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Abstract

Motivation: Genome-wide clustered, regularly interspaced, short palindromic repeat (CRISPR)-

Cas9 screen has been widely used to interrogate gene functions. However, the rules to design bet-

ter libraries beg further refinement.

Results: We found single guide RNA (sgRNA) outliers are characterized by higher G-nucleotide

counts, especially in regions distal from the PAM motif and are associated with stronger off-target

activities. Furthermore, using non-targeting sgRNAs as negative controls lead to strong bias, which

can be mitigated by using sgRNAs targeting multiple ‘safe harbor’ regions. Custom-designed

screens confirmed our findings and further revealed that 19 nt sgRNAs consistently gave the best

signal-to-noise ratio. Collectively, our analysis motivated the design of a new genome-wide

CRISPR/Cas9 screen library and uncovered some intriguing properties of the CRISPR-Cas9 system.

Availability and implementation: The MAGeCK workflow is available open source at https://bit

bucket.org/liulab/mageck_nest under the MIT license.

Contact: wli2@childrensnatioal.org or myles_brown@dfci.harvard.edu or xsliu@jimmy.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The clustered, regularly interspaced, short palindromic repeat

(CRISPR)-Cas9 system is a new genome editing technology that

becomes prominent in many biomedical research areas. In this sys-

tem, single guide RNAs (sgRNAs) direct Cas9 nucleases to induce

double-strand breaks at targeted genomic regions (Cong et al.,

2013; Jinek et al., 2012; Mali et al., 2013). Based on this system,

CRISPR-Cas9 loss-of-function screens can interrogate the functions

of coding genes (Koike-Yusa et al., 2014; Shalem et al., 2014;

Wang et al., 2014; Zhou et al., 2014) and non-coding elements

(Canver et al., 2015; Korkmaz et al., 2016; Zhu et al., 2016), and

generate hypotheses on cell dependency, drug response, and gene

regulation in a high-throughput and unbiased manner (Diao et al.,

2016; Hart et al., 2015; Parnas et al., 2015; Wang et al., 2015).
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From a computational biology perspective, several algorithms have

been developed to characterize sgRNAs with high specificity and ef-

ficiency (Doench et al., 2016; Doench et al., 2014; Hsu et al., 2013;

Xu et al., 2015) that can be used in designing CRISPR screen libra-

ries. Despite these efforts, methods for designing CRISPR screens

are still being refined from different aspects. First, sgRNA outliers,

or sgRNAs with discrepant behaviors from other sgRNAs targeting

the same gene, are common in screen data, but their features and

mechanisms remain poorly characterized. Second, it’s known that

spacer length may vary in the CRISPR-Cas9 system (Fu et al., 2014;

Morgens et al., 2017), but the optimal length was only studied in

single guide and single target. Furthermore, it remains unclear how

spacer lengths affect signal-to-noise ratio (the extent of the fold

changes of guides compared to their variances) in the screening

settings.

We studied both issues based on the MAGeCK-VISPR model we

previously developed (Jiang et al., 2015; Li et al., 2015). By examin-

ing published screens (Wang et al., 2014, 2015), we identified out-

lier sgRNAs and uncovered their sequence features to inform future

library design. We further showed stronger off-target cleavages con-

tribute to the outlier behaviors. We also found a strong bias in

CRISPR screen when normalizing read counts with commonly used

non-targeting sgRNAs and proposed an alternative normalization to

mitigate such bias. We performed custom-designed screens to valid-

ate these findings, and further explored sgRNA design rules that can

improve the screening results, including the optimal spacer length

for higher cutting efficiencies and better signal-to-noise ratios.

Finally, we designed a genome-wide CRISPR/Cas9 screening library

based on these new rules and demonstrated its performance in iden-

tifying known essential genes in different cell types.

2 Materials and methods

2.1 The MAGeCK and MAGeCK-VISPR model
Our laboratory has previously developed algorithms MAGeCK and

MAGeCK-VISPR for identifying CRISPR screen hits in different

scenarios(Li et al., 2014, 2015). In two-condition comparisons,

MAGeCK uses a negative binomial (NB) model to assess the degree

of selections of individual sgRNAs and adopts robust rank aggrega-

tion (RRA) algorithm (Kolde et al., 2012) to aggregate multiple

sgRNAs on a gene to evaluate gene selection. MAGeCK-VISPR (Li

et al., 2015) further quantitatively estimates gene selections by opti-

mizing a joint likelihood function of observing the read counts of

different sgRNAs with varying behaviors in multiple conditions.

