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Abstract
Cognitive Reserve and Brain Maintenance have traditionally been understood as complementary concepts: Brain
Maintenance captures the processes underlying the structural preservation of the brain with age, and might be assessed
relative to age-matched peers. Cognitive Reserve, on the other hand, refers to how cognitive processing can be performed
regardless of how well brain structure has been maintained. Thus, Brain Maintenance concerns the “hardware,” whereas
Cognitive Reserve concerns “software,” that is, brain functioning explained by factors beyond mere brain structure. We used
structural brain data from 368 community-dwelling adults, age 20–80, to derive measures of Brain Maintenance and
Cognitive Reserve. We found that Brain Maintenance and Cognitive were uncorrelated such that values on one measure did
not imply anything about the other measure. Further, both measures were positively correlated with verbal intelligence and
education, hinting at formative influences of the latter to both measures. We performed extensive split-half simulations to
check our derived measures’ statistical robustness. Our approach enables the out-of-sample quantification of Brain
Maintenance and Cognitive Reserve for single subjects on the basis of chronological age, neuropsychological performance
and structural brain measures. Future work will investigate the prognostic power of these measures with regard to future
cognitive status.
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Introduction
Cognitive Reserve (CR) is a long-standing concept that describes
the influence of factors such as life exposures on cognitive per-
formance when considering the relationship between brain
structure and function (Stern 2002; Barulli and Stern 2013). That
is, CR cannot be captured with structural brain measures and
might manifest itself as a residual to, or moderator of, the
structure–function relationship (Stern 2002, 2007; Jones et al. 2011).

Proxies of CR have been described in numerous forms, each
with independent contributions to a delaying effect on the clin-
ical impairment associated with neurodegenerative disease:
education (Stern et al. 1999; Garibotto et al. 2008, 2012), leisure
activities (Scarmeas et al. 2001; Crowe et al. 2003; Akbaraly
et al. 2009) and occupational attainment (Stern et al. 1995, 1995;
Garibotto et al. 2008).

The contribution of these CR-proxies was found to offset the
effect of disease-related pathology on cognitive status. The
concept of CR does not explicitly consider the possible effect of
these CR-proxies on structural brain indicators, although such
a relationship is not explicitly ruled out. Recently under the
concept of Brain Maintenance (BM), influences of traditional
CR-proxies on structural measures of brain health have indeed
been described by us and others (Nyberg et al. 2012; Steffener
et al. 2016). BM in this conception is essentially a slowing of
age-related brain changes, mainly influenced by life style, CR-
proxies and possibly genetics.

Both CR and BM are thus relational assessments that cannot
be rendered on the basis of the current state of someone’s
structural brain health, chronological age or neuropsycho-
logical functioning alone, but only from the relationships

© The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

http://www.oxfordjournals.org


between these variables. Brain Maintenance assesses to
what extent the state of brain health is better or worse than
what can be expected given a participant’s chronological age.
In a similar vein, CR assesses to what extent cognitive function
is better or worse than what could be expected given some-
one’s state of brain health.

One goal of this paper is to operationalize simple direct
measures for CR and BM, based on linear regressions or
nearest-neighbor techniques. This is done in a manner that is
independent of verbal intelligence and education, which are
usually associated with these concepts. Not employing verbal
intelligence and education in the construction of BM and CR
leaves them as means for validating the derived measures.

We operationalize BM as brain structural health relative to
age-matched peers, comprising gray matter volume, thickness
and whiter-matter tract integrity. CR is operationalized as the
difference between actual neuropsychological performance and
predicted performance on the basis of brain structure. Both
measures were psychometrically validated in extensive split-
half robustness simulations.

Methods
Participants

Three hundred and sixty eight community-dwelling adults
participated in the current study (161 male, 207 female; mean
age: 48.9 years; STD (age) = 18.0 years; minimum age = 20; max-
imum age = 80). Table 1 shows the main demographic charac-
teristics broken down by decade. In our sample, there was a
recruitment bias in that older participants had higher verbal
intelligence (R = 0.28, p < 0.0001) and more years of education
(R = 0.14, p = 0.0059).

Structural Neuroimaging

We used 3 structural indices in our calculations: gray matter
volume and thickness by regions of interests (ROIs), and frac-
tion anisotropy (FA) by specific white matter tracts.

