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Hereditary tyrosinemia type 1 (HT1) is an autosomal recessive disorder caused by deficiency of fumar-
ylacetoacetate hydrolase (FAH). It has been previously shown that ex vivo hepatocyte-directed gene
therapy using an integrating lentiviral vector to replace the defective Fah gene can cure liver disease in
small- and large-animal models of HT1. This study hypothesized that ex vivo hepatocyte-directed gene
editing using CRISPR/Cas9 could be used to correct a mouse model of HT1, in which a single point
mutation results in loss of FAH function. To achieve high transduction efficiencies of primary hepato-
cytes, this study utilized a lentiviral vector (V) to deliver both the Streptococcus pyogenes Cas9 nuclease
and target guide RNA (LLV-Cas9) and an adeno-associated virus (AAV) vector to deliver a 1.2 kb homology
template (AAV-HT). Cells were isolated from Fah '~ mice and cultured in the presence of LV and AAV
vectors. Transduction of cells with LV-Cas9 induced significant indels at the target locus, and correction
of the point mutation in Fah ™'~ cells ex vivo using AAV-HT was completely dependent on LV-Cas9. Next,
hepatocytes transduced ex vivo by LV-Cas9 and AAV-HT were transplanted into syngeneic Fah ™'~ mice
that had undergone a two-thirds partial hepatectomy or sham hepatectomy. Mice were cycled on/off the
protective drug 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) to stimulate expan-
sion of corrected cells. All transplanted mice became weight stable off NTBC. However, a significant
improvement was observed in weight stability off NTBC in animals that received partial hepatectomy.
After 6 months, mice were euthanized, and thorough biochemical and histological examinations were
performed. Biochemical markers of liver injury were significantly improved over non-transplanted con-
trols. Histological examination of mice revealed normal tissue architecture, while immunohistochemistry
showed robust repopulation of recipient animals with FAH+ cells. In summary, this is the first report of
ex vivo hepatocyte-directed gene repair using CRISPR/Cas9 to demonstrate curative therapy in an animal
model of liver disease.
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INTRODUCTION

HEREDITARY TYROSINEMIA TYPE I (HT'1) is an autoso-
mal recessive inborn error of metabolism of the li-
ver caused by a deficiency in fumarylacetoacetate
hydrolase (FAH), the final enzyme in the catabo-
lism of tyrosine. The buildup of the toxic metabo-
lites fumarylacetoacetate and succinylacetoacetate
in hepatocytes leads to oxidative stress, resulting
in apoptotic cell death or disrupted gene expres-

sion.! Affecting about 1/100,000 live births
worldwide, HT1 is fatal if untreated.? Without
treatment, children present with cirrhosis, renal
tubular injury, neurological crises, hepatocellular
carcinoma, and, eventually, liver failure early in
life.®* Liver transplant remains the only curative
treatment but comes with its own difficulties, in-
cluding organ shortage and the need for lifelong
immunosuppression. The protective drug 2-(2-nitro-
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4-trifluoromethylbenzoyl)-1,3-cyclohexanedione
(NTBC) ameliorates the disease by inhibiting an
earlier enzyme in the tyrosine catabolism pathway
and preventing the accumulation of toxic metabo-
lites. When combined with a diet low in phenylala-
nine and tyrosine, NTBC can mitigate the need for
liver transplant in 90% of cases.? However, even
responsive patients remain at increased risk for the
development of hepatocellular carcinoma and neu-
rological degeneration.’ The severity of these com-
plications prompts the need for a new curative
therapy beyond that of transplant.

