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Abstract
Somatic structural variants undoubtedly play important roles in driving
tumourigenesis. This is evident despite the substantial technical challenges
that remain in accurately detecting structural variants and their breakpoints in
tumours and in spite of our incomplete understanding of the impact of structural
variants on cellular function. Developments in these areas of research
contribute to the ongoing discovery of structural variation with a clear impact on
the evolution of the tumour and on the clinical importance to the patient. Recent
large whole genome sequencing studies have reinforced our impression of
each tumour as a unique combination of mutations but paradoxically have also
discovered similar genome-wide patterns of single-nucleotide and structural
variation between tumours. Statistical methods have been developed to
deconvolute mutation patterns, or signatures, that recur across samples,
providing information about the mutagens and repair processes that may be
active in a given tumour. These signatures can guide treatment by, for example,
highlighting vulnerabilities in a particular tumour to a particular chemotherapy.
Thus, although the complete reconstruction of the full evolutionary trajectory of
a tumour genome remains currently out of reach, valuable data are already
emerging to improve the treatment of cancer.
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Introduction
Tumours arise when normal cells accumulate enough genetic  
alterations to affect normal regulatory control systems1. These 
alterations usually include somatic structural variants (SVs)  
which are large-scale changes to the genome, ranging from 50 
nucleotides to many megabases in length2. SVs can occur as a 
result of improper DNA double-strand break (DSB) repair3 and 
are traditionally classified into five different types: insertions, 
deletions, duplications, inversions, and translocations2. Although 
all tumours accumulate both somatic single-nucleotide variant 
(SNV) mutations and SVs, certain tumour types such as high-grade 
serous ovarian cancer (HGSOC) and invasive breast cancer4 are  
dominated by SVs. Furthermore, in HGSOC5 and pancreatic 
neuroendocrine tumours6, there is good evidence for SVs play-
ing prominent roles in driving tumourigenesis. Various sequenc-
ing strategies, particularly whole genome sequencing (WGS), 
can be used to identify structural variation in tumours by com-
paring the pattern of structural variation in tumour tissue with 
that observed in normal cells2,7. A range of computational tools 
are then used to detect these variants from sequencing data, but  
detection algorithms perform very differently in identifying par-
ticular SV classes, and none of the existing tools are effective in  
detecting all SVs on their own8. Copy number alteration (CNA) 
detection in cancer samples has been reviewed extensively9–11 
because of its important role in tumourigenesis12,13. For example, it 
has been suggested that HLA allele loss in 40% of non-small cell 
lung cancers enables immune escape14. The detection of CNA is a 
more tractable problem than the detection of many other SVs, as  
CNAs can be inferred purely on the basis of changes in read 
depth over a region. Regions with lower read depth suggest loss  
of genetic material, whereas regions of higher read depth sug-
gest gain. Aside from detecting copy number changes, analyses  
of SVs in the past have focused on investigating simpler rear-
rangements of known cancer genes or identifying fusion  
genes15–19; however, the focus is now shifting to considering more 
complex events and SVs as part of broader, genome-wide pat-
terns of mutation20. Our present knowledge of structural aberra-
tions is clearly far from complete, such that although aneuploidy  
is well studied21–23, large-scale phenomena such as whole genome 
doubling have only recently been discovered to be a common  
event in many cancers and to have important implications for  
clinical prognoses24.

Even when an SV is associated with patient survival, it is  
challenging to uncover the underlying mechanism (that is, 
how the SV impacts tumour function). It is known that SVs can 
alter the expression of oncogenes or tumour suppressor genes 
and that these changes in expression may directly contribute to  
tumourigenesis3,8,25–27. It also seems that SVs with breakpoints in 
the main body of a gene may often be associated with increased 
expression of the gene but that SVs with breakpoints within 
50 kb upstream or downstream of a gene are correlated with  
decreased expression25. Similarly, it has been observed that ampli-
fied regions of the genome are enriched for oncogenes but that 
deleted regions are enriched for tumour suppressors1. However,  
SVs may alter the expression of genes through various mecha-
nisms, and multiple SVs may occur at the same locus, so the 
impact of a particular SV on nearby genes is often difficult to  

