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Abstract

Motivation: RNA-binding proteins (RBPs) regulate every aspect of RNA metabolism and function.

There are hundreds of RBPs encoded in the eukaryotic genomes, and each recognize its RNA

targets through a specific mixture of RNA sequence and structure properties. For most RBPs,

however, only a primary sequence motif has been determined, while the structure of the binding

sites is uncharacterized.

Results: We developed SSMART, an RNA motif finder that simultaneously models the primary

sequence and the structural properties of the RNA targets sites. The sequence-structure motifs are

represented as consensus strings over a degenerate alphabet, extending the IUPAC codes for

nucleotides to account for secondary structure preferences. Evaluation on synthetic data showed

that SSMART is able to recover both sequence and structure motifs implanted into 30UTR-like

sequences, for various degrees of structured/unstructured binding sites. In addition, we successful-

ly used SSMART on high-throughput in vivo and in vitro data, showing that we not only recover

the known sequence motif, but also gain insight into the structural preferences of the RBP.

Availability and implementation: SSMART is freely available at https://ohlerlab.mdc-berlin.de/soft

ware/SSMART_137/.

Contact: uwe.ohler@mdc-berlin.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA-binding proteins (RBPs) are key players in RNA metabolism

and function. They bind RNA molecules through cis-regulatory ele-

ments to coordinate post-transcriptional processes such as splicing,

RNA transport, RNA stability and localization (Keene, 2007).

There are hundreds of RBPs encoded in eukaryotic genomes (Baltz

et al., 2012), each with specific functions, thus it is necessary that

the RBPs recognize their RNA targets with high specificity. The

current understanding is that this binding specificity is achieved

through combinations of RNA sequence and structure properties, in

variable proportions (Cook et al., 2015). Some RBPs prefer to bind

single-stranded RNA and recognize their target only by the nucleo-

tide composition, while others prefer specific structural contexts.

For most RBPs, however, only a primary sequence motif has been

determined, while the structure of the binding sites is

uncharacterized.

RBP-RNA interactions are experimentally assessed with high-

throughput in vitro or in vivo methods. The in vitro approaches, like

RNAcompete (Ray et al., 2009), determine the binding specificity

and affinity of a specific protein to millions of short, synthetic

RNAs, in the absence of other proteins or cellular factors, while the

in vivo methods ascertain the binding sites of a certain protein in a

specific cellular context. There are a number of crosslinking and

immunoprecipitation (CLIP) methods (Hafner et al., 2010; Konig

et al., 2010; Ule et al., 2003) that induce permanent cross-links be-

tween RNAs and RBPs in vivo, after which the RBP-RNA fragments

are isolated using immunoprecipitation, and the crosslinked RNA

segments are sequenced.
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Computational analysis of RBP-RNA interactions is vital for

interpreting the experimental data and finally understanding how an

RBP finds and binds to its targets. Finding sequence motifs is not

trivial due to the shortness of the binding motif and the large num-

ber of input sequences that can include many false positives.

Incorporating secondary structure preferences into motif models

adds an extra layer of challenges due to the noisiness of RNA struc-

ture prediction and the need of a reliable model for sequence-

structure motifs that is also easy to interpret. The RBP binding

motifs can be derived either with methods developed for DNA-

binding proteins, which consider only the RNA primary sequence,

or with specifically designed tools that account for different levels of

secondary structure information. The first motif finders designed for

RBPs used RNA secondary structure as prior knowledge to restrict

the search for sequence motifs to either single-stranded regions or to

specific loop structures (Foat and Stormo, 2009; Hiller et al., 2006;

Li et al., 2010). More recent tools use different strategies to model

and predict both sequence and structure motifs. RNAcontext

(Kazan et al., 2010) detects the relative preferences of an RBP for

multiple structural contexts. It uses a probabilistic framework to

model separately the sequence and structure preferences, and

was designed to work with RNAcompete binding-affinity data.

Although it was also applied to CLIP datasets, its performance in

this case is not established. GraphProt (Maticzka et al., 2014) learns

sequence and structure binding preferences of RBPs by modeling the

binding sites as hypergraphs. It uses graph kernel-based support vec-

tor machines (SVM) to classify between bound and unbound regions.

The predicted bound model is hard to interpret or visualize, and the

tool outputs the top-scoring 1000 sequences and structures, that can

be converted to PWMs or logos. Zagros (Bahrami-Samani et al., 2015)

is an extension of the MEME algorithm designed for CLIP data. It

accounts for cross-link modification events and for secondary structure

in the form of paired-unpaired probabilities. Zagros uses as input only

the binding sites derived from experimental data and performs de novo

motif discovery. These motif finders are designed specifically for a cer-

tain type of experimental data and only Zagros finds de novo

sequence-structure motifs, while RNAcontext and GraphProt work in

classification or regression settings. Furthermore, the structure predic-

tions of all tools were not objectively evaluated.