The output of MAGeCK-VISPR is a ‘beta score’ for gene g in condi-

tion r, bgr, analogous to the ‘log fold change (LFC)’ in differential

gene expression analysis. More specifically, the read count of

sgRNA i in sample j, or Kij; is modeled as:

Kij � NB lij; ai

� �

Where lij and ai are the mean and over-dispersion factor of the NB

distribution, respectively. The mean value lij is further modeled as:

lijðb
*

Þ ¼ sjexp
X

r

djrbgr

 !

Where sj is the size factor of sample j for adjusting sequencing

depths of the samples, and b
*

is the vector of all beta scores for gene

g. To deal with complex experimental settings, we included design

matrix (D). With J samples affected by R conditions, D is a binary

matrix with its element djr ¼ 1 if sample j is affected by condition r

and 0 otherwise. The objective function is a form of regularization:

b̂gr ¼ argmax
�X

ij

logfNB

�
Kij; lijðb

*

Þ; ai

�
þ K b

*
� ��
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Where fNB is the probabilistic density function (PDF) of the NB dis-

tribution, and

Kðb
*

Þ ¼
X

r

�bgr
2

2r2
r

The estimated SD, rr, was calculated using the naive estimators

of bgr.

2.2 Identifying sgRNA outliers
sgRNA outliers are those that have different behaviors compared

with other sgRNAs targeting the same gene. A single outlier that

does not fit the assumed distributions can overly influence the esti-

mations of the beta score. Therefore, we tried to identify these out-

liers using three-step approach: candidate outlier prediction,

candidate outlier validation and outlier detection.

Step-1: Candidate outlier prediction

A sgRNA is likely to be an outlier if its log fold is extremely different

from other sgRNAs. Therefore, in the first step, candidate outlier

prediction, we identified the potential sgRNAs outliers by consider-

ing their LFCs. For each paired condition, we calculated the median

and SD of the LFCs and defined the candidate outliers if their LFCs

fall beyond median 6 1.5 SD estimation (rÞ. Specifically, we fol-

lowed the ‘quantile matching’ approach in DESeq2 (Love et al.,

2014): r is chosen such that the (1–p) empirical quantile of the abso-

lute values of LFC (QjLFCj) matches the (1–p/2) theoretical quantile

of N 0; r2
� �

(QN), where p is set as 0.32:

r ¼
QjLFCj 1� pð Þ

QN 1� p
2

� �
Note that for a distribution with a long tail, the traditional estima-

tion of SD will be distorted. Assuming that samples with beta scores

close to 0 follows normal distribution, we set a value of p¼0.32 to

calculate SD using only the 68% of samples (samples within 1 SD)

closes to zero. In this way, the samples with beta scores far from

zero will not distort the estimation of SD.

Step-2: Candidate outlier in silico validation

Noticing that a sgRNA outlier may significantly influence the beta

score estimation, a candidate outlier is validated if there is a signifi-

cant change of beta score; bgr, after removing the candidate outlier.

Therefore, in the second step, the candidate outlier in silico valid-

ation, we calculated the beta score with and without the candidate

outlier respectively using Equation (1). Define:

braw ¼ bgr, when all sgRNAs are used;

bi ¼ bgr, when sgRNA i is excluded.

Then candidate outlier i is in silico validated if:

log abs brawð Þ=abs bi
� �� �

> 5� 0:2�number of sgRNAsð Þ

With outlier removal, we could prevent the beta score estimation

from distortion by strong outliers.
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Step-3: Outlier detection

With previous two steps, we could estimate the beta scores robustly.

However, some moderate outliers cannot be identified if sufficient

sgRNAs prevent the beta score from distortion by a single outlier.

Therefore, with robust estimators of beta scores, in the final step,

we re-defined a sgRNA as an outlier if the probability of observing

its count conditioned on pre-calculated beta score falls below a cer-

tain threshold. In other words, sgRNA i is an outlier if:

X
j

logfNB

�
Kij; lijðb

*

Þ; ai

�
< T

where fNB is the PDF of the NB distribution. The threshold T was

determined such that 90% of the validated outliers defined in Step 2

can be removed.