Recent advances in gene therapy have made it
possible to develop targeted treatments for a vari-
ety of disorders. Not only can gene addition thera-
pies restore phenotype in diseases that lack a
functional gene or protein product, but gene cor-
rection is becoming more precise and efficient.®
Using a guide RNA and a Cas9 protein to induce a
double-stranded break at a specific genomic target
sequence, it is now possible to use CRISPR/Cas9 to
produce indels through a non-homologous end-
joining (NHEJ) repair pathway or to introduce a
homology sequence to be incorporated via homolo-
gous recombination.” HT1 provides an excellent
opportunity for gene therapy, as there is a strong
selective advantage for corrected cells in vivo in the
absence of NTBC.®> When targeting a particular
organ or cell type, ex vivo protocols—wherein cells
are collected, edited, and re-transplanted—further
increase the correction efficacy and safety of gene
editing.? However, primary hepatocytes, the main
cell type affected by HT1, are difficult cells to
target using ex vivo gene therapy, as they are
thought to be quiescent and have a limited life-
span in vitro.'® Nevertheless, several studies have
had success transducing hepatocytes ex vivo using
self-inactivating lentiviral (LV) vectors, including
previous work by the authors’ group correcting a
pig model of HT'1 through an ex vivo LV gene addi-
tion protocol.!*™* LV vectors are strong candidates
for gene therapy in hepatocytes, as they are known
to transfect nondividing cells, have relatively safe
integration profiles, and can carry large amounts of
genetic information.'®

The goal of this study was to develop a targeted
and effective gene-editing treatment for HT1 by
delivering both the Cas9 protein and a homology
template to cells ex vivo prior to transplantation.
Using a LV to deliver the Cas9 gRNA and protein
(herein referenced as LV-Cas9), as well as an adeno-
associated virus (AAV) to deliver the homology
template (AAV-HT), it was possible to demonstrate
a curative ex vivo gene-correction protocol in a mu-
rine model of HT'1.

MATERIALS AND METHODS
Plasmid and vector construction

Guides targeting the point mutation in the
Fah gene were designed using software from
Benchling.com using previously published algo-
rithms for active guide design.'®'” Oligos containing
BsmBI-clonable overhangs were ligated down-
stream of a U6 promoter in a LV vector co-expressing
Cas9 (S. pyogenes) and green fluorescent protein
(GFP; pL-CRISPR.EFS.GFP was a gift from Ben-
jamin Ebert; Addgene plasmid # 57818).18 A control
single-guide RNA targeted against the LacZ gene
(ACCCGAGTGTATCTGGTCGC) was also cloned
into a LV expressing Cas9 (LV-LacZ). LV-Cas9 was
generated and harvested using a three-plasmid
construct, as described previously.'® Vector titers,
expressed in the manuscript as LV particles (LPs),
were determined by p24 enzyme-linked immuno-
sorbent assay (Clontech, Mountain View, CA).

A 1,192 base pair (bp) fragment of homology to
the Fah exon 8 locus was synthesized into a
gBLOCK (IDT, Coralville, IA) and cloned into an
AAV vector that, after ligation, had a total length of
3,622bp between the inverted terminal repeats.
AAV-HT was created by standard triple plasmid
transfection of HEK-293T cells?® using Fugene6
(Promega, Madison, WI). Cells were incubated for
72h and collected, and the AAV particles were
purified, aliquoted, and stored at —80°C. Vectors
titers were determined by quantitative polymerase
chain reaction (PCR) using Luna Universal qPCR
Mix (NEB, Ipswich, MA) with the following primers:
5-TTGCATATACGATACAAGGCTGTT, 5-AAAAC
TGCAAACTACCCAAGAAA. Vector titers are ex-
pressed throughout as vector genome copies (GC).

Animals and animal care

All animals received humane care in compliance
with the regulations of the institutional animal
care and use committee at Mayo Clinic. Fah®%815B
mice, which bear a single-point mutation at the
exon 8 locus as a result of N-ethyl-N-nitrosourea-
mediated mutation, were a generous gift from Dr.
Markus Grompe (OHSU, Portland, OR). These
mice are referred to as Fah~'~ mice throughout this
article. In order to encourage positive selection for
FAH+ hepatocyte proliferation, NTBC was with-
held from Fah™’~ transplant recipient mice until
they showed signs of weight decline, at which point
it was administered in their drinking water at
8 mg/L for 5-7 days before it was withdrawn again.