predict25. SVs have long been known to result in the formation  
of functional fusion genes by translocations1. For example, 
the BCR1-ABL fusion gene is formed by a t(9;22)(q34;q11) 
translocation which leads to increased tyrosine kinase activity, 
uncontrolled proliferation, and ultimately chronic myeloid leu-
kaemia (CML). This type of gene fusion can be targeted with 
kinase inhibitors, resulting in an effective treatment for CML. 
Rearrangements can also reposition regulatory elements such as 
enhancers next to oncogenes, which has been observed in Burkitt’s  
lymphoma and results in increased expression of the MYC  
oncogene1,25. Recent studies have suggested that enhancer adop-
tion by oncogenes following the disruption of regulatory domains 
is fairly common in tumourigenesis, occurring at rates compara-
ble to those of recurrent in-frame gene fusions28, although the  
domain architectures themselves may simply be prone to 
higher rates of mutation29. Finally, there appear to be SVs with 
breakpoints that do not have direct effects on either genes or  
regulatory elements and yet their presence is associated with 
patient survival rates1. Beyond gene expression, the effects of SVs 
are not well studied, but notably modest correlations have been  
reported between the extent of tumour duplications and dele-
tions involving a gene and the levels of the protein it encodes30.  
In summary, although simpler SVs may tend to have intuitive 
effects on gene expression (for example, deletions leading to lower  
expression and amplifications leading to higher expression), 
it is generally not straightforward to interpret the functional  
effects of a given SV within a given tumour.

Identifying structural variation
Historically, chromosomal aberrations were detected by using 
microscopy and traditional karyotyping methods, which  
then were improved with the development of fluorescent in situ 
hybridisation techniques31. Modern high-throughput sequenc-
ing technologies are capable of detecting a wider variety of  
structural variation at much higher resolution. The most widely 
used sequencing technologies generate billions of short reads about  
100 nucleotides in length from sequencing libraries8. The 
short lengths of the reads, sequencing platform error rates, and 
the sequencing libraries used can all present challenges for  
SV detection. Some reads map ambiguously to many differ-
ent regions in the reference genome, which makes it difficult to 
determine the true location of the corresponding SV. This is  
particularly true of reads in repetitive regions8. Smaller library 
insert sizes enable the precise identification of small SVs such as 
insertions and deletions; however, smaller insert sizes will cover 
only short stretches of sequence, making it hard to cover large  
SVs2. Contrastingly, larger insert sizes allow the identification 
of large SVs but may have insufficient coverage to determine  
the location of breakpoints at base-pair resolution. Given the 
high cost of conducting sequencing experiments using multiple  
library sizes, it is important to use the appropriate strategy  
for the biological hypothesis under study. Chimeric reads are arti-
ficial sequences formed during the amplification step of polymer-
ase chain reaction (PCR) and can also result in artefacts during  
analysis. The effect of chimeric reads on SV prediction can  
be mitigated by using multiple libraries per sample and filtering 
out novel sequences that are in only one library; however, this  
comes with the risk of filtering out low-frequency SVs2.  
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Alternatively, there are tools such as ChimeraChecker32 and  
ChimeraSlayer33 which are designed to remove chimeric reads. 
Finally, the genomic context of the sequence also impacts SV 
calling. Regions that are poorly characterised in the reference  
genome such as pericentromeric and telomeric regions present a 
challenge to the identification of SVs. In addition, repetitive or 
GC-rich regions are often problematic for confident read mapping, 
which can be overcome by sequencing technologies generating 
longer reads2.

Several long-range technologies have been developed to try to 
address these challenges34. PacBio35 and Oxford Nanopore36 
sequencing platforms both produce long reads that can be used 
for SV detection. The resultant reads from these technologies  
average about 10 kb in length and some read lengths recorded up 
to 100 kb for PacBio and 1 Mb for Oxford Nanopore. However,  
these technologies are more expensive than standard Illumina 
short-read sequencing and have higher error rates. An alterna-
tive approach is to use a technology based on linked short reads, 
such as the platforms developed by 10X Genomics37. This enables 
the identification of large SVs at a lower cost than for the long- 
read technologies; however, sequencing coverage can be  
relatively sparse, limiting the resolution of locally repetitive 
sequences34. Although they are established, these technologies  
are currently not widely used in cancer genomics and the major-
ity of SV detection in tumours for the moment is still carried  
out on the basis of short-read sequencing data.