In this article, we introduce SSMART (sequence-structure motif

analysis tool for RNA-binding proteins), an RNA motif finder that

extends cERMIT (Georgiev et al., 2010)—a sequence-based motif

finder used primarily to determine DNA binding preferences from

high throughput data such as ChIP-seq. Our tool identifies binding

motifs by simultaneously modeling the primary sequence and the

secondary structure of the RNA and searching for optimal sequence-

structure motifs of flexible lengths. The sequence-structure motifs

are represented as consensus strings over a degenerate alphabet,

extending the IUPAC codes for nucleotides to also reflect secondary

structure preferences. The secondary structure is obtained in a prior

step, by sampling suboptimal structures around binding sites and

identifying local dominant combinations of base pairs (Rogers and

Heitsch, 2014). The motif candidates are evaluated with an object-

ive function that integrates the individual RNA targets binding evi-

dence into a combined score. The objective function is optimized

with a greedy search strategy that starts with a set of 4-mers over

the non-degenerate sequence-structure alphabet. Each of this ‘seed’

motifs is then ‘evolved’ iteratively until the motif score cannot be

improved anymore. After all the motif seeds are evolved, SSMART

applies a post-processing step in which the evolved motifs are clus-

tered and corresponding PWMs are generated from high scoring

candidates (Fig. 1C).

Evaluations on synthetic data showed that SSMART is able to

recover RBP sequence and structure motifs implanted into 30UTR-

like sequences, in various proportions of structured/unstructured

binding sites. We successfully used SSMART on high-throughput

in vivo and in vitro data, showing that we not only recover the

known sequence motif, but also gain insight into the structural pref-

erences of the RBP.

2 Materials and methods

In this section we describe in detail the motif finding strategy imple-

mented in SSMART as well as the employed evaluation procedures.

We also explain the datasets that were used to test our tool, includ-

ing how the synthetic ones were generated.

2.1 RNA secondary structure prediction
RNA molecules are flexible oligonucleotides that can adopt multiple

stable structures. Their folding is influenced not only by their com-

position and the local environment, but also by other molecules, so

it is difficult to obtain the exact secondary structure that an RNA

has during an interaction with a protein in vivo. The available struc-

ture prediction tools are based either on free energy minimization

(Bernhart et al., 2006; Zuker, 2003), or on ensembles of secondary

structures (Ding and Lawrence, 2003; Rogers and Heitsch, 2014).

The more recent algorithms focus on local conformations and can

take into account multiple suboptimal structures.

We considered two folding algorithms: RNAplfold (Bernhart

et al., 2006) and RNAprofiling (Rogers and Heitsch, 2014).

RNAplfold is a tool from ViennaRNA package that predicts RNA

single-strandedness using free energy minimization and locally stable

secondary structures. It has two important parameters: the size of

the window (W) and the maximum base pair span (L). RNAplfold

associates the best structure to each sliding window over the stretch

of the RNA of interest, and then outputs the average base pair prob-

abilities. RNAprofiling is an ensemble-based method that balance

Fig. 1. Overview of the motif finder workflow. (A) Preparation of synthetic

datasets. (B) Pre-processing of CLIP reads. CS refers to T-to-C conversion

specificity, and expr to gene expression. (C) SSMART algorithm. A set of

4-mer seeds are independently evolved in order to optimize the score over

the ranked list of binding sites. Then the motifs are clustered and the best se-

quence-structure motifs are reported. We represent the two components sep-

arately: the upper part corresponds to the sequence logo, while the lower

part depicts the probability to be paired (below the line) and unpaired (above

the line) for each base
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abstraction and specificity by identifying local dominant combina-

tions of base pairs. It uses a statistical sample of 1000 RNA second-

ary structures from the Boltzmann ensemble of possible RNA

secondary structures associated with a given RNA sequence. The

tool then focuses on the arrangement of helices at the substructure

level and reports the most frequent double-stranded regions.

Extensive testing revealed a strong length dependency for

RNAplfold structures (bigger parameter values yielding more paired

bases), while RNAprofiling results were stable (see Supplementary

Section S1.1). We used RNAprofiling for all SSMART results

reported here, but the user can compute secondary structures with

any tool, if then the predicted structures are properly encoded into

the input sequences.

2.2 The sequence-structure motif identification

framework
In order to simultaneously model the primary sequence and the sec-

ondary structure of the RNA, SSMART represents the sequence-

structure motifs as consensus strings over an extended degenerate

alphabet. We use the regular IUPAC codes for nucleotides to denote

bases in single-stranded positions, and their lower-case counterparts

to denote bases in double-stranded context. Given a set of putative

RBP binding sites with corresponding binding scores for each site,

SSMART searches for optimal sequence-structure motifs of flexible

lengths (Fig. 1C). The framework has two essential components: an

objective function that scores the binding strength of a given k-mer

and a search procedure that explores the motif space for high-

scoring k-mers. A SSMART motif of length k is a k-mer over the al-

phabet Acomplete ¼ {A, C, G, T, W, K, R, Y, S, M, N, a, c, g, t, w, k,

r, y, s, m, n}. We define the motif space to be all k-mers with length

between 4 and 10 over the Acomplete alphabet, with a limited number

of degenerate positions.