2.3 Extracting sequence features using elastic-net

regression
To identify the sequence features that associate with stronger

sgRNA outliers, we applied Elastic-Net regression to extract the se-

quence features as our previous work (Xu et al., 2015). Suppose X ¼
fX1;X2; . . . ;Xng is the set of encoded sequence vectors and

Y ¼ fY1;Y2; . . . ;Yng is the set of outputs representing whether the

sgRNAs are stronger outliers, where n is the number of sgRNAs

samples for training. If sgRNA i is an outlier, the corresponding

Yi ¼ 1 and 0 otherwise. Let M be the length of the input vectors;

the Elastic-Net regression computes the parameters

b ¼ b1; b2; . . . ; bM½ �T that minimize an object function E:

E ¼ jjY� bTXjj2 þ k
�
ajjbjj1 þ ð1� aÞjjbjj2

�

Where a and k are parameters estimated using cross validation, jjbjj1 ¼X
ii
jbij and jjbjj2 ¼

X
i
b2

i . We used glmnet in R package to imple-

ment the Elastic-Net regression (Friedman et al., 2010).

2.4 CRISPR screening design and experimental

procedure
We designed and performed a CRISPR screening experiment to

study the effects of different normalization methods and different

sgRNA lengths. The screening library has four types of sgRNAs:

sgRNAs targeting AAVS1 (a region whose disruption does not have

any lethal phenotype), non-targeting sgRNAs, sgRNAs targeting 51

ribosomal genes and 503 cancer-related genes that are considered to

be lethal. The details of the library design and the experiment are in

Supplementary Material.

3 Results

3.1 sgRNAs outlier identification and characterization
Different sgRNAs targeting the same gene can lead to varying phe-

notypes or selection levels in the screen due to different cleavage and

repair efficiencies, local chromatin structure, protein domains and

potential off-target effects, etc. (Hsu et al., 2013; Knight et al.,

2015; Shi et al., 2015). Some sgRNAs with outlier phenotypes com-

pared with other sgRNAs on the same gene, regardless of the causes,

behave consistently in multiple screen conditions (Wang et al.,

2015; Fig. 1a and b), suggesting that the discrepant phenotypes

could arise from intrinsic features of the sgRNA in addition to ran-

dom variances in the experiments. We are especially interested in

‘strong negative outliers’ (as Fig. 1a), which are defined as having

much larger negative LFCs compared with other sgRNAs targeting

the same gene and are more likely caused by off-target cleavages.

Based on the MAGeCK-VISPR model, we implemented an ap-

proach to identify such outliers, which tests whether one sgRNA has

big effects on the gene-level beta score estimates or the probability

of observing the sgRNA conditioned on the gene-level beta score is

low (Section 2). This outlier detection and removal approach did

identify sgRNAs with aberrant LFC on a gene (Fig. 1c). In published

screens on four leukemia cell lines (Wang et al., 2015), 9000 out of

182 K sgRNAs on average were identified as outliers. Among them,

911 sgRNAs are outliers that are consistent in all four screens

(Supplementary Fig. S1a) and 80% of these outliers (729/911) are

‘strong negative outliers’ with stronger negative selection compared

with other gRNAs on the same gene (as Fig. 1a). To rule out the pos-

sibility that these sgRNAs knockout their intended targets with ex-

tremely high efficiencies, we further limited our analysis to 564

outliers (Supplementary Table S1) that target known non-essential

genes (Hart and Moffat, 2016), as inactivating these genes is unlike-

ly to affect cell growth.