Most SV detection algorithms or “callers” identify SVs  
from paired-end sequencing reads that are anomalously mapped. 
Anomalous reads can be used to predict candidate SV loci  
because reads that do not contain an SV breakpoint are expected 
to map concordantly2. Anomalously mapped reads fall into one 
of three categories: discordant reads, soft-clipped reads, and  
one-end-anchored reads. Discordant reads can be used in the direct 
discovery of SVs and are mapped to either different chromo-
somes (providing evidence for translocations) or incorrect strands  
(suggesting inversions) or are in incorrect orientation (suggest-
ing duplications) or are an incorrect distance apart (indicating the  
presence of an insertion or deletion). Detecting SVs from  
discordant reads is more effective for the detection of larger 
SV events, as they are unable to estimate breakpoint locations  
precisely and small SVs may have insufficient discordant read 
coverage to be detectable8. Soft-clipped and one-end-anchored 
reads can be used for indirect SV discovery. Soft-clipped reads 
are only partially mapped, and one-end-anchored reads have only  
one read of the pair mapped. In both cases, split-read  
mapping is needed to successfully map both ends of the SV.  
These categories of anomaly are better for detecting smaller  
events such as small insertions and deletions, as they are able  
to estimate the breakpoints at a higher resolution.

In practice, SV callers use one or more types of anomalous 
reads to predict candidate SV loci in the following ways2: first, 
by clustering discordant reads that support the same type of SV  
together (for example, SVDetect38); second, by using split-
read mapping to map the other end of indirectly discovered SVs 
(for example, BreakSeq39) or to refine the estimate of the  

breakpoint location in directly discovered SVs (for example, 
LUMPY40); and, third, by using de novo contig assembly to 
stitch together short reads to make a longer segment that can be  
mapped back to the reference and improve the ability to locate 
breakpoints (for example, CREST41). Some callers use com-
binations of all of these techniques, in addition to assessing  
changes in read depth, in order to improve their detection  
sensitivity (for example, DELLY42).

Assessing the accuracy of SV callers has proven to be  
challenging. The International Cancer Genome Consortium–The 
Cancer Genome Atlas (ICGC-TCGA) DREAM SMC-DNA  
Challenge (https://www.synapse.org/#!Synapse:syn312572/wiki/) 
was launched in 2013, aiming to benchmark somatic SNV and 
SV predictions from a wide variety of algorithms using simu-
lated and real tumour-normal WGS pairs. The project revealed  
widespread biases in caller predictions and recommended the 
use of consensus calls made by multiple callers for both SNV  
and SV prediction43. More detailed accounts of the SV callers’ 
performance showed that several algorithms (including Break-
dancer, DELLY, Pindel, Manta, and novoBreak) could achieve 
high precision after stringent filtering of SV calls and substantial 
overlaps in the breakpoints called between them44. Unfortunately,  
SV calling is a rapidly evolving field, and there is no ongoing 
attempt to comprehensively benchmark algorithms as they appear 
or are updated. In spite of this, multiple comparative reviews 
of the most popular SV detection tools and algorithms have  
emerged8,45,46. The ensemble approach to both SNV and SV 
calling explored in the DREAM Challenge has since become  
the de facto standard operating procedure in the field, as reflected 
in the recent re-analyses of large TCGA47 and ICGC48 tumour 
sequencing studies. The choice of algorithms employed in such 
an ensemble is often influenced by practical considerations,  
such as computational demands and run times, but should also 
consider the shared assumptions and biases between tools49.  
Because any ensemble is expected to generate false-positive and 
false-negative results, there is also a requirement for validation 
by orthogonal data for SVs of particular interest, and long-read 
sequencing technologies may often be useful in this respect50.