2.2.1 Binding evidence

SSMART input consists in the set of n input sequences si; i ¼ 1; . . . ;

n (for example, CLIP peaks or RNAcompete oligos), described with

the sequence-structure 8 letters alphabet Abasic ¼ {A, C, G, T, a, c, g,

t}, and their corresponding binding scores yi; i ¼ 1; . . . ;n. These

scores depend on the type of experiment used to derive the binding

specificities of the RBP in question. In the case of CLIP experiments,

we used PARalizer peaks together with cell line-specific gene expres-

sion from RNA-seq data to define the following binding scores:

normalized read counts yi ¼ log10
#reads

gene expressionþ0:01 for CLIP-seq

datasets; and normalized T-to-C conversion specificity yi ¼ log10
#reads with T�to�Cconversions

#reads with other conversionsþ1ð Þ gene expressionþ0:01ð Þ for PAR-CLIP datasets.

For RNAcompete datasets we used the affinity scores (normalized

signal intensities) to describe the binding preferences. We note that

in the case of in vivo CLIP experiments the majority of sequences in

the dataset correspond to binding events, while for in vitro

RNAcompete data the majority of input sequences will be unbound.

SSMART is able to handle both types of score distributions.

2.2.2 The objective function

There are two available approaches for evaluating the binding

strength of a given k-mer in our framework: a random set score and

a linear regression score.

The random set approach (RS score) was described in Georgiev

et al. (2010) and works well with a variety of scores that reflect the

direct binding evidence, but is restricted by the assumption of inde-

pendent contributions for the space of the input sequences. Given

the sequences si and scores yi, a motif mj partitions the sequence

space into a positive set (containing mj) and a negative set (not con-

taining mj). We search over the discrete space of possible motifs for

the optimal motif m� that yields high binding scores in the positive

set and low binding scores in the negative set. Given a motif mj, we

denote the number of sequences with motif occurrences with

nj ¼
Pn

i¼1 xij, where the binary variable xij indicates a match of mj

in sequence si. We consider the enrichment score X mj

� �
¼ 1

nj

P
i:xij¼1

yi as a random variable whose randomness comes through the set of

sequences containing mj (xij¼1), and not through the scores yi, and

we define the random set scoring function to be its z-score:

SRS mj

� �
¼

X mj

� �
� l

rj
; (1)

where

l ¼ 1

n

Xn

i¼1

yi; r
2
j ¼

n� nj

nj n� 1ð Þ

"
1

n

X
i

y2
i �

1

n

X
i

yi

 !2#

This is a zero mean, unit variance test statistic on the null hypothesis

that sequences containing mj are not enriched for the motif mj.

The optimization problem is:

bmRS ¼ arg max
mj2M

SRS mj

� �
(2)

where M is the set of putative motifs fm1; . . . ;mpg, and bmRS is the

best guess at the optimal binding motif m�.

We can extend the scoring function to any rule R sið Þ that

partitions the sequence space into two sets as follows: We

denote by xiR the truthfulness of rule R in sequence si. Then

nR ¼
Pn

i¼1 xiR; X Rð Þ ¼ 1
nR

P
i:xiR¼1 yi, and the induced score is

SRS Rð Þ ¼ X Rð Þ � lð Þ=rR. The previous score is a particular case,

with the rule R sið Þ ¼ mj � si

� �
.

The linear regression approach (LR score) was introduced in

Corcoran et al. (2011) and is more computationally demanding but

can account for some, potentially relevant, confounder information,

like di-nucleotide frequencies or sequence length (see Supplementary

Section S1.2).

2.2.3 The search strategy

We need to search the sequence-structure motif that optimizes one

of the objective functions defined before (Eq. 1 or Supplementary

Eq. S8). An exhaustive search over the space of all potential motifs

is not computationally feasible, thus we employ a custom greedy

search strategy that considers a large set of seed motifs that are inde-

pendently updated. These seed points are motifs of length 4 with the

same structure and all possible sequence composition (512 4-mers

over the alphabets fA;C;G;Tg and fa; c; g; tg). We note that we ob-

tain consistently similar results with this (reduced) set as with the

whole set of 4096 possible 4-mers over the Abasic alphabet.

Given a motif m, a set of candidate motifs is constructed by

applying small variations to m: in length, sequence, or structure.