Comparing the sequence features of these 564 ‘strong negative

outliers’ with all 18 000 sgRNAs in the library, we found that they

have higher G-nucleotide but lower C-nucleotide counts in the target

DNA sequence (Fig. 1d, Supplementary Fig. S1b–d). To identify po-

tential sequence features that can distinguish outliers and non-

outliers, we trained an elastic net model (Friedman et al., 2010), a

regularized regression method that considers both the L1 and L2

penalties of the lasso and ridge methods. In the training dataset, the

predictor variable is a binary vector representing the presence or ab-

sence of the nucleotides, and the response variable is a binary vari-

able indicating whether the gRNA is an outlier. Our model showed

that outliers tend to contain more G-nucleotides in the 10-nucleotide

(a)

(d) (e) (f)

(b) (c)

Fig. 1. Identifying and characterizing stronger negative sgRNAs outliers. (a, b)

The LFCs of 10 sgRNAs targeting FARP1 and RPSA in 4 screens (KBM7, K562,

Jiyoye and Raji). The red lines represent sgRNAs outliers, and the blue lines

represent other sgRNAs. (c) Identifying and removing aberrantly stronger

negative outliers (red dots). Each row of dots represents the LFCs of sgRNAs

targeting the same gene. (d) The G-nucleotide counts of sgRNAs in three

groups: stronger negative outliers (red), non-outliers (blue) and all sgRNAs

(green). (e) The sequence features of stronger negative outliers versus non-

outliers derived by elastic-net regression. The ‘Seed’ and ‘Non-seed’ regions

are defined as a 10-nucleotide window proximal to and distal from the PAM

motif, respectively. The data for Figure 1a–e is from a public screening data-

set (Wang et al., 2015). (f) The knockout of CD33 expression with different

groups of sgRNAs. The ‘Perfect Match’ are 65 perfect-match sgRNAs with an

NGG PAM that produced effective CD33 knockout defined in (Doench et al.,

2016). The ‘Negative Controls’ are the same set of sgRNAs with non-NGG

PAM. Those in ‘�5 ‘G’s in Non-seed region’ and ‘<5 ‘G’ in Non-seed region’

are sgRNAs with an NGG PAM but 1-nt mismatch compared to the ‘Perfect

Match’ sgRNAs
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non-seed region distal from the PAM motif (Fig. 1e). To exclude

possible biases of a single library, we confirmed our finding using

another screen dataset (Meyers et al., 2017; Supplementary Fig.

S2a–b). We further tested our predictive model on other CRISPR-

Cas9 knockout (Wang et al., 2014) or CRISPR-dCas9 inhibition

screening (Horlbeck et al., 2016) datasets. The output of the model

is an ‘outlier score’, indicating how likely the input sgRNA is an out-

lier. We found that ‘strong negative outliers’ in both datasets have

significantly higher outlier scores than non-outliers (Supplementary

Fig. S2c and d), suggesting outlier features we found are consistent

across different datasets. These findings also suggest that a better

CRISPR sgRNA design should at least avoid extreme G content in

the non-seed region in case of potential off-target effects.

Considering that strong off-target activities can lead to ‘strong

negative outliers’, we re-analyzed a previous study that measured

the off-target activities between mismatched sgRNA: DNA pairs,

defined as the decrease of CD33 protein level by sgRNAs with 1 nu-

cleotide mismatch compared to the target DNA in CD33 locus

(Doench et al., 2016). Instead of modeling off-target activities as

functions of mismatched nucleotide pair and position as in (Doench

et al., 2016), we tested how the nucleotide compositions in the Non-

seed region affect the off-target activities. SgRNAs with more ‘G’s

(�5) in Non-seed region have significantly higher off-target activ-

ities than those with fewer ‘G’s (<5) (Fig. 1f). In contrast, there is no

difference in off-target activities between sgRNAs with more (�5)

and fewer (<5) ‘C’s (Supplementary Fig. S2e). These findings sug-

gest sgRNAs targeting sequences with high G-content in the non-

seed region have stronger off-target activities, which can lead to

strong outlier phenotypes.

3.2 SgRNAs targeting multiple non-essential genes as

negative controls reduce false positives in the screen
Correct interpretations of genome-wide screens require proper read

