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Abstract

Motivation: Correct taxonomic identification of DNA sequences is central to studies of

biodiversity using both shotgun metagenomic and metabarcoding approaches. However, no

genetic marker gives sufficient performance across all the biological kingdoms, hampering studies

of taxonomic diversity in many groups of organisms. This has led to the adoption of a range of gen-

etic markers for DNA metabarcoding. While many taxonomic classification software tools can be

re-trained on these genetic markers, they are often designed with assumptions that impair their

utility on genes other than the SSU and LSU rRNA. Here, we present an update to Metaxa2 that

enables the use of any genetic marker for taxonomic classification of metagenome and amplicon

sequence data.

Results: We evaluated the Metaxa2 Database Builder on 11 commonly used barcoding regions and

found that while there are wide differences in performance between different genetic markers, our

software performs satisfactorily provided that the input taxonomy and sequence data are of high

quality.

Availability and implementation: Freely available on the web as part of the Metaxa2 package at

http://microbiology.se/software/metaxa2/.
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1 Introduction

Sequencing of DNA has revolutionized taxonomy, providing unpre-

cedented resolution for species identification and definition (Hibbett

et al., 2016; Woese et al., 1990). Similarly, the advent of large-scale

sequencing techniques has opened entirely new windows on ecology,

both for microbes and multicellular species (Crampton-Platt et al.,

2016; Yoccoz, 2012). In particular, high-throughput assignment

of species and genus designations based on mixed samples of organ-

isms or environmental substrates, so called DNA metabarcoding

(Taberlet et al., 2012), has made it possible to perform fine-tuned

investigations of taxonomic diversity and to understand ecological

interactions in different types of environments. However, an import-

ant bottleneck in such analyses is the size and quality of the refer-

ence sequence data to which the newly generated sequence reads are

compared (Bengtsson-Palme et al., 2016a; Nilsson et al., 2006).

Furthermore, no single genetic marker seems to be sufficient for cov-

ering all taxonomic groups with satisfactory accuracy for species or

even genus assignments (Wang et al., 2015). For example, the small

subunit (SSU) 16S/18S rRNA gene broadly employed in studies of

microbial diversity provides poor taxonomic resolution in a variety

of eukaryotic lineages (Bruns and Taylor, 2016; Lindahl et al.,

2013). This has led to the establishment of a wide range of other

genetic markers for DNA barcoding and metabarcoding in different

organisms. For example, the rbcL, matK, trnL and trnH genes are

frequently used for plant barcoding (Richardson et al., 2015), the in-

ternal transcribed spacer (ITS) region is commonly employed for

barcoding of fungi (Schoch et al., 2012), the COI gene is commonly

used for species delineation in animals (Hebert et al., 2003b), and

the ATP9-NAD9 region has been proposed for separating species in

the genus Phytophthora of the Oomycota phylum (Bilodeau et al.,

2014). These alternative DNA barcodes present challenges for se-

quence classification tools, which usually were developed with the

rRNA genes in mind (Edgar, 2016; Soergel et al., 2012; Wang et al.,

2007). Although some of these software tools can be re-trained

on other reference datasets, or have their reference databases

exchanged for datasets representing other genes, they still make

assumptions with regards to the reference data—such as global

alignability—that often negatively affect performance, or prevent

software operation altogether. In addition, their sensitivity seems to

be inversely related to their accuracy, such that increasing stringency

with regards to correct taxonomic assignment comes at the cost of

lower proportion of classified sequences (Richardson et al., 2017).

This tendency has been shown for some taxonomic classifiers also

when operating on the rRNA genes (Bengtsson-Palme et al., 2015).

The classification tool that appeared least prone to show such a rela-

tionship was the recently developed Metaxa2 software, which is

based on a combination of hidden Markov models and sequence

alignments (Bengtsson et al., 2011; Bengtsson-Palme et al., 2015).

Metaxa2 examines arbitrary DNA sequence datasets, such as

genomes, metagenomes or amplicons, and extracts the SSU and/or

large subunit (LSU) rRNA genes; classifies the sequences to

taxonomic origin; and optionally computes a range of diversity esti-

mates for the studied community (Bengtsson-Palme et al., 2016b).