The k-mer m is extended to 16 new kþ 1ð Þ-mers, by independently

adding one letter from Abasic at one of its end. If k>4, the length of

the motif is reduced and 2 new k� 1ð Þ-mers are considered. Then a

large set of new k-mers are obtained by changing one letter at a time

in terms of structural change or increasing/decreasing sequence de-

generacy (see Supplementary Section S1.3).

Each seed motif mi starts an independent search for the best

motif. At one iteration, all update rules are applied and each new

motif candidate is scored. The motif candidate with the highest

motif score is used in the next iteration. The procedure is repeated
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until the motif score cannot be improved, in which case the last

motif is reported. The result of the search is a set of evolved motifsbM ¼ f bm1; . . . ; bmpg and their corresponding scores bS ¼ fbS1; . . . ; bSpg.
For each motif bmi, its occurrences in the top 50% input sequences

are used to derive a PWM.

2.2.4 Post-processing procedure

The complete set of evolved motifs will have many similar motifs

that vary by a few letters or have different lengths and/or overlap

(see Supplementary Section S1.4). SSMART applies a post-

processing procedure in order to cluster multiple evolved motifs to-

gether and to rank these merged motifs. We use the metric intro-

duced by Harbison et al. (2004) to define a similarity measure as

follows. For two motifs a, b of equal length w, the Harbison dis-

tance is D a;bð Þ ¼ 1ffiffi
2
p

w

Pw
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
L2A ai;L � bi;L

� �2
q

, where A is the al-

phabet and ai;L; bi;L are the probabilities of observing base L at

position i of motifs a and b, respectively. As in Georgiev et al.

(2010), we define the following similarity score:

simða; bÞ ¼ max
a0 ;b0
½1�Dða0;b0Þ� (3)

where a0; b0 correspond to all possible overlaps between motifs a, b

induced by shifts such that the minimum overlap length is 3.

Given the set of redundant output motifs bM ¼ f bm1; . . . ; bmpg, we

obtain a set of ordered motif clusters fCig with the following clus-

tering procedure:

1. Initialize the cluster count: q ¼ 1;

2. Find the top motif in bM: m� ¼ arg maxbmj2bM bSj;

3. Select all motifs mj 2 bMnfm�g with sim m�;mj

� �
� 0:75 and

compute scores for the union rule R�jj sið Þ ¼ m� � sið Þj mj � si

� �
and the intersection rule R�&j sið Þ ¼ m� � sið Þ& mj � si

� �
;

4. Add m� and all similar motifs mj that have S R�jj
� �

� 0:95 � S
m�ð Þ or S R�&j

� �
� 0:95 � S m�ð Þ to Cq;

5. Remove the set Cq from bM;

6. Update cluster count: q ¼ qþ 1;

7. Repeat steps 2 to 6 until bM is empty.

For each motif cluster Ci we compute an aggregate PWM by

averaging the PWMs of each cluster member weighted by its motif

score.

2.3 Synthetic datasets
We generated synthetic datasets that contain specific implanted

motifs in various proportions of structured/unstructured binding

sites (Fig. 1A). First, we selected 10 PWMs derived from

RNAcompete experiments from the RBP compendium (Ray et al.,

2013). They all have length 7, but have different nucleotide compo-

sitions and their average information content varies between 0.65

and 1.47 (see Supplementary Table S1). We then used a 2nd order

Markov chain to generate a large set of 500.000 random 30UTR

sequences with lengths following the empirical distribution observed

in PAR-CLIP peaks. In order to obtain different structural environ-

ments, each PWM was implanted into all synthetic 30UTR sequences

in random locations, and then the secondary structure was pre-

dicted. Based on the number of predicted unpaired bases of the

implanted motifs, we considered 20 different structural combina-

tions, A-T (see Supplementary Fig. S4). Structures A–K represent lin-

ear combinations of purely single-stranded and double-stranded

binding sites, from A with 100% unpaired motifs, to K with 100%

paired motifs (with 10% increments). Structures L–Q represent

various degrees of double-strandedness in the binding, from set L

with all sequences having 1 paired base, to structure Q with 6 paired

bases in the implanted motif. The last 3 structural environments

(R–T) denote variable structures: R has 30% unpaired motifs and

10% of each set with 1–7 paired bases, S has equal numbers

(12.5%) of motifs with 0–7 paired bases, and T has 35% paired

motifs, 35% unpaired motifs and 5% of each of the rest. For each

implanted motif and each structural environment, we randomly

selected 10 datasets of 2000 sequences each, generating a total of

2.000 synthetic datasets. We then added some noise to this data as

follows: we generated a single set of 10 000 30UTR sequences with

the same 2nd order Markov chain, and then we predicted the corre-

sponding secondary structure. In each synthetic dataset, we inserted

500 sequences selected at random from this ‘noise’ set. The resulted

datasets represented the ‘core’ data for our comparison.