count normalization. Since most sgRNAs should generate knockouts

without causing phenotype, a straightforward approach is to nor-

malize based on the total read counts of all sgRNAs (Love et al.,

2014; ‘total normalization’). Alternatively, many screen libraries in-

clude ‘non-targeting’ negative control sgRNAs, which match no-

where in the genome, for normalization (‘non-targeting sgRNA

normalization’). In public datasets (Wang et al., 2014, 2015), ‘total

normalization’ resulted in a beta-score distribution centered on zero

(Supplementary Fig. S3a), while ‘non-targeting sgRNA normaliza-

tion’ led to a skewed distribution of beta scores where most of the

genes appear as negatively selected (Fig. 2a). The bias of ‘non-target-

ing sgRNA normalization’ is introduced when sgRNAs targeting

non-essential genes impede cell growth from genome cleavage tox-

icity (Aguirre et al., 2016; Munoz et al., 2016), regardless of the

gene knockout effects. Therefore, a more appropriate choice of

negative controls is a set of sgRNAs targeting non-essential DNA

regions. These sgRNAs have already been included in recent library

design (Wang et al., 2017). Indeed, when normalizing read counts

using sgRNAs targeting the ‘gold standard’ 927 non-essential genes

previously derived from pooled shRNA screens (Hart et al., 2014),

the beta score distribution is centered on zero (Fig. 2b).

In genome-wide screens, normalizations using either sgRNAs

targeting non-essential genes or all genes lead to similar results

(Fig. 2b, Supplementary Fig. S3a), as the majority of the genes are

assumed to be non-essential. Such assumption may fail in focused

(or custom) screens where many targeted genes may be under selec-

tion, which necessitates the selection of better negative control

sgRNAs. AAVS1 (adeno-associated virus integration site 1) is a ‘safe

harbor’ site preferred for gene knock-ins (DeKelver et al., 2010;

Sadelain et al., 2011). This region appears to be epigenetically open

for efficient cleavage, yet cutting or modification at this site results

in no phenotypic changes (Ogata et al., 2003). To test whether

sgRNAs targeting AAVS1 could serve as good negative controls, we

first designed a genome-wide screen library containing 134 AAVS1-

targeting sgRNAs, 349 non-targeting sgRNAs, as well as five

sgRNAs per gene in the human genome and performed screening in

a prostate cancer LNCaP-abl cell line. SgRNAs targeting AAVS1 or

non-essential genes induced similar LFCs that are stronger than non-

targeting sgRNAs, confirming the existence of cleavage toxicity in

non-essential regions (Fig. 2c). Also, by comparing normalization

methods using different sets of sgRNAs (all, non-targeting, AAVS1-

targeting and non-essential-gene-targeting sgRNAs, respectively),

we found normalization using the AAVS1- and non-essential-genes

targeting sgRNAs result in almost identical distributions of beta

scores (Fig. 2d). Moreover, both ‘all sgRNA normalization’ and

‘non-targeting sgRNA normalization’ lead to biases, though to dif-

ferent degrees (Fig. 2d). Since normalization using control guides is

an essential step in many computational methods including

MAGeCK-VISPR and CRISPR Score (CS; Wang et al., 2014), the

results of these methods will also be affected by the choice of nega-

tive controls (Supplementary Fig. S3b). While methods that only

rely on gRNA ranks such as MAGeCK-RRA (Li et al., 2014) will

not be affected, the rankings could not clearly distinguish genes that

are negatively, positively, or not selected, which are important when

comparing screens over multiple conditions.

To evaluate the normalization methods in a focused screen, we

also designed a small screening library that targets �600 genes,

including ribosomal genes and well-known cancer-related genes

(Section 2, Supplementary Tables S2 and S3). The library also

includes the same set of AAVS1-targeting and non-targeting sgRNAs.

(a) (b)

(c) (d)

Fig. 2. Normalizing read counts using sgRNAs targeting non-essential genes

or AAVS1. (a-b) The distribution of beta scores in public dataset (Wang et al.,

2015) using non-targeting sgRNAs (a) and sgRNAs targeting non-essential

genes (b) for normalization. (c) The LFC distribution of 349 non-targeting

sgRNAs, 467 non-essential genes-targeting sgRNAs, 133 AAVS1-targeting

sgRNAs and 725 essential genes-targeting sgRNAs. P-values were calculated

using two-sided Student’s t-test. (d) The distribution of beta score using all

sgRNAs (black), non-essential genes-targeting sgRNAs (green), AAVS1-

targeting sgRNAs (red) and non-targeting sgRNAs (blue) for normalizing read

counts, respectively
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Similar to genome-wide screens, AAVS1-targeting sgRNAs induced

stronger negative selections compared with non-targeting sgRNAs

(Supplementary Fig. S3c). Furthermore, using AAVS1-targeting

sgRNAs as negative controls in our MAGeCK algorithm substantially

increases the sensitivity of the screen, while keeping the same level of

false positives (Supplementary Fig. S3d). These results validated the

applicability of including AAVS1-targeting sgRNAs in genome-wide,

and more importantly in focused screen libraries.