Cell culture
In vitro experiments were conducted on Fah™'~
mouse fibroblasts. Fibroblast cell lines were derived
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from neonatal Fah ™'~ tissue and were immortalized
using a LV vector expressing the small and large
SV40 T antigens. Fibroblasts were kept in Dul-
becco’s modified Eagle’s medium (DMEM; Thermo
Fisher Scientific, Waltham, MA) containing 10%
heat-inactivated fetal bovine serum (FBS; Corn-
ing, Herndon, VA) and 1% penicillin/streptomycin
(Corning). Cells were kept at 37°C and 5% CO,
and were passaged using 0.05% trypsin/EDTA as
needed (Thermo Fisher Scientific).

PCR and T7 endonuclease analysis

Total cells from in vitro assays were collected
and processed using a DNeasy Blood & Tissue Kit
(Qiagen, Hilden, Germany). For PCR amplification
of uncorrected, disrupted sequence, the following
two primers were used: 5-GGAAAGGGCTCATG
TGAGTAG, 5-TCCATCCTTCCACTTATGAGAA.
PCR conditions using Phusion polymerase (NEB)
were as follows: 98°C for 3 min; 35 cycles of 98°C for
10s, 60°C for 20s, 72°C for 30s; 72°C for 5min.
Generated PCR products were 452 bp in length. PCR
products were processed using a T7 endonuclease
Alt-R® Genome Editing Detection Kit (Integrated
DNA Technologies, Coralville, IA), electrophoresed
on a 2% TAE agarose gel, and visualized with ethi-
dium bromide staining. For selective PCR amplifi-
cation of corrected sequence, the following two
primers were used: 5'-TGGAGCGGTAATGCCTCC,
5-AAAATGCAGGATCCACCAAG. The first primer
binds selectively to the modified protospacer adjacent
motif (PAM) sequence in corrected DNA, while the
second binds outside of the homology template; only
DNA that has successfully integrated the AAV-HT
will amplify. PCR conditions were as follows: 98°C for
3 min; 35 cycles of 98°C for 10 s, 61°C for 20 s, 72°C for
45s; 72°C for 5min. The expected product length is
859 bp. PCR products were electrophoresed on a 2%
TAE agarose gel and visualized with ethidium bro-
mide staining.

Tracking of Indels by DEcomposition
and sequencing analysis

PCR products that successfully showed sequence
disruption using a T'7 endonuclease assay were se-
quenced using Sanger sequencing. Chromatogram
results were analyzed using the free online tool,
Tracking of Indels by DEcomposition (TIDE).?! This
program uses decomposition algorithms in order to
compare mixed pool and control chromatograms
and to determine the probability of various indels in
the experimental group. For next-generation se-
quencing (NGS) of amplicons, PCR purified prod-
ucts using the primers 5-CCAACTTTCTCCATGG
CAGG and 5-ACCCCTGTAGTACTTAGGCC were

submitted to GENEWIZ for NGS-Amplicon-EZ plat-
form sequencing (GENEWIZ, South Plainfield, NdJ).

Flow cytometry

Various AAV vector serotypes expressing GFP
under control of the ubiquitous promoter cyto-
megalovirus (Vigene Biosciences, Rockville, MD)
were transduced into primary mouse hepatocytes
at a multiplicity of infection (MOI) of 50,000 GC.
The medium was changed daily, and cells were
analyzed for GFP expression by flow cytometry
after 4 days. To dissociate cells into a single cell
suspension, 0.05% Trypsin/EDTA was used. Cells
were washed and fixed in 1% paraformaldehyde for
15min prior to analysis on a FACSCalibur (BD
Biosciences, San Jose, CA). Data were analyzed
using FlowdJo (Treestar, Ashland, OR).