Participants underwent a T1-weighted MPRAGE scan, acquired
on a 3.0 T Philips Achieva MRI scanner. These scans were
acquired with TE/TR of 3/6.5ms and Flip Angle of 8°, in-plane
resolution of 256 × 256, field of view of 25.4 × 25.4 cm, and
165–180 slices in axial direction with slice-thickness/gap of
1/0mm. Each subject’s structural T1 scans were reconstructed
using FreeSurfer v5.1 (http://surfer.nmr.mgh.harvard.edu/).
The accuracy of FreeSurfer’s subcortical segmentation and
cortical parcellation (Fischl et al. 2002, 2004) has been reported
to be comparable to manual labeling. Each subject’s white and
gray matter boundaries as well as gray matter and cerebral
spinal fluid boundaries were visually inspected slice by slice,
manual control points were added in the case of any visible
discrepancy, and reconstruction was repeated until we reached

satisfactory results within every subject. The subcortical struc-
ture borders were plotted by freeview visualization tools and
compared against the actual brain regions. In case of discrep-
ancy, they were corrected manually. Finally, we computed
mean values for 68 cortical ROIs for cortical thickness and
cortical volume for each participant to be used in group-level
analyses.

Tracts Constrained by Underlying Anatomy (TRACULA), dis-
tributed as part of the FreeSurfer v. 5.3 library (Yendiki et al.
2011) uses probabilistic tractography to extract 18 major white
matter tracts. The software performs informed automatic trac-
tography by incorporating anatomical information from a
training data set, provided by the software, with the FreeSurfer
anatomical parcellation of the T1 image of the current data set,
thus increasing the accuracy of the white matter tract place-
ment for each participant by incorporating each participant’s
anatomical data into the tractography algorithm. The software
outputs white matter integrity (FA) measures for each voxel
inside the 18 tracts with a mean of about 500 voxels per tract.
We used mean values by tract in our calculations.

Neuropsychological Outcome Measures

Twelve measures were selected from a battery of neuropsycho-
logical tests to assess cognitive functioning in 4 cognitive
domains: episodic memory (MEM), reasoning ability (FLUID),
perceptual speed (SPEED), and vocabulary (VOCAB). There were
some missing data for the neuropsychological measures, but
we decided to be as inclusive as possible. We calculated aver-
age z-scores within domain over the all of the 3 measures that
were available; a missing value for the domain z-score was
assigned only when all 3 measures were missing. All measures
were adjusted such that a larger value indicated better perform-
ance, that is, completion times were flipped in sign. The mea-
sures that made up the domain z-scores all showed high
correlation, lending good support for internal consistency, as
can been below.

Three memory (=MEM) measures were based on sub-scores
of the Selective Reminding Task (SRT; Buschke and Fuld 1974).
Participants in this task were initially read a list of 12 words
and asked to recall as many as they could. For the following
5 trials they were reminded of the words that they did not
report and were asked to again recall all of the words in the list.
Words are considered to enter long-term storage from the point
when they are recalled twice in a row without reminders. The
long-term storage sub-score (SRT_LTS) is the sum over all
words of the number of trials when each word was in long-
term storage. Continuous long-term retrieval (SRT_CLRT) is the
sum over all words of the number of trials for which the word
was continuously recalled. The third memory measure was the
number of words recalled on the last trial (SRTLast). Of 368
participants in total, 351 participants all memory measure

Table 1 Participant demographics broken down by age and decade. Older participants were significantly better educated and possessed higher
verbal intelligence. DRS refers to the Mattis-Dementia-Rating scale score (Mattis 1988). NART IQ refers to the American National Adult Reading
Test (Grober and Sliwinski 1991)

Age 20–29 Age 30–39 Age 40–49 Age 50–59 Age 60–69 Age 70–79

N 87 54 38 40 103 44
Sex 32M, 55 F 16M, 38 F 23M, 15 F 20M, 20 F 47M, 56 F 22M, 22 F
Education (year) 15.6 ± 2.1 16.4 ± 2.5 16.0 ± 2.7 16.1 ± 2.1 16.0 ± 2.7 17.5 ± 2.6
DRS total 140.4 ± 2.5 139.7 ± 2.5 139.4 ± 2.8 140.5 ± 3.1 140.2 ± 2.6 139.6 ± 2.9
NART IQ 113.2 ± 8.0 111.4 ± 8.5 114.3 ± 8.7 116.3 ± 8.2 117.8 ± 9.4 119.4 ± 10.7
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recorded. The other 17 participants missed all 3 measures.
The two pairwise correlations between all 3 measures yielded a
minimum value of R = 0.79, p = 1 e −75.