However, Metaxa2 has so far been strictly limited to operation on

the SSU and LSU rRNA genes, preventing its use for other DNA

barcodes. Yet, the capability of Metaxa2 to achieve high precision

for its classifications while maintaining relatively high sensitivity

would be highly desirable also for alternative barcoding markers,

particularly as these genes often are under-sampled in terms of spe-

cies coverage (Richardson et al., 2017). Against this backdrop, the

aim of this study was to adapt the Metaxa2 software for any DNA

barcode. To this end, the paper presents an update to Metaxa2 itself,

allowing the use of custom databases. We also introduce the

Metaxa2 Database Builder—a software tool that allows users to cre-

ate customized databases from DNA sequences and their associated

taxonomic affiliations. Finally, we present an online repository of

databases for Metaxa2, which can be used to easily install additional

reference sets to meet the needs of the user.

2 System and methods

The Metaxa2 Database Builder (metaxa2_dbb) is a command-line,

open source, Unix/Linux tool implemented in Perl. The software

requires, on top of Perl, the Metaxa2 (Bengtsson-Palme et al.,

2015), HMMER3 (Eddy, 2011), NCBI BLAST (Altschul et al.,

1997) and MAFFT (Katoh and Standley, 2013) software to be

installed. In addition, USEARCH (Edgar, 2010) or VSEARCH

(Rognes et al., 2016) is highly recommended for full functionality.

The Metaxa2 Database Builder is freely available as part of the

Metaxa2 package (version 2.2 and later) from http://microbiology.

se/software/metaxa2/

3 Algorithm

In short, the metaxa2_dbb tool creates the hidden Markov models

(HMMs) and BLAST reference database required to build a custom

Metaxa2 classification database (for an overview flowchart, see

Supplementary Fig. S1). The metaxa2_dbb tool can be run in three

different operating modes, depending on how similar the sequences

in the reference database are to each other. In the conserved mode,

used when sequences have regions of relatively high sequence simi-

larity, the software first identifies a suitable main reference se-

quence, either by user selection or by clustering the sequences at

80% identity using USEARCH, and then selecting the representative

sequence of the largest cluster. Next, it uses the (50) start and (30)

end of the main reference sequence to define which of the other

sequences in the input dataset that should be considered to be full-

length, and extracts those regions using Metaxa2. Thereafter, the

identified full-length sequences are aligned using MAFFT, and the

regions outside of the start and end of the main reference sequence

are trimmed away before re-aligning the trimmed sequences. The

final alignment is used to determine the degree of sequence conser-

vation across the alignment to identify the regions that are more

conserved and the ones that are more variable. The conserved

regions of the alignment are extracted and aligned individually using

MAFFT. Those alignments are used to build separate HMMs for

each conserved region with hmmbuild of the HMMER package.

The full-length input sequences matching at least half of those

HMMs are then used to build the BLAST classification database,

and their sequence IDs are edited to be compatible with the

Metaxa2 database structure.
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In the divergent mode, the input sequences are first clustered into

groups with at least 20% sequence identity using USEARCH. Each

such cluster is aligned separately using MAFFT. The alignments are

subsequently split at the mid position (including gaps), and each

pair of alignments is used to build two separate HMMs using

hmmbuild. The input sequences matching at least one of those

HMMs are then used to build the BLAST database for classification,

and their sequence IDs are edited as above. The third mode—the hy-

brid mode—is a combination of the conserved and divergent modes,

in which the database builder will cluster the input sequences at

20% identity using USEARCH, and then proceed with same ap-

proach as in the conserved mode on each resulting cluster

separately.