Genesis and patterns of structural variation
SVs arise when DNA DSBs are improperly repaired51.  
The three main DSB repair mechanisms are homologous recom-
bination (HR), non-homologous end joining (NHEJ), and  
replication-based mechanisms3,52. HR is the most common DNA 
repair mechanism3 and is accurate as long as there is a homologous 
sequence to use as a repair template. However, in tumour genomes, 
there are few overlapping sequences at the breakpoints53,54, so 
generally HR is not possible and the error-prone NHEJ is imple-
mented instead. NHEJ requires no homology and sometimes can 
generate short segments of microhomology or small insertions at 
the breakpoints3. Replication-based mechanisms of DNA DSB 
repair such as microhomology-mediated break-induced repair 
(MMBIR) have also been described55. It is thought that in these 
cases the replication fork can stall and the polymerase can switch 
template sequence using microhomology to any nearby single-
stranded DNA3. This can result in a range of complex structural  
rearrangements56,57. In tumour genomes, which are often HR  
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deficient, these last two mechanisms of repair dominate3.  
A further mechanism behind structural variation in cancer is chro-
mosome instability. This is defined as an increased rate of chro-
mosomal change in comparison with normal cells. Nearly all  
cancer cells have some degree of chromosomal instability, but it 
is unclear whether this drives tumourigenesis or is a by-product  
of cancer evolution58. There is evidence to suggest that a back-
ground of chromosomal instability accelerates the rate of  
tumourigenesis aided by the acquisition of mutations that pro-
mote tolerance of instability (for example, inactivation of TP53)58.  
Furthermore, the role of recombination activating gene (RAG) 
and activation-induced cytidine deaminase (AID) in the diversifi-
cation of immunoglobulin-encoding genes has been proposed as  
a driver of SVs in leukaemia. The RAG1 and RAG2 endonu-
cleases introduce DSBs followed by the recombination of the 
immunoglobulin variable, diversity, and joining regions. AID 
deaminates cytosine residues in the immunoglobulin switch and 
variable regions, allowing somatic hypermutation. This genetic 
diversification of antibodies is activated in response to infectious or  
inflammatory stimuli and has been shown to contribute to the  
accumulation of somatic mutations necessary for clonal  
evolution in leukaemia59,60. The mechanisms underlying the  
generation of structural variation outlined above have been  
reviewed extensively elsewhere1,3,51,61,62.

The traditional model of cancer development involves the  
gradual sequential accumulation of mutations, which leads 
to gradual progression of normal tissue through increasingly 
disordered clinical and pathological stages until it becomes  
a malignant tumour54. An alternative model was suggested 
by Stephens et al. to explain complex patterns of genomic  
rearrangement54. They suggest a catastrophe-like model where  
multiple SVs occur as a result of a single event54.

It is likely that such a model of mutation is behind complex 
patterns of genomic rearrangements found in cancer, such  
as chromothripsis and chromoplexy54,63–66. Chromothripsis is char-
acterised by tens to hundreds of genomic rearrangements across 
an extended chromosomal region. A region that has undergone 
chromothripsis shows the following hallmarks: oscillating copy 
number between usually two copy number states; the retention of 
heterozygosity in the regions with the higher copy number state; 
and clustering of SV breakpoints to a greater extent than would be 
expected given a background model of the regional propensity to  
rearrangement54. Chromothripsis appears to be present in 2% 
to 3% of all cancers and has a higher prevalence in bone can-
cers (25%)54. It has been reported to be associated with the pres-
ence of TP53 mutations in tumours of diverse origins, including 
medulloblastomas, acute myeloid leukaemia, and pancreatic  
tumours67–73, suggesting a connection to general genome instabil-
ity. Moreover, chromothripsis has been associated with poorer  
prognosis in neuroblastoma74, acute myeloid leukaemia70,73, mul-
tiple myeloma75, and malignant melanoma76. In contrast, it has  
been linked with longer progression-free survival in colorectal  
cancer77. This suggests that chromothripsis has the potential  
to be an informative biomarker in tumours but with implica-
tions that may differ by cancer type. A further complex pattern of  
structural rearrangements is chromoplexy78–80. This is characterised 