Reasoning ability (=FLUID) was assessed with scores on
3 different tests. One test was the WAIS III (Wechsler 1997)
Block Design test, in which participants are asked to reproduce
a series of increasingly complex geometrical shapes using 4 or
9 identical blocks with red, white, or split red and white sides.
A second test was the WAIS III (Wechsler 1997) Letter-Number
Sequencing test in which participants are asked to recall pro-
gressively longer lists of intermixed letters and numbers in
alphabetical and then numerical order. The third reasoning test
was the Matrix Reasoning subtest from WAIS III (Wechsler
1997) in which participants are asked to select which pattern
in a set of eight possible patterns best completes a missing
cell in a matrix. Of 368 participants in total, 352 participants
had at least one fluid-reasoning measure recorded, and 337
had all 3 measures recorded. The two pairwise correlations
between all 3 measures yielded a minimum value of R = 0.28,
p = 1 e −5.

Three measures were selected to assess perceptual speed
(=SPEED). One was the score on the Digit Symbol subtest from
the Wechsler Adult Intelligence Scale (WAIS III; (Wechsler
1997)). Participants in this test were instructed to write the
symbol corresponding to specific numbers as quickly as pos-
sible based on a key specifying the appropriate symbol for each
digit. The score is the number of correctly produced symbols in
90 s. A second measure was the score on Part A of the Trail
Making Test (Reitan and Wolfson 1987), in which participants
are instructed to connect circles numbered from 1 to 24 as rap-
idly as possible and performance is assessed as the time to
connect all 24 circles. The third speed measure was the number
of colored ink patches named in 45 s in the Stroop Color
Naming test. Of 368 participants in total, 352 participants had
at least one speed measure recorded, and 346 had all 3 mea-
sures recorded. The two pairwise correlations between all
3 measures yielded a minimum value of R = 0.52, p = 1 e −15.

Vocabulary (=VOCAB) was assessed with scores on the
Vocabulary subtest from the WAIS III (Wechsler 1997), the
Wechsler Test of Adult Reading (WTAR; Wechsler 2001) and
the error score of the American National Adult Reading Test
(NART; Grober and Sliwinski 1991). The Vocabulary subtest asks
participants to provide definitions for a series of increasingly
advanced words, and the WTAR and NART both involve partici-
pants correctly pronouncing irregularly spelled English words.
Of 368 participants in total, 354 participants had at least one
vocabulary measure recorded, and 332 had all 3 measures
recorded. The two pairwise correlations between all 3 measures
yielded a minimum value of R = 0.76, p = 1 e −61.

Computation of Brain Maintenance Measure

We now describe the algorithm for our operationalization of
our measure for Brain Maintenance (BM). Because of possible
differences in the rate of aging across the life span, we decided
to forgo a simple regression approach, which presumes a linear
relationship between age and brain-structural measures.
Instead of using structural measures as independent variables
to predict chronological age, we compute BM as the state of
somebody’s brain compared to a normative sample of age-
matched peers. Education and verbal intelligence, while plaus-
ible causes or consequences of good BM, were left out of the
brain-maintenance computation and serve for testing construct
validity: BM should ideally be positively correlated with verbal

intelligence and education. Lack of a significant positive rela-
tionship is less desirable, while a significant negative relation-
ship would cast severe doubt on the validity of the derived
measure.

Our approach can be described as a nearest-neighbor
version of regressing age on brain structure.

For any participant with age k, the normative reference
sample are all participants with ages [k-bin, k + bin], where bin
is the window size of the age window. Mean tract FA, mean
thickness, and mean cortical volume values are computed for
the reference sample. BM is now computed as the relative
excess or shortfall of the participant’s mean tract FA, cortical
thickness, and cortical volume in regard to the mean of the
age-matched sample of peers. A further advantage of this
approach beyond allowing non-linear age-structure relation-
ships is that our derived brain-maintenance measure is not
correlated with age. In contrast, residual regression-based
approaches necessarily have to endure a, possibly unwanted,
level of positive correlation between the dependent variable
and residual (see the text in Discussion section and Fig. 4).

We list the algorithm below and illustrate it with mock data
in Figure 1.

1. Pick participant j with age k.
2. Identify reference sample as all participants {R} with ages in

the range [k-bin,k + bin].
3. Compute mean tract FA, cortical thickness, and volume for

reference sample {R} as FA, THX, VOL, across regions and
subjects.