Hepatocyte transplantation

Hepatocytes were harvested from an anesthe-
tized donor mouse using a standard in situ perfu-
sion of the liver using a mix of Collagenase NB
(Serva, Heidelberg, Germany) and Thermolysin
(Sigma—Aldrich, St. Louis, MO). Cell viability was
determined via trypan blue exclusion assay. Cells
were plated into six-well Primaria culture plates
(BD Biosciences) containing the following media:
DMEM, 10% FBS, 10mM of HEPES, 10 uM of
dexamethasone (Sigma—Aldrich), 7mg/L of NTBC,
10ng/mL of murine epidermal growth factor (Pe-
protech, Rocky Hill, NJ), and 1% penicillin/strep-
tomycin. Fresh media were added 100 min later.
LV-Cas9 was added at this time at the indicated
MOI. AAV-HT was also added at this time at a MOI
between 10,000 and 20,000, as indicated. Twenty-
four hours post transduction, Hepatocytes were
harvested with 0.05% trypsin/EDTA, centrifuged,
and re-suspended for transplantation in 200 uL of
media containing 2 pug/mL of DNasel (Sigma—
Aldrich). The cells were then injected into recipient
mice via intra-splenic injection, as described pre-
viously.??2 A two-thirds partial hepatectomy was
performed on one cohort of mice, as previously
described.?®

Histology and biochemical analysis

For histological analysis, tissue samples were
fixed in 10% neutral-buffered formalin (Protocol;
Thermo Fisher Scientific, Pittsburgh, PA) and
processed for paraffin embedding and sectioning.
For hematoxylin and eosin (H&E) staining, slides
were prepared with standard protocols. A blinded
histopathological analysis was performed by a
trained veterinarian pathologist. FAH immuno-
histochemistry using a polyclonal rabbit anti-FAH
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primary antibody®* was performed with a Bond III
automatic stainer (Leica, Buffalo Grove, IL) with a
20 min antigen retrieval step using Bond Epitope
Retrieval Solution 2 (Leica), and stained with dia-
minobenzidine (Leica). GFP immunohistochemis-
try using a monoclonal rabbit anti-GFP primary
antibody (GFP #2956; Cell Signaling Technology,
Danvers, MA) was also performed with a Bond III
automatic stainer with a 20 min antigen retrieval
step using Bond Epitope Retrieval Solution 2, and
stained with diaminobenzidine. For biochemical
analysis of alkaline phosphatase (ALP), alanine
aminotransferase (ALT), aspartate aminotrans-
ferase (AST), albumin, and total bilirubin (TBIL),
plasma was analyzed with the VetScan VS2 bench-
top analyzer (Mammalian Liver Profile; Abaxis,
Union City, CA) according to the manufacturer’s in-
structions. Tyrosine values were determined using
tandem mass spectrometry and chromatography via
Mayo Clinic’s internal biochemical PKU test. Quan-
tification of FAH-positive cells was obtained using a
cytoplasmic stain algorithm in Aperio ImageScope.
Fifteen rectangular areas totaling 954,829.4 ym?®
were randomly selected and analyzed. Reported re-
sults are total percentage of cytoplasmic FAH posi-
tivity among the cells selected.

Statistical analysis

Data were analyzed using GraphPad Prism v7
(GraphPad Software, Inc., San Diego, CA). Variances
were determined by the F-test. Experimental groups
with equal variances were compared using an un-
paired two-tailed Student’s ¢-test. Experimental
groups with unequal variances were compared using
a two-tailed Welch’s ¢-test. Differences between
multiple groups were compared using one-way
analysis of variance followed by Tukey’s multiple

A Fah” —| 7}

comparisons test. Due to the inability to keep
untreated Fah™'~ mice alive off of NTBC for the
duration of the experiment, historical controls
were used for the plasma data at time of sacrifice.
A p-value of <0.05 was considered statistically
significant.

RESULTS
LV-Cas9.sgFah can robustly edit Fah™~ cells
at the target locus

For this series of experiments, Fah ™'~ cells from
a mouse model of HT'1 were utilized. These Fah ™'~
mice carry a G — A point mutation in the last
nucleotide of exon 8 (Fig. 1A), leading to a splic-
ing defect and a truncated, unstable, and non-
functioning FAH protein.?® A single LV vector was
generated that expressed S. pyogenes Cas9 nuclease
and a guide RNA targeted to the point mutation
surrounding exon 8 of the Fah gene (LV-Cas9;
Fig. 1C). Fibroblasts from Fah™'~ mice were trans-
duced to determine the efficiency and spectrum of
mutations caused by CRISPR/Cas9 at the targeted
locus using LV-Cas9. Generation of double-strand
breaks was confirmed by T7 endonuclease analy-
sis (Fig. 2A). As expected, a range of mutations
were identified using both NGS of amplicons and
TIDE analyses of Sanger sequencing results
(Fig. 2B and C).