From this point, the analysis proceeds identically for the three

modes. The software reads taxonomy data in any of the following

formats: ASN.1, NCBI XML and INSD XML formats, as provided

by GenBank (Clark et al., 2016); FASTA format with taxonomy

data as part of the sequence headers, as provided by the SILVA

(Quast et al., 2013) and Greengenes (McDonald et al., 2012) data-

bases; and the Metaxa2 tabulated taxonomy format. Optionally, the

taxonomy data can be filtered to exclude sequences from uncultured

or unknown organisms or with low-resolution taxonomic annota-

tion information. The sequence data and taxonomic information are

subsequently crosschecked such that entries are only retained if both

sequence and taxonomy data are present. The remaining sequences

are then compiled into a BLAST database using formatdb or make-

blastdb of the BLAST/BLASTþ packages. Thereafter, unless

pre-determined sequence identity cutoffs are provided by the user,

suitable identity thresholds for taxonomic assignments at different

classification levels are determined automatically. This is done by

aligning the sequences in the BLAST database using MAFFT and

then calculating the pairwise percent identity within and between

taxonomic groups (e.g. intra- and inter-specific sequence identity).

The identity cutoff for each taxonomic level is then set to be below

the lowest intra-specific pairwise identity and, if possible, above the

highest inter-specific pairwise identity. The cutoff can never be set

to be above 99% identity for any taxonomic level.

Finally, the metaxa2_dbb software can perform an optional

database evaluation step, which is further described below. A more

thorough description of the database construction process can be

found in the software manual (Supplementary Item S1), and an ex-

ample step-by-step guide is provided as Supplementary Text S1. It

should also be noted that to make the Metaxa2 classifier more reli-

able across a variety of barcoding regions, we have modified the al-

gorithm for assigning reliability scores (see the manual for details;

Supplementary Item S1). These modifications in general have very

little effect on SSU and LSU classifications, but can nevertheless re-

sult in slight differences when the same dataset is classified using

this version of Metaxa2 and versions prior to 2.2.

3.1 Automatic correction of taxonomic data
If the user chooses, metaxa2_dbb can attempt to adjust the supplied

taxonomy data in order to better match the taxonomic levels to

those proposed by the Metaxa2 software (domain, phylum/king-

dom, class, order, family, genus, species and strain/subspecies). The

phylum level is sorted out first, by checking which input taxonomic

level that corresponds to a list of recognized phyla/kingdoms. This is

followed by searching for a taxonomic level below the phylum level

with an annotation ending with ‘-ales’ to define the order level (un-

less the entry seems to be of metazoan origin). Then, the class level

is defined as the level above the order level, and the family level is

defined as the first level below the order level and with an annota-

tion ending with ‘-ceae’ (or ‘-idea’ for metazoans). The species level

is identified by finding a taxonomic annotation reminiscent of a

Latin binomial. The genus level is lastly defined as the level contain-

ing the genus part of the Latin binomial. This procedure can correct

the vast majority of inconsistent taxonomic annotation data, al-

though manual curation of the output data is still highly recom-

mended to catch exceptional cases.

4 Software evaluation

We evaluated the metaxa2_dbb software by providing 12 different

use cases involving 11 different genetic markers used in different

scenarios (Supplementary Table S1). Notably, the datasets used to

evaluate the software were not collected for the specific purpose of

this evaluation, but were rather typical representatives of reference

datasets used in previous or ongoing studies, thereby representing

actual use cases for the Metaxa2 Database Builder very well. For the

ITS2, matK, rbcL, trnL and trnH genetic markers, references were

obtained from Richardson et al. (2017). Briefly, all NCBI nucleotide

sequences for vascular plants available on March 4, 2016 were

downloaded, filtered by length, and all sequences with >2 sequential

uncalled nucleotides were removed. The datasets were then filtered

to only contain sequences from plants occurring in Ohio.

Taxonomic information were obtained from NCBI Taxonomy

(Federhen, 2012). Sequences with undefined taxonomic information

at any rank, or unidentified at the species level, were removed. For

rpb1, rpb2 and EFalpha, reference sequences were obtained from

the fungal six-gene phylogeny of James et al. (2006). Sequence data

and taxonomic information was obtained from NCBI. For the 16S

rRNA gene, sequences and taxonomic data for type-strains and cul-

tured strains were downloaded from SILVA release 128 (Yilmaz

et al., 2014), and SATIVA (Kozlov et al., 2016) was used to remove

mislabeled strains. For cpn60, sequences were downloaded from the

cpnDB (Hill et al., 2004) on October 21, 2016. The complete nu-

cleotide sequences of group I chaperonins, i.e. cpn60 (also known as

hsp60 or groEL), which is found in bacteria, some archaea, mito-

chondria and plastids, were used for building the database. Two

datasets were downloaded, both the FASTA file of all group I

sequences and a reduced file with only reference genome representa-

tives. Taxonomic classifications were transferred from SILVA

annotation (release 111) and then manually curated. Finally, for

ATP9-NAD9, we used a database made with curated sequences

including 140 different Phytophthora species/hybrids (GenBank ac-

cession numbers JF771616.1 to JF772053.1 and JQ439009.1 to

JQ439486.1, and Bilodeau and Robideau (2014); n.b. a total of 123

species are currently described; http://www.phytophthoradb.org).