4. Compute across-region mean FA, thickness and volume for
participant j as fa(j), thx(j), vol(j).

5. Compute BM as the sum of the relative shortfall or excess
with respect to reference means in all 3 modalities:

bm(j):= Brain Maintenance (j) = fa(j) / FA −1 + thx(j) / THX
−1 + vol(j) / VOL −1 .

Figure 1. Illustration of the algorithm for computing BM, which is a simple non-

parametric nearest-neighbor version of age regression, explained on mock data

for one participant, marked with a large bolded dot. The x-axis described life

years, while y-axis describes a generic brain-structural variable (brain volume,

mean thickness, mean tract FA) in arbitrary units. The participant is 45 years

old and her brain-structural variable is 1.33 of the mean of her age-matched

peers in the 10-year age window [40,50]; her BM value thus is positive with

BM = 0.33, that is, her brain structure compares favorably to her age-matched

peers. In our use of the BM computation, the computation depicted in this

Figure is performed for 3 modalities (cortical thickness, cortical volume, tract

integrity) and the resulting BM values are averaged across modalities to result

in one overall BM value.
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The window size bin remains a critical dependency: ideally
bin is small enough to allow the finest possible age resolution,
while providing large-enough reference samples for every par-
ticipant. We decided to optimize bin across a range of possible
values such as to maximize the F-value of a regression model
in which the independent variables verbal intelligence and
education predicted the optimize brain-maintenance measure
as a dependent variable. Our optimization yielded the best
results for bin = 5, as shown in the Table 2 below.

All tested window sizes yielded highly significant relation-
ships (p < 0.0001), but bin = 5 produced the largest association.

Computation of CR Measures

For CR we chose a linear-regression based approach: CR was
computed for each cognitive domain (MEM, FLUID, SPEED,
and VOCAB) as the residual, ɛ, when regressing the cognitive
outcome measures on the brain structural measures of cortical
volume, cortical thickness and tract FA. We thus willingly toler-
ated that collinearity between CR and the cognitive outcome
measure under consideration. (Ultimately, beyond the scope of
the current investigation, cognitive performance and the corre-
sponding CR measure should – together and in spite of any
collinearity- provide the optimal account for predicting some-
body’s future cognitive status.)

The individual-modality data, that is, 68 cortical ROIs for
both volume and thickness, and FA for 18 tracts, were subjected
to Principal Components Analysis prior to the 4 brain-behavioral
regressions. All Principal Components surpassing the criterion
of Eigen value >1 were retained, and their subject scores were
used as independent variables in the regression to derive the CR
measures. For the derivation of the CR measures in the full data
set, the number of PCs retained for cortical volume, thickness,
and tract FA was 9, 13, and 4, respectively.

We can explicitly write the brain-cognition regression as the
following:

= β + β + β + εcog VOL THX TRACTvol Thx Tract

where cog is our cognitive measure of interest (=MEM, FLUID,
SPEED, or VOCAB), VOL is a 368 × 9 matrix of component scores
derived from the volume data with an associated 9 × 1 vector of
regression weights βvol. THX and TRACT are 368 × 13 and
368 × 4 matrices of component scores, respectively, with
regression-weight vectors βThx (=13 × 1) and βTract (=4 × 1).

Age, verbal intelligence, and education were not utilized in
the computation of the CR measures; we confined our deriv-
ation to the residual of cognitive performance unexplained by
brain structure. This allows us to observe the relationship of the
derived CR measures to these demographics for validation pur-
poses, rather than making assumptions about their contribu-
tion to cognitive performance. The relationship to verbal
intelligence and education should be positive, whereas the rela-
tionship to age has no prior constraints and might differ by
cognitive domain.

Test Whether the Four CR Measures can be Described
by one Underlying Construct

To assess whether the CR measures from the different cogni-
tive domains described one underlying construct (and thus can
be combined) we performed a Principal Component Analysis on
the 4 CR measures with 10 000 permutations where the partici-
pant assignments for the 4 variables were randomized. For
each of 10 000 permutations, we computed the 4 Eigen values,
that is, we generated null-histograms for all Eigen values. If the
point estimate of the first Eigen value lies in the right tail of the
null distribution, while the other 3 Eigen values lie in the left
tails of the null distribution, we are allowed to consider the
4 CR measures manifestations of a single underlying construct,
and then average all scores to come up with a single general-
ized CR score.