Correction of Fah using AAV is dependent
on CRISPR/Cas9

Initially, a pilot experiment was performed in
primary mouse hepatocytes to determine the effi-
ciency of common AAYV serotypes to transduce he-
patocytes. Using a GFP vector, the serotypes 2
and DJ gave significantly better transduction than
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Figure 1. Schematics of Fah gene and viral vectors used. (A) Fah™ mouse gene locus. The hereditary tyrosinemia type 1 (HT1) mutation is on the last
nucleotide of exon 8, as shown in red. The protospacer adjacent motif (PAM) sequence for the indicated guide RNA is highlighted in blue. (B) Adeno-
associated virus (AAV) vector homology template with 1.2kb homology fragment flanked by inverted terminal repeats. The corrected Fah gene sequence is
shown in red, and the PAM sequence, which is modified to prevent re-cutting, is shown in blue. (C) The LV-Cas9 vector contains a single-guide RNA (gRNA)
under the control of the U6 promoter. Cas9 from Streptococcus pyogenes is co-expressed with green fluorescent protein (GFP) under the control of the EFS
promoter by means of a P2A cleavage site.
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Figure 2. LV-Cas9-mediated gene editing at the Fah™~ locus in fibroblasts. (A) A 452 base pair (bp) region around the HT1 single nucleotide polymorphism
was amplified using polymerase chain reaction (PCR), re-annealed, and analyzed using a T7 endonuclease assay, which cleaves DNA at mismatched
sequences. The lower bands in the gel indicated that LV-Cas9 did disrupt the Fah locus. (B) Gene disruption was confirmed by next-generation sequencing of
amplicons. The top line is the non-modified mutant sequence, and the lines below indicate the frequency of each modified sequence at this locus. The guide
sequence is italicized in the top line. (C) Representative Tracking of Indels by DEcomposition analysis of cells treated with LV-Cas9 at a multiplicity of infection
of 8,000 lentiviral (LV) particles. The Cas9 efficiency in this sample was 34.4%, with the most frequent indel being a +1 insertion (24.7%).

serotypes 8 and 9 (Fig. 3A). Based on these data,
and previous use of the DJ serotype to perform
gene editing in pig fibroblasts for somatic cell nu-
clear transfer,2® the DJ serotype was utilized for
the remainder of the experiments. The AAV-
targeting vector contained approximately 1.2 kb of
homology that contained the correct G for proper
Fah splicing, in addition to a modified sequence
downstream of the corrected point mutation that
would disrupt future cutting at the target site by
modifying the PAM sequence (Fig. 1B). The hy-
pothesis was tested that Cas9 expression is critical
for gene correction at the Fah locus by comparing
gene correction in the presence of AAV-HT alone or
combined with LV-Cas9 (with a sgRNA Fah guide)
or with LV-LacZ (a control sgRNA targeted against
the LacZ gene; Fig. 3B). A positive PCR signal was
only detected in cells receiving both LV-Cas9
against Fah and AAV-HT. Next, Fah™'~ fibro-

blasts were transduced with various MOIs of AAV
with or without LV-Cas9. After 72 h, PCR analysis
using specific primers that can only amplify re-
paired Fah confirmed correction of the target site
at various MOIs of AAV (Fig. 3C).