Since SSMART requires as input a binding score for each se-

quence, we sampled 2500 such scores (conversion specificity) from

25 PAR-CLIP datasets. Then we randomly associated these values to

sequences in the generated datasets, making sure that the 500 ‘noise’

sequences will be triangularly distributed among the positive

sequences (less at the top, more at the bottom). For GraphProt,

we generated a ‘negative’ set of 2500 sequences with 30UTR

composition.

2.4 Experimental datasets
We applied SSMART on high-throughput in vivo and in vitro data

from CLIP and RNAcompete experiments, respectively. We selected

and analyzed 10 different proteins: ELAVL1, FMR1, FUS,

IGF2BP2, IGF2BP3, LIN28A, QKI, SRSF1, SRSF7 and SRSF9 that

have both types of data available. We added two more proteins that

had only CLIP data (see Supplementary Table S2). We retrieved the

selected RNAcompete datasets from Ray et al. (2013). We down-

loaded the CLIP datasets from Gene Expression Omnibus (Edgar

et al., 2002) and processed the reads as described in Mukherjee et al.

(2014) (see Fig. 1B). Briefly, the reads from each library were pre-

processed and aligned to the corresponding genome (hg19, mm10)

and then interaction sites were defined with PARalyzer (Corcoran

et al., 2011). For all PAR-CLIP datasets we considered all

PARalyzer clusters that corresponded to mRNAs and to each we

associated the T-to-C conversion specificity normalized by gene ex-

pression, while in the case of CLIP-seq we used the groups with the

normalized read counts. In order to obtain more realistic structure

predictions, we extended each binding site by maximum 50 bp on

each side using either the genome (for the intronic regions) or the

transcriptome (for the rest). For each cell line we derived transcript

abundance from RNAseq data, and then for each considered site we

retrieved the flanks up to 50 bp from the most abundant transcript

that contained it.

2.5 Evaluation on synthetic datasets
In order to evaluate the motif finders performance we converted all

sequence and structure predictions to a uniform encoding. For se-

quence motifs we used PWMs, converting RNAcontext energy

matrices and GraphProt list of top 1000 sequences to probability

matrices. For SSMART we collapsed the predicted PWM over the

eight letter extended alphabet to a four letter alphabet. In the case of

structures, Zagros and SSMART use two structural contexts per nu-

cleotide (paired and unpaired) while RNAcontext and GraphProt

use larger but distinct sets of structures (e.g. stem, hairpin loop, in-

ternal loop, etc.), thus we converted the predicted structures of all

tools to a vector of paired probabilities.
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We evaluated the motif finders performance on synthetic data-

sets by computing the recovery rates for sequence and structure

motifs separately. For all tools we considered one motif, taking the

top one when more motifs are reported. We compared the recovered

motifs with the implanted motifs by computing similarity scores

based on the Harbison metric (used also in the post-processing step).

We use Eq. (3) to define the similarity score between two sequence

motifs a and b, with the mention that a0; b0 correspond to all pos-

sible overlaps between motifs a, b induced by shifts such that the

minimum overlap length is max w� 1;4ð Þ, where w is the smaller

motif length. We also define the similarity score for the correspond-

ing structures s(a) and s(b) to be: sim s að Þ; s bð Þð Þ ¼ 1�D s a0ð Þ; b0ð Þð Þ,
where D s að Þ; s bð Þð Þ ¼ 1

w

Pw
i¼1 js aið Þ � s bið Þj. For each tool, we com-

puted its threshold for ‘recovered’ and ‘not recovered’ motifs by

comparing each of the 2000 predicted motifs with all 200 implanted

motifs. Then the optimal cutoffs for sequence motifs and for struc-

ture motifs are determined independently by optimizing the P-values

obtained with G-tests of independence (see Supplementary Table S5

and Supplementary Fig. S5) (Sokal and Rohlf, 2012).

2.6 Evaluation on CLIP datasets
We compared SSMART, GraphProt and Zagros on six selected

PAR-CLIP libraries corresponding to two proteins: ELAVL1 (HuR)

and PUM2 (see Supplementary Table S4). For each tool and library

we retrieved the predicted sequence motif in the form of a PWM,

and the sequence-structure motif as a PWM over the eight letter

extended alphabet. Then we tested how well a motif predicted on a

particular library correlates with the binding scores associated with

each of the six considered libraries. We used the Kendall tau correl-

ation coefficient between the ranked list of binding scores and the

corresponding log-likelihood scores of a given PWM. We note that

the tau coefficient has values in �1; 1½ �, a value close to 1 indicating

strong agreement, while a value close to -1 indicating strong dis-

agreement. For each tool and protein, we then applied a two-sample

Kolmogorov-Smirnov test, comparing the tau correlations on data-

sets for the same RBP versus those on the other protein.

