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Abstract

Cumulative evidence indicates that a significant proportion of cancer evolution may occur before the development of 
histological abnormalities. While recent improvements in DNA sequencing technology have begun to reveal the presence 
of these early preneoplastic clones, the concept of ‘premalignant field’ was already introduced by Slaughter more than half 
a century ago. Also referred to as ‘field effect’, ‘field defect’ or ‘field cancerization’, these terms describe the phenomenon 
by which molecular alterations develop in normal-appearing tissue and expand to form premalignant patches with 
the potential to progress to dysplasia and cancer. Field effects have been well-characterized in ulcerative colitis, an 
inflammatory bowel disease that increases the risk of colorectal cancer. The study of the molecular alterations that define 
these fields is informative of mechanisms of tumor initiation and progression and has provided potential targets for early 
cancer detection. Herein, we summarize the current knowledge about the molecular alterations that comprise the field 
effect in ulcerative colitis and the clinical utility of these fields for cancer screening and prevention.

Introduction
Cancers evolve through an iterative process of mutation, selec-
tion and clonal expansion (1). Most tumor types take multiple 
years to develop, during which time preneoplastic cells clon-
ally expand and progressively acquire the molecular alterations 
necessary to allow them to fully escape growth control check-
points and invade surrounding tissues. Precisely how much of 
this process occurs prior to the development of morphologically 
recognizable malignancy is unknown, but it has been estimated 
that cancer cells accumulate about half of their mutational load 
before tumor initiation (2). This implies that a substantial pro-
portion of a cancer’s development entails precancerous clonal 
evolution within histologically normal-appearing tissue.

During the last several years, new and extremely sensitive 
DNA sequencing technologies have begun to directly reveal the 
presence of these early clones (3,4). However, the notion that 
preneoplastic changes precede cancer was recognized more 
than a half century ago. Prior to even the modern understand-
ing of DNA as the genetic material, Slaughter et  al. proposed 

the concept of field cancerization to describe “preconditioned 
epithelium activated over an area in which multiple cell groups 
undergo a process of irreversible change towards cancer”. This 
preneoplastic condition was originally described in oral car-
cinoma on the basis of subtle morphological abnormalities in 
surrounding tissue. It was postulated that this abnormal “field” 
underlied the relatively common finding of multiple synchron-
ous primary tumors and the high frequency of local recurrence 
in head and neck squamous cell cancers, despite apparent com-
plete tumor resection (5).

Although Slaughter and colleagues recognized field can-
cerization as an important clinical phenomenon, they lacked a 
mechanistic explanation. The following decades revealed exam-
ples of field cancerization associated with many other epithelial 
cancers and demonstrated that the fields could be character-
ized by defined molecular aberrations present in histologically 
normal tissue (6). Contemporary molecular tools have provided 
important insights into the basis of the cancer-prone phenotype 
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of these fields. In a variety of examples (6,7), peritumoral fields 
were shown to encompass populations of clonally related cells 
that bear some, but not all, of the genetic changes of the tumor 
itself. The relative ease with which a second tumor or tumor 
relapse can occur within such a field simply reflects the rela-
tively low evolutionary hurdle for one of these partially dysregu-
lated cells to acquire the last molecular change(s) needed for 
full-blow malignancy.

While the specific nature of the fields, and the molecular 
mechanisms that initiate them, are likely to be different in 
different tissue types, the field concept illustrates the general 
notion of multistep carcinogenesis, wherein ancestral popula-
tions of preneoplastic cells can both precede and co-exist with a 
cancer (6). Such a field effect may be thought of as an early stage 
of the neoplastic process where selected mutant cells can incre-
mentally enhance growth properties. Because these preneoplas-
tic populations are often morphologically normal in appearance 
and may be very small, they frequently go undetected in spor-
adic tumors. Several preneoplastic diseases, however, often 
exhibit large preneoplastic fields and offer an excellent op-
portunity to study the initial stages of tumor development. 
Ulcerative colitis (UC) and Barrett’s esophagus (BE) are among 
the best characterized. Fields can expand several centimeters in 
BE (8,9) and practically the entire length of the colon (~150 cm) 
in UC (10). In both diseases, chronic inflammation generates ex-
tensive damage to epithelial cells, leading to increased cell rep-
lication and/or direct DNA damage. Subsequent mutations that 
alter growth control genes enable clonal expansions, which re-
sult in patches of cells that share identical mutations. In some 
cases, a single genetic change can be found in all cells within an 
entire field many centimeters in size, indicating a single clonal 
founder cell. In other cases, multiple independent clones with 
distinct genetic signatures evolve simultaneously in response to 
the inflammatory environment.

