may not readily translate to higher levels of complexity, 

such as circuit level phenotypes or behavior. This would be especially true if strong 

convergence is not observed at the molecular level. Linking bottom-up approaches to other 

efforts to study biological convergence at higher levels--for example, ‘top-down’ and 

‘middle-out’ in vitro and in vivo electrophysiology and systems-neuroscience--will therefore 

be critical.

Despite these challenges, the field is at a potential tipping point in the endeavor to 

understand the pathobiology of NPDs. Hypothesis-free, large scale, genome-wide analyses 

are identifying risk genes and loci at an astounding rate. We have the ability to generate 

diverse cell types of the human brain and to model certain periods of human brain 

development in vitro and in vivo, CRISPR-based genetics approaches are revolutionizing the 

modeling of patient-derived mutations, technologies for generating high-resolution 

molecular data are available, and our ability to extract complex insights from these data with 

machine learning approaches are advancing rapidly. As a result, we now have an 

unprecedented opportunity to bridge the gap between gene discovery and translational 

biology.

Willsey et al. Page 16

Cell. Author manuscript; available in PMC 2019 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Methods

Selection of de novo variants and Identification of risk genes for NPDs and for CHD

We manually curated de novo variants from several large scale studies, representative of the 

current state of the field of whole-exome sequencing in NPDs (Cappi et al., 2017; 

Deciphering Developmental Disorders Study, 2017; EuroEPINOMICS-RES Consortium et 

al., 2014; Fromer et al., 2014; Hamdan et al., 2014; de Ligt et al., 2012; Rauch et al., 2012; 

Sanders et al., 2015; Willsey et al., 2017) as well as in CHD (Jin et al., 2017) (Table S1). We 

omitted targeted sequencing studies in order to generate a fair “exome-wide” comparison 

across disorders. We focused on de novo coding variants only as genes affected by these 

variants are good initial targets for bottom-up approaches. As has been done previously, we 

focused on de novo likely gene disrupting variants (LGD; insertion of premature stop codon, 

disruption of canonical splice site, or frameshift insertion-deletion variant) or probably 

damaging missense (Mis3) variants (Polyphen 2 score ≥ 0.909 (Adzhubei et al., 2013)). We 

then performed a basic TADA analysis (He et al., 2013) for each of the respective disorders 

(ASD, EE, ID, TD, OCD, SCZ, and CHD), with 1000 permutations per disorder, utilizing 

established false discovery rate (FDR) thresholds (De Rubeis et al., 2014; He et al., 2013) to 

identify “high confidence” genes (FDR < 0.1; Table S1). For each disorder, we estimated the 

effect sizes for LGD and Mis3 variants as in He et al. (2013), and set the number of risk 

genes at 500, which fits well with the current literature (Cappi et al., 2017; Deciphering 

Developmental Disorders Study, 2017; EuroEPINOMICS-RES Consortium et al., 2014; 

Fromer et al., 2014; He et al., 2013; Jin et al., 2017; Sanders et al., 2015; Willsey et al., 

2017). We also identified risk genes based on the 2017 Deciphering Developmental 

Disorders (DDD) study (Deciphering Developmental Disorders Study, 2017), which 

examined mutations in developmental disorders as a group. Therefore, for the purposes of 

generating a list of all NPD risk genes (Figure 3), we used the union of the DDD genes with 

the risk genes from the other NPDs (Table S1).

Identification of Cancer and Host-Pathogen genes

We utilized the Tier 1 genes in the Cancer Gene Census (Futreal et al., 2004) as our list of 

cancer genes. This Tier is reserved for genes known to play a causative role in cancer. This 

results in a list of 556 cancer genes after trimming to genes with mutation rates estimated for 

TADA (Table S1). We prioritized host-pathogen interacting (HPI) genes based on the 

database HPIDB 2.0 (Ammari et al., 2016). This database summarizes all known 

(experimentally validated) interactions between proteins from host species (animal, plant) 

and proteins from pathogenic species. Each interaction is assigned a confidence score. To 

prioritize critical HPI genes, therefore, for each of the host proteins, we generated a 

‘weighted’ connectivity metric (“gene degree”), by summing the confidence scores for each 

unique interaction that protein has. In the case of multiple reported interactions with the 

same pathogen protein, we used the maximum confidence score reported. We prioritized 

HPI proteins based on their weighted connectivity, keeping only those in the upper quartile 

for all reported host proteins. This results in a list of 601 proteins after trimming to genes 

covered by TADA (Table S1).
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Overlap analysis

We estimated the significance of gene overlap across individual NPDs in R with the 

hypergeometric function phyper. More specifically, phyper(q, m, n, k, lower.tail = FALSE) 
where q = number of overlapping genes - 1, m = gene count for set testing overlap with, n = 

number of genes in corrected TADA background - m, k = number of genes in primary gene 

set. For example, for the overlap of ASD with ID, the function used was phyper(4–1, 28, 
18572*0.9–28, 62, lower.tail = F), which is p = 3.29 × 10–6. We also assessed overlap 

between NPD genes as a group and CHD, Cancer, or HPI genes (as well as each of their 

overlaps) with this function (Table S2 & Table S3). We used the list of genes from TADA 