3 Results

SSMART performs de novo motif discovery on high-throughput

RNA-binding protein data, predicting sequence and structure bind-

ing motifs of RBPs. We generated synthetic datasets with certain

motifs in different structural context in order to evaluate its per-

formance and to compare the prediction of sequence and structure

motifs with three other RBP sequence-structure motif finders:

RNAcontext, GraphProt and Zagros (Bahrami-Samani et al., 2015;

Kazan et al., 2010; Maticzka et al., 2014). We also compared

SSMART with GraphProt and Zagros in a cross-validation setting

across replicate in vivo CLIP libraries. We then used SSMART to

examine a range of publicly available biological datasets and to

compare binding specificities derived from in vivo and in vitro

experiments. Afterwards we analyzed the structural binding specifi-

city for a selection of CLIP datasets. In this section we present the

results of our analyses.

3.1 Recovering sequence and structure motifs from

synthetic datasets
Evaluation of de novo motif predictions from experimentally-

derived datasets is challenging due to lack of a known ground truth

and noise. Therefore, we generated a large set of datasets that mimic

PAR-CLIP binding sites (clusters) in which we inserted 10 different

motifs derived from RNAcompete experiments. For each motif we

considered 20 different structural combinations (A–T) and we meas-

ured not only how well each tool recovers it, but also how well the

initial structure is predicted.

The recovery rates for sequence and structure motifs on all 2000

datasets are presented in Table 1. Our tool outperforms all other

motif finders in recovering the structure and is outperformed by

GraphProt and Zagros in the sequence recovery, but has the best

results for the combination of both sequence and structure.

Although Zagros recovers 100% of the sequence motifs, its struc-

tural predictions are on the same scale as SSMART-seq, which con-

siders all motifs to be single-stranded.

The sequence predictions performance is consistent for all tools

across different structural environments (Fig. 2A). We note that the

motif appears to have some influence on the prediction performance

for some motif finders, for example SSMART recovering the se-

quence motif with the lowest information content in just 46.5%

datasets or GraphProt recovering the ACAACRR motif in 58%

cases. In the case of structure predictions, all the tools exhibit vari-

ability across structural environments. SSMART and RNAcontext

perform better on sets with more defined structures, while

GraphProt recovers the mixed structures. This difference is

explained by the way each tool models and reports the motifs.

SSMART can capture mixed structures by reporting two or more

separate motifs, but in this settings we consider only the top

reported motif. Even so, SSMART recovers perfectly the structure if

it has 80–100% of the binding sites in either unpaired or paired

states (sets A–C and I–K) or if it has 6 of the 7 bases in the same

structural context (sets L and Q). If just 5 bases have the same struc-

ture, the recovery rates are 98 and 94% for unpaired and paired

RNA, respectively. In summary, SSMART recovers more than 90%

of structural motifs for 15 (out of 20) structural environments, while

GraphProt for only 7 types of structures.

Next, to assess the specificity of identified motifs relative to

background, we computed the average information content of the

predicted motifs (Fig. 2B). We considered two variants of motif in-

formation content: for sequence motifs we used average information

content over the 4 letter sequence alphabet A ¼ {A, C, G, T}; for

sequence-structure motifs we derived average information content

using the eight letter sequence-structure alphabet Abasic ¼ {A, C, G,

T, a, c, g, t}. In the case of sequence motifs, the median information

content was 1.29 for SSMART, 0.98 for RNAcontext, 0.5 for

GraphProt and 1.07 for Zagros. RNAcontext sequence motifs

cover the whole range of possible information content, while the

values for Zagros have the smallest variance. The low value for

GraphProt is explained in part by the length of 12 bases reported

for all motifs. SSMART produces the most expressive sequence-

structure motifs, with a median information content of 2.06. The

values for RNAcontext, Zagros and GraphProt are 1.49, 1.18 and

0.64 respectively. Taken together these results demonstrate that

SSMART provides the best all-around performance on the simulated

data.

Table 1. Global recovery rates for sequence and structure motifs

on synthetic datasets

Tools SSMART SSMART-seq RNAcontext GraphProt Zagros

Sequence 91.75 92.05 58.14 94.84 100

Structure 88.65 14.75 50.03 73.25 15.25

Note: The values reported for SSMART-seq correspond to a version of

SSMART that uses only sequence information.
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3.2 Testing motif predictions on CLIP datasets
Next, we used published CLIP datasets to evaluate the motif pre-