by chains of translocations and deletions that are interdependent.  
It differs from chromothripsis in that it involves fewer rear-
rangements per chain (3–40+) and the rearrangements can be  
spread across up to 10 chromosomes. It is thought that multiple 
chains of chromoplexy can be formed in successive cell cycles  
but that all of the SVs in each chain are likely to be formed by 
one event63. A further sign of chromoplexy is the presence  
of small deletions between fusion junctions of some translocation 
rearrangements known as “deletion bridges”63,79. Chromoplexy 
is largely copy number neutral and has a high prevalence in  
prostate cancers (88%)63,78,80.

Rates of structural mutation vary across the genome, and  
there are some regions of the genome that are more suscepti-
ble to recurrent structural mutation than others. Glodzik et al.81  
used a large WGS breast cancer cohort20 to identify such regions 
that appear to harbour greater recurrent structural variation 
than expected given the genomic characteristics of the region. 
These characteristics included replication timing domains, gene-
rich regions, background copy number, chromatin states, and  
repetitive sequences. Many of the rearrangement hotspots found 
were dominated by long (greater than 100 kb) tandem duplica-
tions. These hotspots often duplicated key driver genes and regu-
latory elements and were enriched for breast cancer susceptibility  
loci and tissue-specific super enhancers. Thus, based upon the 
functional regions included, some fraction of these hotspots may  
represent driver events under selection in tumours, but many 
hotspots may also be generated by mutational bias at these regions 
(such that they are more prone to mutation or less accessible to 
repair) mediated by their chromatin structure and replication  
timing81. Regardless of the relative roles of selection or other  
processes in their origins, as we discuss below, these patterns  
of recurrent structural mutation may be clinically informative.

From sequence to data to treatment
The role of genomics in precision therapy often focuses  
on using targeted sequencing technologies to test for the pres-
ence of clinically relevant SNVs. However, certain tumour types  
are characterised by modest SNV loads and instead show exten-
sive structural rearrangements4,82,83. Indeed, Ciriello et al.82  
suggest that there is an inverse relationship between the bur-
den of SNVs and CNAs across tumour types (Figure 2a of 82).  
Figure 1 illustrates the average number of SVs per patient 
observed across 19 projects from ICGC84 (release 27). Although it  
can be challenging to adjust for the inter-study differences 
highlighted below, it appears that certain (e.g. ovarian, breast,  
and prostate) tumours possess high frequencies of SVs but 
that other tumour types such as bone cancers and chronic lym-
phocytic leukaemia do not. However, there are also noticeable 
differences in the frequencies of mutations reported between 
cohorts of the same tumour type, which may reflect differences in  
cellularity, sequencing depth, and the SV callers used  
across studies. These differences emphasise the challenges that 
exist in measuring the degree of structural variation across stud-
ies with multiple confounding factors. Nevertheless, the clinical 
utility of certain SVs is already established. Currently, clinically  
actionable SVs include gene fusions85 (for example, BCR-ABL), 
oncogene amplifications (for example, ERBB2), and tumour  
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Figure 1. Average number of structural variants per patient by cancer type. The average number of structural variants per patient varies 
across 19 whole genome sequencing studies of cancer from the International Cancer Genomics Consortium (ICGC) (release 27). Structural 
variants were classified into five types: deletions, insertions, tandem duplications, inversions, and translocations. Some tumours such as 
ovarian, breast, and prostate have relatively large numbers of structural variants, whereas bone cancers and chronic lymphocytic leukaemias 
have relatively few. However, biological differences among tumour types can be confounded by technical differences among studies.  
SV, structural variant.

suppressor deletions (for example, BRCA1). Mertens et al.85  
discuss the impact of gene fusions in cancer and describe their 
utility as effective drug targets (Table 2 of 85). Further advances 
in technology will be necessary for the reliable identification  
of more complex SV patterns in a clinical setting where low-cost 
and rapid-turnaround assays are desirable83.