When sequence and taxonomic data had been obtained for

each of these genetic markers, we ran the metaxa2_dbb software on

each dataset in the conserved, divergent and hybrid modes. We

also enabled the self-evaluation option, which performs a cross-

validation of the database performance similar to that of

Richardson et al. (2017). For the self-evaluation we used the default

settings, which correspond to rebuilding the database 10 times, each

time using 90% of the randomly chosen input sequences to build the

reference database (the training set) and then subsequently classify-

ing the remaining 10% of input sequences (the testing set) using

Metaxa2. The correct and predicted taxonomic classifications were

then compared at every taxonomic level, generating measures

for sensitivity (proportion of test sequences identified as matching

the barcoding region), accuracy (proportion of correctly classified
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sequences at the taxonomic level in question), and the error per clas-

sification ratio (proportion of incorrectly classified sequences per

total classifications made). In total, the time taken to build the

databases (excluding the self-evaluation) ranged from <1 min for

the smallest datasets (<200 sequences) to over 18 h for the largest

dataset for which the entire database building process was run

(2336 sequences; for the 16S rRNA gene identity cutoffs were not

calculated, but instead the default Metaxa2 16S rRNA cutoffs were

used). On average, it took around 2 h to build a database, and most

of this time was spent calculating appropriate sequence

identity cutoffs between the lineages. Supplying pre-computed

identity cutoffs dramatically reduced the running times for every

dataset tested.

In addition to the software self-evaluation, we also tested the

classification performance of the different databases on sequence

fragments derived from the sequences used to build the respective

database. This evaluation followed the method used for the original

Metaxa2 paper (Bengtsson-Palme et al., 2015), although we only

generated fragments of a single length—150 nucleotides. The test

sets were generated by randomly selecting a stretch of 150 nucleoti-

des from every sequence in the input data for each barcoding region.

We then used Metaxa2 version 2.2 to classify these simulated read

datasets and calculated the performance for each genetic marker in

terms of accuracy (proportion of correctly classified sequence

fragments), misclassifications (incorrect assignments), sensitivity

(proportion of detected sequence fragments), and over-prediction

(assignment to an incorrect taxon due to absence of the correct

taxon in the database). Sequence fragments were regarded as cor-

rectly classified if their reported taxonomy corresponded to the

known taxonomy of the input sequence that the fragment was

derived from, at every taxonomic level as reported by Metaxa2. If

any incorrect taxonomic affiliations were reported at any taxonomic

level, the fragment was regarded as misclassified.

To compare the performance of the software to a more simplistic

BLAST search against GenBank, we downloaded all sequences

matching the queries ‘matK[TI] AND 100:2000[SLEN]’ and

‘trnL[TI] AND 100:2000[SLEN]’ to create BLAST databases repre-

senting the matK (132 954 sequences) and trnL (140 363 sequences)

genes. We then used the 150 nt sequence fragments from above and

searched those against the respective databases (blastall options ‘-p

blastn -m 8 -F F -v 1 -b 1’). We then compared the taxonomic infor-

mation in GenBank for the query sequence fragments and the data-

base matches.