dictions of SSMART, GraphProt and Zagros in a train/test setting,

by correlating each learned motif with the binding scores of all

considered libraries. A meaningful motif will exhibit positive cor-

relation for libraries of the same protein and negative or smaller

correlation coefficients for inter-protein tests. The Kendall tau cor-

relation coefficients obtained for 4 ELAVL1 (HuR) and 2 PUM2

PAR-CLIP libraries are presented in Fig. 2C. The datasets denoted

with A and B are replicates, while the ones denoted 1, 2 and 3 are

from independent experiments. ELAVL1.3 CLIP was performed in

HeLa cell line, while the rest in HEK293 cells. For all tools, the se-

quence motifs trained on the ELAVL1 datasets (first 4 rows) per-

form as expected, with negative or lower values obtained when

tested on PUM2 binding sites, the corresponding P-values being

bellow 0.0001 (see Supplementary Table S5). The only outlier is

the ELAVL1.3A dataset, on which all tested motifs obtain lower

correlations. However, SSMART is the only motif finder that

shows the same trend not only in the ELAVL1.3A column, but also

in the ELAVL1.3A row. On the other hand, the sequence motifs

trained on the PUM2 datasets (last 2 rows) are protein-specific

only in the case of SSMART, with a P-value of 0.002, while for

GraphProt and Zagros the predicted motifs correlate similarly

with PUM2 and ELAVL1 binding sites (P-values of 0.335 and

0.061, respectively).

3.3 Identification of motifs from in vivo and in vitro

datasets
We applied SSMART to 36 CLIP and 21 RNAcompete libraries cor-

responding to 12 proteins with both in vivo and in vitro experi-

ments. For the full list of results see Supplementary Sections S3 and

S4. All RNAcompete data is from human and was downloaded

from the compendium of RNA-binding motifs (Ray et al., 2013).

The in vivo data corresponds to 31 PAR-CLIP and 5 CLIP-seq

experiments conducted in human HEK293, HeLa and H9 hESC

cells; three of the CLIP-seq datasets were performed in A3 lympho-

cytes or mESC cells.

First, we compared RBPs for which both in vivo and in vitro ex-

perimental data was available (Fig. 3). For each RBP we present the

top sequence-structure motifs for CLIP and RNAcompete datasets,

as well as the motifs reported by the authors of the respective experi-

ments. We note that in the case of RNAcompete experiments,

SSMART derives the binding motif from all �240 000 probes with

corresponding affinities, while Ray et al. (2013) derived enrichment

scores for all possible 7-mers and then defined motifs from the top

10 7-mers. Nevertheless, we find strong agreement between our top

predictions and the reported RNAcompete motifs for almost all

RBPs examined. None of the in vitro results indicated any structural

features, which may be due to the length and/or selection of RNA

oligos in the RNAcompete assay.

RBPs exhibited varying degrees of concordance between A) pre-

dictions and results for in vitro data, B) predictions and reported

results for in vivo data and C) predictions and results for in vivo and

in vitro data. For both ELAVL1 (HuR) and QKI, we observed full

agreement (i.e. in vivo and in vitro predictions and results identified

the same motif). For ELAVL1, the U-rich sequence motif recovered

by SSMART from in vivo data was associated with mostly single-

stranded structural context As expected (Feracci et al., 2016), the

motifs reported for QKI were associated with single-stranded struc-

tural context.

Fragile X-mental retardation 1 (FMR1) is a RNA-binding pro-

tein that has multiple distinct RNA-binding domains. PAR-CLIP

experiments reported two short binding motifs, ACUK and WGGA,

that interact with the KH and RGG domains, respectively (Ascano

et al., 2012). Our top predicted motif is similar to WGGA and asso-

ciated with paired RNA, which may reflect previously reported

binding to G-quadreplex structures (Brown et al., 2001). A CU di-

nucleotide, which is present in the secondary ACUK motif, was pre-

sent in the top scoring motif. The in vitro predicted and reported

results did not identify the secondary motif bound by the KH do-

main, nor did it indicate a structural context for the WGGA.

A

C

B

Fig. 2. Comparison with other tools on synthetic and biological datasets. (A) Recovery rates on synthetic data for sequence motifs (top) and for structure motifs

(bottom). The colors represent the percentage of recovered motifs from the datasets grouped by structure type or by implanted motif. (B) Average information

content for predicted motifs on synthetic data, either in their sequence component (left) or for combined sequence-structure motifs (right). (C) Kendall tau correl-

ation coefficients between the motifs predicted on one specific CLIP dataset versus the binding scores of a list of CLIP libraries. The correlations are depicted with

the same color scale for the sequence motifs (left) and the combined sequence-structure motifs (right). The rows correspond to the training sets, and the columns

to the test sets
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The in vitro prediction for lin-28 homolog A (LIN28A) was con-

sistent with the reported motif from RNAcompete. Similarly, our

in vivo predictions from LIN28 CLIP-seq data from Yeo and Kim

labs identified a GA-rich motif consistent with what was reported

(Cho et al., 2012; Wilbert et al., 2012). Both the predicted and

reported results from LIN28A PAR-CLIP were not consistent with

the in vitro results or the in vivo CLIP results. Also, for some ana-

lyzed proteins the in vitro predictions were in agreement with the

reported compendium motif, but the predicted motifs for in vivo data-

sets showed different binding specificities (data not shown). The basis

for the inconsistency is unclear and could be due to technical differen-

ces between CLIP and PAR-CLIP, ranking and normalization of

called peaks, or the cell lines the experiments were performed in.