3.3 19 nt spacers give rise to higher cutting efficiencies

and better signal-to-noise ratio
In spCas9 gene editing systems, truncated sgRNAs have been

reported to have a better cleavage specificity compared with full-

length sgRNAs (Fu et al., 2014). However, the performances of

truncated sgRNAs in screens compared with full-length sgRNAs, as

well as the optimal length of truncated sgRNAs, have yet to been

fully determined. Therefore, in our small screening library, we

designed sgRNAs with 20 nt spacers for each ribosomal gene and

AAVS1-targeting sgRNAs and then truncated them to 19 nt, 18 nt

and 17 nt (Section 2). We found that 19 nt sgRNAs give significantly

stronger LFCs in ribosomal genes, reflecting higher cleavage efficien-

cies (Fig. 3a). If we use the difference between positive-control

sgRNAs (sgRNAs targeting ribosomal genes) and negative-control

sgRNA (AAVS1-targeting sgRNAs) as a metric for signal-to-noise,

19 nt spacers on average give the best performance (Supplementary

Fig. S4a) in 11 of 12 screens. Moreover, for each ribosomal gene,

19 nt sgRNAs gave lower relative SD (i.e. SD divided by mean;

Supplementary Material.) of LFCs, indicating a more stable behav-

ior (and potentially less off-target cleavages) of gene knockout

effects (Fig. 3b).

3.4 A new genome-wide library improved screen

performance
Using the rules we uncovered in this study and our previous work

(Xu et al., 2015), we designed two sub-libraries that target 18, 493

human coding genes (named ‘H1’ and ‘H2’; Supplementary Tables

S4, S5). Each sub-library includes sgRNAs with 19 nt-long spacers

and contains 134 AAVS1-targeting sgRNAs, 349 non-targeting

sgRNAs, as well as five sgRNAs targeting each gene in the human

genome. After removing sgRNAs that are enriched in G-nucleotide

(>40%) and have perfect matches to other coding regions, we pri-

oritized the remaining sgRNAs based on their predicted cleavage

efficiencies(Xu et al., 2015) and the number of perfect matches in

the whole genome (see Methods). We conducted screens in LNCaP,

abl and T47D cell lines using the H1/H2 library and compared to

other genome-wide screen datasets, including Brunello library

(Doench et al., 2016), TKO library (Hart et al., 2015) and Ong li-

brary (Ong et al., 2017). We found H1/H2 is among the libraries

with fewest outlier sgRNA rates (Supplementary Fig. S4b).

Assuming that a good library should be able to rank known essential

genes as most negatively selected ones, we found that H1/H2,

Brunello and Ong libraries outperformed GeCKOv2 and TKO in

identifying known essential genes (Supplementary Fig. S4c–d).

These results provide support for our refined CRISPR screen library

design rules.

4 Discussion

The CRISPR-cas9 knockout screen has been used to interrogate the

functions of coding genes and non-coding elements systemically, but

library design is still in their early stage. We first applied MAGeCK-

VISPR to public genome-wide screen data and identified a set of

‘strong negative outlier’ sgRNAs and their sequence characteristics:

higher G-nucleotide counts especially in regions distal from PAM

motif. Unexpectedly, the effect of the outliers is independent of the

count of C-nucleotide, different from previous studies that suggest

the role of ‘GC’ content in determining cleavage efficiencies

(Doench et al., 2014; Haeussler et al., 2016; Wang et al., 2014).

Since G-C hybridization strengths in DNA-RNA and RNA-DNA

hybrids are similar, the distinct effect of G- and C-nucleotides sug-

gests a more crucial role of DNA-endonuclease rather than DNA-

RNA interaction in determining outlier effects. Moreover, sgRNAs

with higher G-contents in regions distal from PAM motif have stron-

ger off-target activities. It is worth noting that the off-target activity

of each sgRNA in Figure 1f was measured between one sgRNA-

DNA pair, and the seemly minor difference between sgRNAs with

high and low G-contents will be multiplied by the enormous mis-

matched sgRNA-DNA pairs in the genome and lead to sgRNA out-

liers in screens.