We finally compared the performance of the hand-curated

Metaxa2 SSU rRNA database that is bundled with the software to

SSU rRNA databases built by metaxa2_dbb from the sequences in

SILVA release 111 and 128 (Quast et al., 2013). The native

Metaxa2 database is based on SILVA release 111, which means that

the comparison between the native database and release 111 is rele-

vant to understand the differences between the manual and auto-

matic database constructions. The difference to release 128, on the

other hand, is rather a test of whether the accuracy changes with the

addition of more reference sequences. The SILVA databases were

created by downloading the FASTA file representing the reference

SSU sequences with 99% non-redundancy (SSURef_Nr99) with

taxonomy from SILVA. We then added the SSU sequences for the

12S rRNA used in the native Metaxa2 database from MitoZoa

(Bengtsson-Palme et al., 2015; D’Onorio de Meo et al., 2012). From

these, we used Metaxa2 version 2.1.2 (default settings) to divide the

SSU sequences by taxonomic domain. The resulting files were used as

input for metaxa2_dbb, which was run by retaining the HMM profiles

from the native database, i.e. only rebuilding the classification

database. In all cases, taxonomy correction was used, and cutoffs

were manually set to ‘0, 60, 70, 75, 85, 90, 97’ (Bengtsson-Palme

et al., 2015). The full options were: ‘metaxa2_dbb -o SSU_SILVAXXX

-g SSU -p metaxa2_db/SSU/HMMs/-t SILVA_XXX_SSURef_Nr99_

tax_silva.fasta -a archaea.fasta -b bacteria.fasta -c chloroplast.fasta

-e eukaryota.fasta -m mitochondria.fasta -n mitozoa_SSU.fasta –

correct_taxonomy T –cutoffs ‘0, 60, 70, 75, 85, 90, 97’ –cpu 16’.

For each SILVA release, two databases were built, one with

the command above, and one in which filtering of taxonomic

information was applied, adding the ‘–filter_uncultured T –filter_

level 6’ options.

After these new SILVA-based classification databases had been

constructed, we classified the simulated SSU read fragments with

high-quality taxonomic information used in the original Metaxa2

evaluation, and ran this in the same way as in the original paper

(Bengtsson-Palme et al., 2015). The results of the classifications

were investigated manually, to make sure that errors made by

Metaxa2 were due to actual classification errors and not renaming

of taxa, inconsistencies in taxonomy between database versions,

synonymous names used for the same taxon, or misspellings. As in

the original Metaxa2 paper, a sequence fragment was regarded cor-

rectly classified if the reported taxonomy corresponded to the

known taxonomy of the input sequence at every taxonomic level, as

reported by Metaxa2. If the Metaxa2 classification was found to

completely correspond to the known taxonomic affiliation at all

investigated taxonomic levels, the sequence fragment was regarded

as perfectly classified. If Metaxa2 reported any incorrect taxonomic

affiliation at any taxonomic level the fragment was regarded as

misclassified.

5 Results and discussion

We evaluated the Metaxa2 Database Builder on 11 different barcod-

ing regions, targeting a variety of uses (Supplementary Table S1).

We first assessed the software performance using the self-evaluation

function, measured in terms of sensitivity, accuracy and error per as-

signment rate (Supplementary Fig. S2). In general, we found that at

least one of the methods produced >80% correct assignments at the

family level for half of the markers (Fig. 1A). However, three of the

genetic markers—rpb1, rpb2 and cpn60—consistently showed lower

performance across all groups, even at the order level. When we

multiplied the proportion of correct assignments with the total pro-

portion of sequences assigned, generating a measure of accuracy, it

was clear that the divergent mode consistently was the best perform-

ing setting (Fig. 1B). It was therefore chosen as the default operating

mode for the Metaxa2 Database Builder. This effect was mostly due

to the fact that the divergent mode always included a larger propor-

tion of the input sequences in the final database than the other meth-

ods (Supplementary Fig. S3). However, the fact that the divergent

mode includes essentially all of the input sequences in the classifica-

tion database also means that using this mode necessitates more

careful manual curation of the dataset used for database creation. In

other words, if the data at hand is of uncertain quality, it may still

be more adequate to use the conserved mode.

As an additional performance assessment, we followed the pro-

cedure from the original Metaxa2 evaluation (Bengtsson-Palme

et al., 2015) and generated fragments of 150 nucleotides from each

barcoding region to estimate the performance on shotgun metage-

nomic data. Here, we found that for most regions, the divergent

mode generated the highest proportion of correct classifications

(Fig. 2A). For EF1alpha, the hybrid mode performed better,
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for matK the operating modes were essentially tied, and for ATP9-

NAD9 the conserved and hybrid modes were the best performers.