To unburden the later description of the main results in the
Results section, we already report here that the 4 derived CR-
measures indeed could be described by one underlying con-
struct. The point estimate of the first Eigen value lay in the
right tail of the null distribution (p < 0.001), while all others lay
in the left tail (p = 1). The loadings of the first Eigen vector
were ([0.53, 0.49, 0.37, 0.59]) with the ordering MEM, FLUID,
SPEED, and VOCAB. We thus felt that averaging all four CR
scores to yield a single score is justified; this single score was
terms “general CR”.

Split-Sample Robustness Estimation

For ascertainment of statistical robustness of our general-CR
and BM measures, we performed split-half simulations, where
the pool of 368 subjects was randomly divided into a derivation
sample and a replication sample of equal size (=184), with a
subsequent derivation of general-CR measures and BM accord-
ing to the protocol outlined in Computation of brain mainten-
ance measure section and in the Computation of CR measures
section. For general CR this means regression models are esti-
mated in the derivation sample, and then applied without any
re-estimation of regression weights to the replication sample.
For BM, the algorithm in the replication sample employs the
age-matched peer groups from the derivation sample only,
with a slightly widened bin size for the age window of 8 years
(instead of 5 years for the full-sample computation).

Correlation of CR and BM with NART and Education
Concerning the tracked performance metrics: for BM, we com-
pute the association with education and NART in both deriv-
ation and replication samples. For the general-CR measure, we
tracked how well the primary regression model (using brain
structure and age as independent variables and cognitive per-
formance as the dependent variable) predicted cognitive per-
formance in the validation sample. Further, we computed
associations with NART and education in both derivation and
replication sample. We used 10 000 iterations in our split-half
simulations and reported the proportion of iterations yielding
significant correlations/predictions at p < 0.01.

Prediction of Cognitive Performance
We also used this opportunity to determine how well our
derived BM and CR measures predict cognitive performance out
of sample as compared to verbal intelligence and education.
Age was used as a covariate for both prediction models, that is,
Model 2 used NART, education and age as independent vari-
ables, whereas Model 1 used BM, CR and age as independent

Table 2 Brain behavioral regression using BM obtained from differ-
ent age-window sizes (=bin) as the dependent variable, with NART
and Education as independent variables

Bin size 3 4 5 6 7 8 9 10
F statistic 15.06 16.00 16.45 16.31 15.77 15.64 15.64 15.22
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variables. The predicted sum of squares (PRESS) statistic in the
replication sample was compared iteration-wise between the
2 sets of independent variables for all iterations. A larger PRESS
value implies worse prediction.

Results
Derivation of CR and BM, and Relationship to NART
and Education

We derived the Brain-Maintenance and 4 CR measures, as
described above. In the derivation of the CR measures, the
initial regression of the cognitive measures on the selected sets
of component scores from cortical volume, thickness and tract
integrity yielded the following fractions of explained variance
in the cognitive outcomes: MEM – 20.4%, FLUID – 31.9%, SPEED –

38.8%, and VOCAB – 22.3 %. Relationships between CR and BM
and other demographics are displayed in Supplementary
Table 1. One can discern the positive relationships between BM
and CR on the one hand and verbal intelligence and education
on the other hand.

Test for a Single Underlying Construct for Domain-specific
CR Measures

All CR measures are highly positively correlated, and as alluded
in the Test whether the four CR measures can be described by
one underlying construct section, our Monte-Carlo simulation
indicated that they can be interpreted as manifestations of the
one underlying construct. We therefore added all four CR
measures to form a general CR measure.

As shown in Table 3, general CR is uncorrelated with BM
and age, but some of the individual CRs did show significant
negative as well as positive relationships to BM and age (posi-
tive: VOCAB; negative: MEM and SPEED, see Supplementary
Table 1). For simplicity, in the remainder of the Results section,
we will refer to our domain-summarized general CR measure
just as “CR”.

Association With Cognitive Performance and Split-half
Validation Studies

To assess statistical robustness more thoroughly than single
associations across the full subject sample, we employed the
split-half simulations explained in the Split-sample robustness
estimation section with 10 000 iterations. The fraction of sig-
nificant correlations of positive sign with verbal intelligence
and education were tallied in both derivation and replication
samples. Since NART and education were not used in the deriv-
ation of either CR or BM, we expect the fraction of significant
relationships to be similar in both samples.