Transplantation of gene-edited hepatocytes
can prevent liver failure in Fah™’~ mice

Previous work with primary hepatocytes iden-
tified optimal conditions for high transduction
with VSV-G-pseudotyped LV vectors.?” Using these
culture conditions, hepatocytes from a donor Fah ™/~
mouse were isolated and cultured for <24 h in the
presence of LV-Cas9 and AAV-HT. Hepatocytes
were harvested and transplanted into syngeneic
Fah™'~ mice by intra-splenic injection. One group of
recipient mice received a two-thirds partial hep-
atectomy immediately prior to transplantation
to investigate whether regenerative cues would
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Figure 3. Fah™" gene correction using AAV is dependent on LV-Cas9. (A) Hepatocytes were transduced with different serotypes of AAV vector expressing
GFP, and the percentage of cells transduced was measured by flow cytometry. AAV-2 and AAV-DJ yielded statistically significant more GFP+ cells compared
to control, AAV-8, and AAV-9 (****p<0.001) but not from each other. AAV-DJ was used for the duration of the experiments. (B) Fah™" fibroblasts were
transduced, as indicated with a combination of a LV vector carrying Cas9 and a guide for the Fah locus (LV-Fah sgRNA), a LV vector carrying Cas9 and a guide
for the LacZ locus (LV-LacZ sgRNA), and AAV-HT for the Fah locus. Using PCR primers that selectively amplify corrected sequence, only cells that were
transduced with both LV-Fah sgRNA and AAV-HT showed correction. The expected product size is 859 bp. (C) Fah™”~ fibroblasts were transduced as indicated.
Using the same PCR primers as (B), only cells transduced by LV-Cas9 and AAV-HT together resulted in gene correction.

improve gene repair and proliferation in vivo
(Fig. 4A). Recipient mice were cycled on/off NTBC
to stimulate expansion of corrected hepatocytes
in vivo. Interestingly, while both groups of ani-
mals became weight stable off NTBC (Fig. 4B),
mice that received a partial hepatectomy became
weight stable significantly sooner than animals
that only received hepatocyte injections (Fig. 4C).

Transplantation of gene-edited hepatocytes
can cure metabolic disease

Six months after transplantation, all mice were
euthanized, and a thorough analysis of biochemical
and histological markers of disease was performed.

As expected based on the weight data, all mice had
significant reductions in biochemical makers of li-
ver injury, including ALT, AST, ALP, and TBIL
(Fig. 5). Albumin levels were also significantly
higher in transplanted mice compared to controls.
Specific to HT1, tyrosine levels in the blood were
reduced to normal levels, indicating complete
amelioration of aberrant tyrosine catabolism in
these mice. Next, the histology of the livers was
analyzed using FAH (Fig. 6A and Supplementary
Fig. S1; Supplementary Data are available online
at www.liebertpub.com/hum), GFP (co-expressed
with Cas9 by the LV; Supplementary Fig. S2), and
H&E (Fig. 6A). All mice displayed significant re-
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Figure 4. Transplantation of ex vivo gene edited hepatocytes is curative. (A) Schematic depicting the ex vivo procedure. Fali”~ hepatocytes were isolated
from a donor mouse, transduced with the LV-Cas9 and AAV-HT, cultured for <24 h, and transplanted into syngeneic Fah”~ mice via splenic injection. One
cohort of mice (n=3) received a partial hepatectomy at the time of transplant. A second cohort (n=3) received splenic injection only. After 6 months of 2-(2-
nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) cycling, biochemical and histological data were obtained. (B) Mice were cycled on and off NTBC
(gray bars) following transplant until NTBC-independence was obtained. Weight data from all mice are shown. Mice were NTBC-independent for 92 days
before sacrifice. (C) Change in average weights (n=3 for each group) from day 5 post transplant indicates that mice that received a partial hepatectomy (Hx)
became weight stable off NTBC more quickly than mice that did not receive a partial hepatectomy (No hx).

population of the Fah ™/~ mouse liver with corrected
hepatocytes, as indicated by FAH staining. In con-
gruence with the weight data, mice that received
partial hepatectomy had significantly increased
numbers of FAH+ cells, as determined by digital
quantification of FAH+ cells in transplanted livers
(Fig. 6B). Finally, using NGS of amplicons, the mo-
lecular status of the corrected allele was character-
ized in all six mice (Fig. 6C). The mean percentage of
corrected alleles in transplanted mice was calculated
to be 21.7%. Based on the hepatocyte cell number in
the liver and the natural polyploidy status of hepa-
tocytes, these data correlate with the FAH histology
showing robust hepatocyte expansion of corrected
cells in vivo. Interestingly, a number of other muta-
tions were also detected at high frequency at the
edited locus, indicating the potential for CRISPR/
Cas9 to cause unwanted changes in the genome
when delivered by integrating vectors (Fig. 6C).