However, the divergent mode also produced higher numbers of mis-

classifications than the conserved mode did for ITS2, matK and

rbcL, although the hybrid mode showed the largest numbers of in-

correct assignments overall (Fig. 2B). In general, the divergent mode

also showed the lowest levels of unclassified input sequences and

over-predictions (Fig. 2C and D). We furthermore compared the

evaluation of the fragments to the internal software evaluation for

each dataset (Supplementary Fig. S4). We found that there was es-

sentially a linear relationship between the classification accuracy in

the internal evaluation (i.e. the proportion of sequences included in

the database multiplied by the proportion of correctly classified

sequences in the internal evaluation) and the proportion of correctly

assigned sequence fragments (Supplementary Fig. S4E). This indi-

cates that the accuracy provides a robust measure of overall data-

base performance (see Fig. 1B). Users can also assess the certainty of

individual assignments using the reliability scores given in the tax-

onomy output from Metaxa2 (see manual; Supplementary Item S1).

We also compared the performance of the database builder on

the 150 nucleotide fragments from the matK and trnL genes to the

performance obtained using a simplistic BLAST search against

GenBank. We found that the BLAST-based classification gave the

correct results for 41.4% of the sequence fragments for matK and

for 45.1% of tnrL fragments. By contrast, using the Metaxa2 pro-

cess described here, 76.5% of matK fragments and 76.2% of trnL

fragments were correctly classified.

A key component for the high accuracy of Metaxa2 is the hand-

curated classification database (Bengtsson-Palme et al., 2015). For

the database builder, we have tried to emulate this process by auto-

mating as much of our curation procedure as possible. There are

three ways in which the software attempts to improve the taxonomic

information. First, it can remove uninformative sequences from un-

known specimens or mixed environmental samples. Second, it can

make an effort to standardize the input taxonomy into seven levels.

Finally, it can also filter out entries without taxonomic affiliation at,

for example, the genus or species level. To investigate if these auto-

mated steps were sufficient to recreate a database with similar or

better performance as the default SSU database included with

Metaxa2 (Bengtsson-Palme et al., 2015), we compared the classifi-

cation performance of the native Metaxa2 database to those result-

ing from automated construction based on SILVA. Overall, the

results were surprisingly similar (Supplementary Fig. S5), contrary

to what was previously shown when the native database was

replaced with the GreenGenes database (Bengtsson-Palme et al.,

2015). Interestingly, there were also rather small differences be-

tween the non-filtered and the automatically filtered databases, al-

though applying filtering increased the number of classified

sequence fragments with full taxonomic annotation and lowered the

proportion of incorrect assignments, particularly at short fragment

lengths. This indicates that the automated approach to database

building works well, at least when the underlying sequence and tax-

onomy data are of high quality.

Our evaluation shows that there are obvious differences in per-

formance between different genetic markers. Particularly, it seems

to be difficult to build appropriate models for the rpb genes and

cpn60, at least based on the sequence data we have used. This means

that it is crucial to carefully select the most suitable operating mode.

The divergent mode is intended for barcoding regions for which fair-

ly large sequence variability between the target taxa, such as the eu-

karyotic ITS region (Nilsson et al., 2012), the trnH gene used in

plant barcoding (Richardson et al., 2017) and the COI gene used,

e.g. for insects (Hebert et al., 2003b). The conserved mode, on the

other hand, is suitable for barcoding regions that are highly con-

served among the target taxa, such as the SSU rRNA genes

(Hartmann et al., 2010) and the bacterial rpoB gene (Dahllöf et al.,

2000). In addition, this mode is advisable for certain barcoding

genes used in narrower taxonomic groups, such as Oomycota.

Finally, while the hybrid mode utilizes approaches from both the

other methods, it also combines their drawbacks and should there-

fore only be used when none of those produces satisfactory results.

Although in our evaluation the divergent mode seems to produce the
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Fig. 1. Self-evaluated performance of the Metaxa2 Database Builder. Evaluation was performed in all operating modes (conserved, divergent and hybrid) on 10

different DNA barcoding regions. (A) Proportion of assigned sequences classified to the correct order (circles), family (diamonds) and genera (triangles).