Figure 2 shows horizontal scatter grams of the log10(p)
values of the correlations between BM and CR on the one hand
and NART and education on the other hand. One can appreci-
ate a monotonic relationship between the full-sample correla-
tions and the replication success. As expected, there was no
difference between derivation and replication sample in the
fraction of significant correlations. The correlation between BM
and education is modest, albeit significant, for the full sample,
and replication success at p < 0.01 happens for 44% of itera-
tions. All other associations had replication success of at least
95% of iterations at p < 0.01.

We next assessed whether CR and BM could explain the cog-
nitive outcomes from the 4 cognitive domains. As Table 4
shows, CR and BM explained cognitive outcomes above and
beyond age with significant contributions. The single exception
was found for BM and its contribution to MEM, which was not
significant.

Again, we substantiated these findings with split-half simu-
lations. In particular, we were interested whether CR and BM
(=model 1) were more powerful predictors of cognitive perform-
ance than NART and education (=model 2). Split-half simula-
tions were used to fit both models in the derivation sample,
and predict cognitive performance in the replication sample.
Predictions in the replication were always significant at
p < 0.01, that is, 100% of iterations gave a significant prediction.
The PRESS statistic was thus compared between model 1 and
model 2.

Figure 3 shows the results and plots the iteration-wise dif-
ferences of the PRESS statistic between model 1 and model 2
for all 4 cognitive outcomes. For MEM, FLUID and SPEED, model 1
showed superior performance with PRESS values which were
lower than for model 2 in more than 99% of iterations. For
VOCAB, the situation was reversed: PRESS for model 2 was
lower than for model 1 in 100% of iterations, probably reflecting
the close relationships between NART and the NART error
score that is being used as one of the measures to compute
VOCAB.

Table 3 Correlation between general CR measure, BM and
demographics

Gen CR BM NART Edu Age

Gen CR NA
BM 0.01 NA
NART 0.60** 0.29*** NA
Edu 0.35** 0.19*** 0.53*** NA
Age −0.01 −0.01 0.28*** 0.14** NA

**p < 0.01.

***p < 0.001.

Figure 2. Split-half simulations with 10 000 iterations for the association of BM

and CR with NART and education.Plotted on the x-axis is the log10(p) value of

the correlation between the derived measures and NART/education; plotted on

the y-axis is the Pearson correlation value in the full sample. One can discern a

monotonic relationship between the correlation in the full sample and the cor-

relations in the split-half simulations. The thin vertical line marks p < 0.01.
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Discussion
We operationalized 2 measures from structure–function rela-
tionships in 368 healthy adults: (1) a measure of BM, conceptua-
lized as the excess or shortfall of chronological age over its age
norm, and (2) general CR, conceptualized as the excess or short-
fall of neuropsychological test performance in 4 cognitive
domains over its brain-based prediction. Both measures were
found to be orthogonal, which implies that CR can be seen as
operating independently of the state of brain health of the par-
ticipant, hinting at pure “software” aspects of brain functioning,
while BM captures the quality of the “hardware.” Both BM and
CR correlated positively with years of education and verbal
intelligence. Since education at least refers to a period in the
participants’ past, we assume that it is a formative influence for
better brain aging (=BM) and more efficient use of given struc-
tural capacities (=CR).

Speculation about the formative role of education for BM
and CR, while natural, has to be tempered somewhat: in several
analyses run off-line and not included in this manuscript, the
association of BM and CR with NART was shown to be signifi-
cantly stronger than education (probed through permutation
tests); further, when predicting BM and CR in a linear regres-
sions with both NART and education as predictors, education
did not contribute any effect above and beyond NART.
However, the univariate associations of education with BM and
CR are highly significant. Education might act through more

proximal mediators rooted in healthier life styles and reduced
overall disease burden to endow participants with better brain
health and higher NART too. Identifying the mechanisms
underlying this mediation is an important project in its own
right, which is however beyond the scope of this current report.

BM was derived from a simple nearest-neighbor version of
regressing chronological age onto brain structure. Given that
aging rates of structural measures might be different for differ-
ent age ranges and the possibility of non-linear contributions,
we decided against a least-squares based approach. A further
advantage of our approach is that BM is not correlated with age
from the outset (which would happen if BM was derived from a
regression of age onto brain structure, since in linear regres-
sion, dependent variable and residual are forced to have a posi-
tive correlation. For clarification, Figure 4 reminds the reader of
the inevitable positive correlation between dependent variable
and residuals in a linear regression, which spells trouble for the
regression approach in the derivation of BM.