DISCUSSION

This study aimed to genetically edit and pheno-
typically cure a mouse model of HT'1 through the
use of a viral vector—delivered Cas9 protein and ho-
mology template using an ex vivo protocol. After de-
livering the LV-Cas9 and the AAV-HT to purified
hepatocytes and transplanting them via intra-splenic

injection, recipient mice were cycled on and off
NTBC to encourage proliferation of corrected cells
until NTBC-independent weight gain was achieved.
As shown by weight profiles, biochemical data, and
histological imaging, the treatment was successful,
demonstrating for the first time proof-of-concept
for ex vivo hepatocyte-directed gene editing using
CRISPR/Cas9.

Although allogeneic hepatocyte transplantation
has demonstrated safety and partial efficacy in pre-
clinical and clinical settings, its widespread use is
severely limited by a shortage of donor hepatocytes
and the immune response against the allogeneic
cells.?®2° Ex vivo autologous hepatocyte-directed
gene therapy using integrating vectors has been
previously demonstrated in small- and large-
animal models of metabolic liver disease. Initially
utilizing gamma retroviral vectors to deliver and
integrate the missing gene randomly into the host
genome, a number of preclinical studies demon-
strated efficacy of an ex vivo approach for metabolic
liver diseases.?*® These preliminary data were
sufficient for a clinical trial to occur in five patients
with familial hypercholesterolemia in which a
gamma-retroviral vector containing the LDLR
gene was delivered to cultured hepatocytes after
resection, and transduced autologous cells were
re-transplanted.®*3® While only some therapeutic
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Figure 5. Biochemical analyses confirmed amelioration of metabolic disease in transplanted mice. Plasma from the time of sacrifice (6 months post trans-
plantation) in all transplanted mice (n=6) was compared to plasma of Fah™~ untreated controls off NTBC (-NTBC; n=5) and untreated Fah”~ mice on NTBC
(+NTBC; n=5). ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; TBIL, total bilirubin. ***p<0.001; ****p<0.0001.

efficacy was shown, this important study provided
clinical proof-of-concept for future ex vivo hepatocyte-
directed gene therapy approaches. With the advent
of self-inactivating LV vectors, and their encourag-
ing success in clinical trials with hematopoietic stem

cells for treating primary immunodeficiencies,?**” a

number of preclinical studies have shown that ex
vivo transduction of primary hepatocytes with LV
vectors can ameliorate metabolic liver disease in
rodent and pig models.?®3° Therefore, this group of
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Figure 6. (A) Histology and immunohistochemistry slides from treated and untreated control mice. Low-magnification fumarylacetoacetate hydrolase (FAH)
images are on the /eft; higher-magnification view of dashed box is on the right. (B) Average percentage of FAH+ cells in untreated controls (n=3), +Hx mice
(n=3), and —Hx mice (n=3). *p<0.05; ***p<0.0001. (C) Combined sequencing data from the time of autopsy detailing frequency of targeted and untargeted

modifications at the Fah locus.

studies provided the foundation to continue to pur-
sue the development of ex vivo hepatocyte-directed
CRISPR/Cas9-mediated gene therapy as an alter-
native to orthotopic liver transplantation for meta-
bolic liver disease.