(He et al., 2013) as the background for each test, and excluded all genes/proteins not present 

in this population. Moreover, to account for differences in sequencing coverage across the 

various disorders (we do not expect all genes to have sufficient sequencing coverage), the 

total number of background genes used was reduced by 10%, resulting in a slightly more 

stringent test.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1 - 
Levels of Pathogenesis and Analysis. This figure outlines the different levels on which a 

disorder could manifest or be investigated, starting from a genetic variant. While much 

headway has been made in characterizing the genetic architecture of neuropsychiatric 

disorders, many of the other levels of analysis remain poorly understood. The ‘bottom-up’ 

approach discussed here targets the basic levels of this hierarchy, building a strong 

foundation for the translation of genetics to a higher level of biological understanding. ‘Top-

down’ and ‘middle-out’ approaches will be critical as well.
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Figure 2 - 
Conceptual Overview of a Bottom-up Approach. The objective of a ‘bottom-up’ approach, 

such as the one depicted here, is to translate genetic findings to specific insights about 

pathobiology of neuropsychiatric disorders. The first step is the identification of specific 

genes. To date, the majority of gene-level discoveries have been made through the study of 

high effect-size de novo variants (top left). An example association graph is displayed at the 

top right, with contributions from different classes of variants shown per gene (yellow versus 

blue; e.g. missense versus nonsense variants). G1–10 represent generic genes or the proteins 
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they encode, and T1-T3 transcription factors. “GN” represents a novel gene implicated 

through network analyses. There are three main types of interaction networks that could be 

mapped: Protein-protein interaction (PPI), protein-DNA interaction (PDI), and genetic 

interaction (GI) networks. The PPI networks will identify protein complexes (thick edges) as 

well as relationships between complexes (thin edges). Similarly, PDI networks would 

identify connections that correspond to putative regulatory relationships between proteins 

and DNA regulatory regions of other genes (e.g. “G4-R”). GI networks would identify 

functional relationships between genes with directionality (red indicates positive 

interactions, blue negative interactions). These orthogonal datasets should ultimately be 

integrated, in the context of a cell, to generate a pathway-level understanding. These 

hypotheses should be followed up cellular phenotyping and validation experiments.
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Figure 3 - 
Neuropsychiatric Disorder Genes Overlap with Other Disorders and Initiatives. (A) Risk 

genes for neuropsychiatric disorders (NPDs) overlap. We utilized a common pipeline to 

identify high confidence genes (false discovery rate (FDR) < 0.1) for autism spectrum 

disorders (ASD), intellectual disability (ID), epileptic encephalopathies (EE), schizophrenia, 

(SCZ), Tourette disorder (TD), and obsessive-compulsive disorder (OCD) (Table S1). We 

considered de novo variants from whole exome sequencing studies only and leveraged 

TADA to estimate FDRs (He et al., 2013). We omitted targeted sequencing studies in order 
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to generate a fair “exome-wide” comparison across disorders and focused on de novo coding 

variants only as non-coding variants are outside of the scope of this review. NPDs with 5 or 

more high confidence risk genes are shown (i.e. TD and OCD are excluded), and the sizes of 

the ovals are proportional to the number of genes identified for each disorder (total number 

in parentheses). ASD and ID as well as ASD and EE strongly overlap. Each p-value is 

corrected for multiple comparisons. Some of these studies excluded probands with co-

morbid NPDs. For example, in the EE studies, probands with moderate-to-severe 

developmental impairment, or diagnosis of autism or pervasive developmental disorder 

before the onset of seizures were excluded. Therefore, the observed overlaps may 

underestimate the extent of shared genetic etiology. Similarly, we identified these genes 

solely based on de novo (rare) variants. Hence, the well-documented genetic overlap at the 

common variant level is not reflected here. (B) NPD genes overlap with other disorders and 

initiatives. Using the same methods as in A, we identified risk genes for congenital heart 

disease (CHD). We also generated a combined list of NPD genes, corresponding to the 

unique set of genes from pooling A with the set of genes identified from analyzing the 

Deciphering Developmental Disorders (DDD) studies (Table S1), which examine 

developmental disorders collectively. The DDD genes were omitted from A because many of 

the NPDs are represented in this cohort. Finally, we derived a list of Cancer genes from the 

Cancer Gene Census (Futreal et al., 2004) and HPI genes from the HPIDB 2.0 database 

(Ammari et al., 2016) (Methods and Table S1). High confidence NPD genes significantly 

overlap with each of the other three gene sets (Table S2 and Table S3) suggesting strong 

synergy between NPD initiatives and the Cancer Cell Map Initiative (CCMI), the Host 

Pathogen Map Initiative (HPMI), and similar efforts in CHD.
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