Although toxicity from CRISPR cutting has been reported, using

non-targeting control for normalization is still a common practice in

published literature (Aguirre et al., 2016; Wang et al., 2014). We

found that normalization using non-targeting sgRNAs, as compared

to using all sgRNAs or sgRNAs targeting non-essential genes, could

lead to higher false positives (Supplementary Fig. S3d) in calling

essential genes. The reason might be because cleavages in non-

essential regions can still induce toxicity in cell growth, in consist-

ency with two recent studies showing false positive hits from highly

amplified regions in cancer genomes (Aguirre et al., 2016; Munoz

et al., 2016). Through CRISPR screening experiments, we confirmed

that sgRNAs targeting non-essential genes or safe-harbor regions

could serve as better negative controls and result in fewer false posi-

tives compared with non-targeting sgRNAs. Since a single chroma-

tin region may be subject to copy number variations in different cell

types, sgRNAs targeting multiple non-essential regions will serve as

more robust negative controls. For instance, only 5% (57/1, 043)

CCLE cell lines have copy number gains in AAVS1 locus, such as

HCC1937 and MDAMB157, suggesting that though chance is low,

caution should be used when using single region as negative

(a) (b)

Fig. 3. Comparing cleavage efficiencies and signal-to-noise ratios between

different lengths of sgRNA spacers. (a) The LFCs of sgRNAs with spacer

lengths ranging from 17- to 20-nts, including non-targeting sgRNAs and

sgRNAs targeting ribosomal genes. For each spacer length, there are 100

non-targeting sgRNAs and 1020 ribosomal genes-targeting sgRNAs. P-values

were calculated using two-sided Student’s t-test. (b) The relative SD of LFCs

of sgRNAs targeting ribosomal genes with spacer lengths ranging from 17- to

20-nts. There are 612 data points (51 ribosomal genes repeated in 12 screens)

for each spacer length. P-values were calculated using two-sided Student’s

t-test
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controls. Including correct negative controls is also necessary for

custom-designed screens where genes are pre-selected and normal-

ization using total read counts is inappropriate. We proposed a solu-

tion to reduce the biases by using either multiple non-essential genes

or AAVS1-targeting guides.

Finally, sgRNAs with shorter lengths have been shown to be po-

tent in efficiency and specificity (Fu et al., 2014), but the optimal

performance of truncated sgRNAs with different lengths has not

been systematically investigated in screen setting. We discovered

that 19 nt sgRNAs consistently provide better cleavage efficiencies

and signal-to-noise separations compared with other lengths (17,

18, 20 nt). Therefore, using 19 nt sgRNAs in either low-throughput

experiments or high-throughput screens may give rise to a more ac-

curate inference of gene knockout effects.

We demonstrated that H1/H2 libraries have improved perform-

ance in identifying known essential genes with less outlier sgRNAs.

However, the fact that comparisons were not performed in the same

cellular context might contribute to the observed differences. Also,

since different libraries used distinct approaches to improve screen

performance, integrating their respective advantages might further

improve the next generation library design.

Although we characterized multiple features of CRISPR screens

using computational approaches, the exact mechanisms behind

these findings remain unknown. First, it is unclear how sgRNAs

with higher G-nucleotide content are associated with stronger out-

liers. We suspected that outlier gRNAs with high G-nucleotides

have promiscuous off-target binding and cutting at many CpG

islands in the genome. Existing experimental approaches to detect

off-target cleavages (Tsai et al., 2015) may be limited to study

these gRNAs, as the cleavages in each binding site may be low.

Second, although we have shown the advantages of using 19 bp

sgRNA spacers from statistical perspectives, how different lengths

of sgRNA spacers give rise to various cleavage strengths and

off-targets remain to be determined. Last but not least, all the

above findings are derived in the SpCas9 system, and the rules in

different RNA-guided DNA endonuclease systems require further

investigations.

Collectively, our study provided novel insights into the

properties of CRISPR and the design of both high- and low

throughput CRISPR experiments. We designed two genome-wide

libraries and showed the improved performance using the rules we

uncovered. The characterized features and design rules, as well

as the libraries, will benefit and expedite the application of

CRISPR techniques.
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