The advent of precision gene editing has chan-
ged the landscape for hepatocyte-directed gene
therapy. A number of elegant studies have dem-
onstrated the potential for in vivo delivery of en-
donucleases, including zinc finger nucleases and
CRISPR/Cas9, combined with delivery of a repair

template, to correct and cure disease in rodent
models.**~*3 While an in vivo approach to liver gene
therapy is attractive for a number of reasons, ex
vivo gene therapy provides many advantages for
liver-directed gene therapy. First, the source of
autologous cells is inherent in the therapy, and in
addition to providing cells by means of liver resec-
tion, the procedure is strongly pro-regenerative,**
therefore providing a stimulus for transplanted
cells to proliferate. Second, in contrast to an in vivo
approach, this therapeutic method ensures specific
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targeting of the intended cell type—the hepato-
cyte—at much lower and safer vector doses than
are needed with systemic administration of viral
vectors. Third, although much more research is
needed to make this feasible, ex vivo gene therapy
opens up the possibility of correcting and expand-
ing hepatocytes ex vivo, prior to re-transplantation
into the patient.*®

To the authors’ knowledge, this study is the first
to demonstrate the efficacy of combining CRISPR/
Cas9-mediated gene editing and hepatocyte
transplantation together to cure a metabolic liver
disease. However, a number of challenges will need
to be overcome prior to bringing this novel regen-
erative therapy to the clinic for the many metabolic
liver diseases. First, the use of a LV vector to ex-
press the Cas9 and guide RNA would not be the
optimal method to deliver these gene-editing com-
ponents due to the risk of continued Cas9-mediated
off-target gene editing. The present data demon-
strate continued expression of GFP, which is co-
expressed with Cas9, 6 months after transplan-
tation. Therefore, future ex vivo gene-editing
approaches should focus on the use of other non-
integrating viral vectors (e.g., AAV) or, even
preferably, the use of non-viral vectors for short-
term expression of Cas9. Second, hepatocyte gene
editing provides the formidable obstacle of cells not
actively replicating and therefore predominantly
repairing DNA damage of double-strand breaks by
NHEJ. This obstacle has been previously high-
lighted with recent in vivo gene-editing approaches,
with DNA repair efficiencies significantly lower in
adult mice compared to neonatal mice.*> A partial
hepatectomy was utilized as a clinically relevant
method to improve gene editing in transplanted
hepatocytes.?® Further work is needed to evaluate
the therapeutic benefit of this approach in other
models. Other methods that either stimulate hepa-
tocyte replication or provide a selective advantage
for transplanted hepatocyte proliferation®® could
also be optimized for efficient gene editing in adult
hepatocytes to occur. Third, while the Fah™'~ mouse
model provides an excellent proof-of-concept for
gene-editing studies, the robustness and clinical
relevance of ex vivo gene editing will need to be
demonstrated in other models. The Fah™'~ mouse
model provides a massive repopulation advantage
for FAH+ cells over host FAH- cells; previous
studies have shown that as few as 1,000 FAH+

hepatocytes can correct metabolic deficiency in
Fah™'~ mice.® Therefore, while other metabolic
diseases may also provide some selective advan-
tage for corrected cells (most notably alpha-1 an-
titrypsin deficiency*”*®) improved gene-editing
protocols will need to be optimized for this novel
therapeutic strategy to be applied to other meta-
bolic diseases where no apparent repopulation ad-
vantage is present. Finally, future work is needed
to evaluate the ability of AAV to mediate robust
gene editing in the absence of CRISPR/Cas9. The
molecular status of cells ex vivo (Fig. 3B) and after 6
months in vivo (Fig. 6C) indicated significant in-
dels at the Fah locus produced by CRISPR/Cas9.
Further studies are needed to evaluate the on-
target as well as off-target effects of CRISPR/Cas9,
particularly in the context of an integrating vector.

In summary, the present data provide proof-of-
concept for the application of hepatocyte-directed
CRISPR/Cas9-mediated gene editing to metabolic
liver diseases. The results demonstrated curative
gene and cell therapy in a mouse model of HT1.
Future work is needed to optimize this novel
therapeutic approach, but these results lay the
foundation for future endeavors to bring this
therapy to the clinic for patients with metabolic
liver disease who are currently only curable by
whole-organ transplantation. In much the same
way as has been demonstrated for patients with
primary immunodeficiencies, *637*° the potential
for autologous gene therapy—using partial hepa-
tectomy to isolate hepatocytes—is envisioned to be
an alternative regenerative therapy for patients
with metabolic liver disease.
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