(B) Accuracy, i.e. proportion of correctly assigned sequences multiplied with the proportion of sequences included in the final classification databases (see

Supplementary Fig. S2). The ATP9-NAD9 genetic marker is not shown, because it only had relevant taxonomic differences at the species level
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best results in most instances, there were large differences in per-

formance between the genes. Depending on what the user values the

highest (comprehensiveness, stringency, precision etc.), different set-

tings would be desirable (Figs 1 and 2; Supplementary Fig. S2).

Therefore, the user is advised to test several combinations of modes

and filtering options and evaluate them against each other to find

the optimal settings for each barcoding region and reference dataset.

Our goal is to include only the highest quality reference databases in

the Metaxa2 database repository, and we ask that users perform

these evaluation steps in the interest of getting as reliable results as

possible from their data.

Evaluations of which taxonomic classification tools show the

most consistent performance in terms of sensitivity and specificity are

still largely incomplete (Bengtsson-Palme, 2018), particularly for non-

standard barcoding regions. We believe, however, that this lack of

comprehensive evaluation does not excuse the use of methods that

produce incorrect or irrelevant results. The combination of classifica-

tion based on both hidden Markov models and sequence alignments

sets Metaxa2 apart from other software commonly used for taxonom-

ic assignment of non-rRNA barcodes, such as the RDP Naı̈ve

Bayesian Classifier (Wang et al., 2007), Rtax (Soergel et al., 2012)

and UTAX (Edgar, 2010), which have all been shown to perform sub-

par or inconsistently in different settings. For example, Rtax often

had high proportions of misclassifications, UTAX provided genus

assignments for only about a quarter of the input sequences, and the

RDP classifier often only assigned a small fraction of the input

sequences when used on short fragments of marker genes (Bengtsson-

Palme et al., 2015; Porter and Hajibabaei, 2018; Richardson et al.,

2017). In addition, when used with non-rRNA barcodes, they all

showed a substantial trade-off between accuracy and sensitivity. In

the context of the 16S rRNA gene, Metaxa2 has been shown not to

suffer from this relationship to the same extent as other classifiers

(Bengtsson-Palme et al., 2015). Since the Metaxa2 database builder

vastly extends the capabilities of Metaxa2 to virtually any high-

quality DNA barcode in use, the software may bring more precise

taxonomic classification to genes other than the SSU and LSU rRNA,
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Fig. 2. Performance of the Metaxa2 Database Builder on sequence fragments. Family-level Metaxa2 performance on randomly generated 150-nucleotide

fragments originating from the sequence datasets used to build the respective databases in the three different modes (Conserved, Divergent and Hybrid).

(A) Proportions of fragments assigned to the correct taxonomic family. (B) Proportions of fragments assigned to an incorrect family even though sequences from

the correct family were present in the database. (C) Proportions of fragments not assigned, or not recognized as belonging to the investigated barcoding region,

at the family level. (D) Family-level overpredictions, i.e. the proportions of sequence fragments belonging to a family not present in the final database, which

were still assigned to a (different) family by Metaxa2. The total proportion of erroneous assignments (regardless of type) can be obtained by summing the num-

bers of incorrect assignments (B) and overpredictions (D). Note that the ATP9-NAD9 dataset is only used for species identification and thus this marker would be

expected to show perfect performance on the family level. Note also that the Y-axis scales are different for B and for D compared to A and B

4032 J.Bengtsson-Palme et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty482#supplementary-data


including the COI gene commonly used for metazoan DNA barcoding

(Hebert et al., 2003a). Furthermore, the implied high quality of the

automatically built databases facilitates regular updates of the

Metaxa2 SSU and LSU databases, making it easier to keep them up to

date with the increasingly rapid generation and release of reference

sequences. With decreasing cost of DNA sequencing and increasing

use of shotgun metagenomics for studies of biological communities,

we believe that these updates to the Metaxa2 software will enable a

leap forward for molecular ecologists and others in need of precise

taxonomic assignment among groups of taxa that are not feasibly tar-

geted by traditional barcoding markers.
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