In contrast to BM, CR was derived as the residual from
domain-specific regressions that used brain structure as the
independent variable; thus, by design, it is independent of
brain structure. We found that the 4 different CR measures
(memory, fluid reasoning, perceptual speed, and vocab) could
be interpreted as manifestations of one underlying single CR
construct, and subsequently added the CR scores to form one
general CR score.

The residual approach was initially proposed for quantifying
CR by Reed and Mungas (Reed et al. 2010). In their studies, they
decomposed the variance in memory associated with demo-
graphic measures and some brain measures. The residual vari-
ance was treated as a quantified measure of CR, with validation
by examining its correlation with traditional measures of
CR (such as the NART), and investigating its ability to predict
differential rates of cognitive decline or incident dementia.
This residual model of CR was also applied to another large epi-
demiologic study, and tested with the same analytic
approaches (Zahodne et al. 2013). With regard to BM, a rela-
tively recent review (Nyberg et al. 2012) detailed numerous
mechanisms, including genetics, lifestyle, exercise, et cetera, as
credible factors in delaying brain aging successfully and estab-
lishing structure–function correlations. To our knowledge how-
ever, only a few groups have directly operationalized BM from
the relationship between brain structure and chronological age
for healthy as well as pathological aging (Franke et al. 2010;
Bunge and Whitaker 2012; Cole et al. 2015; Wachinger et al.
2015; Steffener et al. 2016).

While, at first appearance, the residual model is an attract-
ive approach towards estimating CR, it has some clear limita-
tions. Conceptually, it provides a negative definition of CR,
which is ultimately unsatisfactory. With regards to the regres-
sion model on which the residual computation is based, the
model makes the assumption that the identified brain mea-
sures, such as gray matter volume, cortical thickness, white

Table 4 T-statistics from 4 linear regressions of neuropsychological performance measures (MEM, FLUID, SPEED, VOCAB) against respective
CR measures, BM and age, which were simultaneously entered as independent variables. All but one relationship are significant at nominal
p < 0.0001, indicating that there are independent contributions of CR, BM and age to cognitive performance

Cognitive outcome CR BM Age

MEM T = 16.12, p < 0.0001 T = 0.66, p = 0.51 T = −11.42, p < 0.0001
FLUID T = 18.93, p < 0.0001 T = 11.06, p < 0.0001 T = −10.02, p < 0.0001
SPEED T = 14.01, p < 0.0001 T = 6.19, p < 0.0001 T = −15.27, p < 0.0001
VOCAB T = 17.81, p < 0.0001 T = 9.81, p < 0.0001 T = 8.48, p < 0.0001

Figure 3. Split-sample simulation with 10 000 iterations for the comparison of

2 models’ predictive utility. Model 1 involves age, BM and general CR to predict

cognitive outcomes, model 2 involves age, verbal intelligence and education as

predictors. The scatter plot shows the difference of the PRESS statistic between

Model 1 and Model 2. Model 1 has better (=lower) PRESS for the MEM, FLUID

and SPEED outcomes, while Model 2 has lower PRESS for VOCAB.
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matter hyperintensity burden, tract integrity, et cetera, give a
structural account of substantial proportion of the variance in
cognition. Ideally, for the residual to capture a true “reserve”
against the effects of these brain changes there should only be
minimal variance left that could be accounted for by structural
brain measures, while avoiding overfitting the structural–
behavioral model. In healthy aging, the maximally accounted-
for proportion of variance in cognition is unclear, even when
using multiple brain measures. For example, Hedden et al.
(2016) used 7 separate measures to attempt to predict measures
of cognition in elders age 65 to 95 and accounted for only 20%
of the total variance, but 70–80% of the estimated age-related
variance; however, the structural measures were pre-defined
and not especially tailored towards the purpose of a maximal
age- or cognition-variance account. Our structural measures
were selected according to simple Eigen-value >1 criterion.
They account for 20.4–38.3% of the variance in the cognitive
measures. Our regression models for the derivation of CR did
not subset by, or control for, age, but our structural measures
accounted for 64.4% of the age-related variance in cognition.
We thus feel that we pushed the residual approach to the max-
imum allowable variance explanation, while avoiding overfit-
ting. The approach would further benefit from using additional
brain markers to account for a hitherto unexplained amount of
variance in cognition. Further, greater variation in the cognitive
measure itself might be beneficial to elicit structure–function
and CR-function relationships alike. Prodromal or early disease
states, where the underlying pathology is beginning to cause
significant changes in cognition, might thus offer the best
testing ground for empirical validation of this CR measure.
For example, in early Alzheimer’s disease, it is conceivable
that a much greater proportion of the variance in cognition
would be accounted for by brain measures, including mea-
sures of amyloid and tau, and that the residual would more
truly reflect CR.