FUS was a clear case in which there was concordance between

our predictions and reported results both in vivo and in vitro, how-

ever the reported in vivo and in vitro specificities differ. The in vitro

results indicate a CG-rich motif, while the in vivo results suggest a

UA-rich sequence, which has been reported to have structural con-

text (Hoell et al., 2011), which we will describe in more detail

below. This may represent an example in which the in vitro results

may not accurately reflect in vivo binding.

3.4 Examining the structural context of binding

specificity
Due to the lack of structural insights from the RNAcompete results,

we focused on in vivo predictions exhibiting markedly different struc-

tural context for a subset of RBPs (Fig. 4). A stem-loop structure with

some sequence preference was previously reported for FUS (Hoell

et al., 2011). The top ranked motif predicted for the FUS PAR-CLIP

data was consistent with the reported binding preference in both se-

quence and structure. From 50 to 30 the predicted motif is decreasingly

single-stranded particularly with an apparent transition from un-

paired to paired at position 6, presumably representing the loop, with

the reported UA at the begining of the loop (positions 4–5).

Examination of Pum2 PAR-CLIP data revealed the well-established

UGUAHAUA binding motif (Hafner et al., 2010). As expected, we

found this motif in a single-stranded context (Lu and Hall, 2011).

Fig. 3. SSMART results on biological data: in vivo versus in vitro comparison
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Interestingly, we also identified the motif in a paired context, which

may represent sites in which modulation of secondary structural switch

influences Pum and miRNA-mediated regulation (Kedde et al., 2010).

Examination of Roquin (RC3H1) binding specificity using

PAR-CLIP did not reveal a specific sequence motif, however they

proposed existence of a stem-loop with an AU-rich loop region

(Murakawa et al., 2015). The top predicted motif match is consist-

ent with the reported sequence description. This prediction could

represent, predominantly, the loop portion of the proposed stem-

loop. The results described for these three RBPs highlight the man-

ner in which incorporation of secondary structure can enhance the

interpretation of RBP-binding specificity, particularly for in vivo ex-

perimental data.

4 Discussion

We developed SSMART, a de novo motif finder that identifies

sequence-structure binding motifs from large sets of RNA sequences

derived from genome-wide in vivo or in vitro experiments such as

CLIP or RNAcompete. Our tool simultaneously models the primary

sequence and the structural properties of the RNA target sites and

produces easy to interpret sequence-structure binding motifs.

SSMART searches for optimal sequence-structure motifs of flexible

length in putative RBP binding sites ranked by their experimentally-

derived binding evidence. While Zagros and GraphProt were

designed for CLIP data and RNAcontext is best suited for

RNAcompete data, our approach is more general and can success-

fully handle different types of input. Moreover, SSMART learns all

motif characteristics from the data, including the motif length, and

does not require parameter optimization. Like Zagros, SSMART

accounts only for double-stranded and single-stranded preferences

at each individual position of the motif. In contrast, RNAcontext

and GraphProt distinguish between five different structural con-

texts, but they output aggregate structural motifs. Our tool is able to

identify different sequence motifs with the corresponding per base

structural preference for the same protein.

Although it was reassuring that SSMART performed well on

simulated and in vitro data, ranking binding evidence is straightfor-

ward in these scenarios, unlike for in vivo binding sites. RNA expres-

sion levels clearly impact the read-evidence and there are other

factors, such as cross-linking or RNase choice, which may need to be

incorporated to properly rank in vivo binding sites. Therefore input

or background binding libraries may be more useful, particularly

for intronic binding sites for which RNA expression estimates could

be problematic. Appropriate normalization and ranking of in vivo

(i)CLIP or PAR-CLIP data remains an ongoing challenge in the field.

We identified cases in which in vitro and in vivo results were dis-

cordant. Biases in both in vitro and in vivo assays may explain these

differences. However, these differences could also be due to factors

influencing in vivo binding that cannot be recapitulated in vitro.

Biologically relevant explanations include RNA structural con-

straints, multiprotein RNA-binding complexes, as well as biophysic-

al features of RNP granules in which these interactions occur. Our

results indicate that SSMART should assist investigators in account-

ing for RNA-structural constraints. Importantly, SSMART is gen-

eral enough to be utilized as the determination of RNA-structure

progress both experimentally and computationally.

In conclusion, we propose an efficient algorithm to identify the

most probable sequence-structure motif, or combination of motifs,

given a large set of RNA sequences. Our method can contribute to

the systematic understanding of RBP-RNA binding specificity as

more genome-wide experiments that determine RBP binding are

performed.
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