In the past, the analysis of somatic mutations in cancer has  
often focused on recurrent driver mutations located within the 
small fraction of the genome encoding proteins and thought to 
confer selective advantages to tumour cells86,87. However, it has 
been convincingly demonstrated that the total burden of mutations 
genome-wide in a tumour can represent the cumulative impact 
of mutagens, repair processes, and other influences along the  
path of tumourigenesis88,89. This overall burden of mutation can be 
disentangled to identify distinct and independent patterns of muta-
tion which represent distinct mutational processes90,91. The asso-
ciations seen between these patterns and particular DNA repair  
deficiencies were recently validated in vitro by using isogenic 
cell models92. The computational analyses required to dis-
entangle these patterns have been developed by using large  
pan-cancer cohorts of WGS/whole exome sequencing as well 
as for a large cohort of breast cancer WGS and have success-
fully identified over 30 patterns or signatures of SNVs classified  
by their substitution type and trinucleotide context93. Analogous 
approaches have been proposed for the analyses of indels94 and 
larger structural rearrangements20; in the latter, SVs are classified 

on the basis of whether or not their breakpoints fall in a cluster 
of breakpoints in the genome. The rationale behind this separa-
tion is that clusters of breakpoints may be formed by mutational  
processes that are different from those that form dispersed  
breakpoints20,89. SVs are also classified by their type and size20, 
and compound mutational signatures, including SNVs and SV  
breakpoints, can be constructed. This approach was successfully 
tested by using a large cohort of breast cancer WGS20, result-
ing in the identification of characteristic signatures of rearrange-
ment, reflecting HR deficiency, associated with the inactivating  
mutations of the BRCA1/2 genes. This signature of HR  
deficiency could then be sought in other tumour samples 
lacking mutated BRCA1/2 genes by using a new algorithm:  
HRDetect95. This significantly expands the number of patients 
who have tumours showing HR deficiency (for example, due to 
epigenomic inactivation of BRCA1/2 or mutations in other HR 
genes) and who are expected to respond to therapies exploiting  
defective repair, such as poly (ADP-ribose) polymerase (PARP) 
inhibitors95. The authors also demonstrated the success of 
HRDetect in predicting HR deficiency in ovarian and pancreatic 
tumours, suggesting broader potential for therapeutic stratifica-
tion of patients. Another study has since validated these results,  
showing that HRDetect provides clinically relevant informa-
tion independently of BRCA1/2 mutation status and that high 
HRDetect scores identified patients with good responses to plati-
num-based chemotherapy96. However, the input to HRDetect  
relies on SV calls from a single SV caller. The incorporation of 
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variant calls from additional callers to form consensus calls may 
be beneficial in ensuring the tool’s robustness. Beyond patient  
stratification, it has also been shown that SV mutational signatures 
can be used to predict overall survival in a cohort of HGSOC97. 
Finally, it has been shown that the burden of SVs and SNVs in 
a tumour is associated with the degree of infiltration by host 
immune cells98, linking the mutational state of a tumour to its ten-
dency to elicit an immune response. At the cutting edge of cancer 
immunotherapy, efforts are under way to exploit such immuno-
genic tumour mutations and design individual anti-cancer vaccines,  
placing tumour genomics at the centre of oncology99.

The last few decades have transformed our view of cancer  
to reveal each tumour as a largely unique constellation of SNV 
and SV mutations, and a tiny fraction of these mutations drive  
tumourigenesis100. The complete reconstruction of the evolution-
ary trajectory travelled by a tumour could provide new biomark-
ers for rapid diagnosis and effective treatment and ultimately  
allow us to predict cancer progression. This comprehensive 
understanding is currently out of reach and, given the challenges  
involved, may remain so in the near future101. However, in spite 
of our ignorance about the functional impacts of SVs and our 
modest success in detecting somatic mutations accurately, there 
are good reasons for optimism. Although we still lack the sample 
sizes required to detect all driver genes for most cancer types102,  
there have already been unexpected benefits in amassing WGS 
tumour cohorts, with the genome-wide patterns of damage seen 
in a tumour providing novel biomarkers and guiding treatment.  

The next decade will see an explosion in the available data 
and improvements in analysis, making genomics a routine  
component of medical practice in oncology.
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