Further, recalling the motivation for a re-formulation of our
BM approach to avoid a necessary correlation between residual
and dependent variable, we have to remind the reader that the
regression-based approach forces a positive correlation between
cognitive outcome measure and associated CR. Low performers
are thus less likely to exhibit high CR than good performers, or:

high performers’ residual performance unexplained by brain
structure is higher than low performer’s residual. We do not
find this collinearity too troubling, since for it to be useful in
practice, CR would have to prove its predictive utility above and
beyond cognitive performance in any case, rather than being
used as predictor by itself. Rather, CR and BM offer convenient
summaries of structural health and performance beyond struc-
ture, respectively.

In summary, we derived 2 mutually independent measures
for BM and CR which show anticipated relationships with ver-
bal intelligence and education, while being independent of age.
Further, the measures show statistical validity, as indicated by
split-half replication of relationships with verbal intelligence,
education and cognitive performance. Future applications of
this research might aim at the prediction of the BM and CR
from neuroimaging task-activation data. This might be relevant
when high-quality measures of neuropsychological perform-
ance or brain structure are not available.

Both measures should be further refined by additional brain-
structural variables such as White-Matter-Hyperintensities,
beta-amyloid, et cetera. Particularly for BM, such multi-modal
refinement on large normative reference samples would enable
a quick estimation how well somebody’s brain has fared in the
aging process for any participant undergoing structural brain
imaging, since no information other than the participant’s age
is needed. BM could further be augmented by blood-based bio-
markers and general-health indicators. For research purposes
in longitudinal cohort studies, the prognostic potential of BM
could be evaluated rigorously, and younger and middle-aged
individuals with low BM values could be tracked in a watchful
manner. Longitudinal data could test the ecological validity of
BM in midlife for the prognosis of cognitive decline in later life.

Our results in the current manuscript were purely based on
cross-sectional analyses and results. Several longitudinal
refinements could be considered: as mentioned before, the sim-
plest analysis would be to track BM by itself. The BM computa-
tion at subsequent time points would be done in reference to
the same normative distribution, the participant would just
have a different age, (and would also provide another data
point for the normative distribution itself). Worsening BM
values over time might signal problems early, and initiate a
“watchful waiting” regime. The next application we clearly
envision would not be truly longitudinal: it would just take
values of CR, BM and cognition at time point 1 and predict cog-
nition at time point 2, which would be a straightforward regres-
sion model.

A genuine longitudinal analysis would require a full mixed-
effects model, with computation of change scores for CR
and BM. For CR, the values at subsequent time points should
probably be computed as residuals to the regression
equation estimated at the first time point to allow quantifica-
tion on a single-individual basis, without having to refit the
equation on which the residual computation is based.
Assuming 2 time points for BM and CR, we might try to predict
cognition at a third equally spaced time point with the model:

Δ Δ Δ( ) = ( ) + + ( ) + + ( ) + + ( )cog t3 cog t2 cog BM t2 BM CR t2 CR age t2

where we assume that each term has its own regression weight
(left out here for better legibility), and Δ indicates the change
from time point 1 to time point 2. Whether changes in BM and
CR would contribute above and beyond BM and CR, would have
to be empirically tested and require a sufficient sample size.

Figure 4. Geometric proof why residuals and dependent variable are positively

correlated in ordinary-least-squares linear regression, arguing against an

approach that derives BM as the residual of predicting age from brain-structural

independent variables. The dependent variable Y, the model estimate Ŷ, and

the residuals ɛ are linearly dependent and form a triangle in RN. Since Ŷ and ɛ

are orthogonal, the subtending angle θ between ɛ and Y has to be smaller than

90°, implying that the correlation between ɛ and Y is positive.
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Lastly, our measures of BM and CR offer ideal phenotypes
which could be mapped in genome-wide association studies or
studies of candidate genes. Genetic profiles might act through
BM and CR as mediators to affect cognitive functioning. High-
quality longitudinal data with complete genetics coverage will
provide an exciting and fertile ground for exploration of BM
and CR, their implication for future cognitive functioning and
their potential for modification by interventions.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/
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