A further advantage of the study of these preneoplas-
tic diseases is that, in addition to non-dysplastic fields and 
overt cancer, intermediate degrees of dysplasia are routinely 
found during endoscopic surveillance. These intermediate 
stages help delineate with even finer precision the multistep 
sequence of tumor progression and provide a unique longi-
tudinal window of opportunity to study early cancer and its 
patterns of evolution (11,12).

In this review, we focus on UC as a model of inflammation-
mediated tumorigenesis in which the field effect has been 
extensively characterized. The search terms used to query the 
literature include field effect, field defect and field cancerization 
in UC. We prioritized a broad discussion on the concept of field 
effect and its implications as opposed to a detailed recollection 
of articles describing precancerous fields. We first describe the 
disease’s epidemiology, histologic sequence of neoplastic pro-
gression and the types of molecular alterations that have, thus 
far, been identified in these fields. We then discuss the clinical 
implications of these fields with a special focus on their use 
as biomarkers of early or imminent cancer. Field effects have 
been identified in a growing variety of cancers including: breast 

(13,14), head and neck (15), bladder (16,17), colorectal (18), gastric 
(19–21), prostate (22,23), lung (24,25), skin (26–28), liver (29), ovar-
ian (30) and cervical (31). Although UC is responsible for only a 
small fraction of the global burden of colon cancer, we posit that 
the lessons learned from studying tumor progression in this 
unique disease can be applied to the understanding, prevention 
and clinical management of many other malignancies associ-
ated with field effects.

Colorectal cancer risk in UC

Ulcerative colitis is one of the two major types of inflammatory 
bowel disease and is characterized by uninterrupted stretches 
of chronic inflammation of the colon mucosa. It affects roughly 
one million patients in the United States and its prevalence is 
increasing worldwide (32,33). The cause of UC remains to be fully 
determined, but a preponderance of evidence suggests that it is 
the result of a complex interaction between a dysregulated host 
immune system, the gut microbiome and diet (34–38). A signifi-
cant aspect of the management of UC is that it elevates the risk of 
colorectal cancer (CRC) (39) and cancer-related deaths, although 
improvements in surveillance methods appear to have decreased 
both the incidence (40) and mortality (41,42) of CRC in UC in 
recent years. The increased risk of CRC is attributable to multi-
ple aspects of chronic inflammation and immune dysregulation 
(43,44). Patients whose inflammation is more severe (45) and more 
extensive (39,46) are more likely to develop CRC. Other risk factors 
include prolonged disease duration (46–49), concurrent diagnosis 
of primary sclerosing cholangitis, an autoimmune disorder of the 
biliary system (50–52), a family history of sporadic CRC (44,53,54), 
early age of UC onset (55–57) and extent of dysplasia (58).

Colorectal cancer development in the setting of UC differs 
from that of sporadic CRC in several respects (59). Histologically, 
adenomatous polyps typically precede sporadic CRC whereas 
UC-associated CRC (UC-CRC) often arises from flat dysplasia. 
Sporadic CRC is believed to be initiated by mutations in APC, 
followed by mutations in KRAS and TP53 (60), although it is cur-
rently appreciated that this progression does not necessary fol-
low a linear sequence (61). In UC, TP53 mutations appear to be 
the initiating mutation in most lesions, although mutations in 
KRAS have also been identified as a founder event in a minority 
of cases (62). Recently, next generation sequencing-based stud-
ies confirmed a higher frequency of TP53 mutations and lower 
frequency of APC and KRAS mutations in UC-CRC compared to 
sporadic CRC (63,64). Epidemiologically, the mean age for CRC 
development in the general population is 64 (65) versus 43 years 
for UC-CRC (66). In addition, the prognosis of UC-CRC is poorer 
than sporadic CRC, although it is unclear if this reflects the 
tumor biology itself, the average stage of disease at diagnosis, 
or other health challenges faced by UC patients (67) including 
those related to immunosuppressive therapies.

A common trait between sporadic and UC-associated CRC 
appears to be the pivotal role of an abnormal intestinal microbi-
ota as an initiating mechanism. In the last 10 years, a large body 
of evidence has accumulated linking CRC with a dysbiotic gut 
microbiota and dysregulated immunity, both in the context of 
sporadic CRC and inflammatory bowel diseases (68–70). A dys-
biotic microbiota contributes to tumor progression directly by 
generating reactive metabolites and carcinogens, and indirectly 
by disrupting the epithelial cell barrier in the host (70). This 
causes local intolerance to antigens of normal flora and leads to 
dysregulation of the adaptive and innate immune response and 
subsequent chronic inflammation (68). Diet appears to be an 
important contributor in this process, as it has a major influence 
on the gut flora and is transformed into metabolites that can 
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have protective or promoting roles in tumor progression (71). 
In the case of patients with UC, genetic predisposition might 
contribute to a dysbiotic gut flora, causing the extensive chronic 
inflammation characteristic of this disease (68) and increasing 
the risk of tumor progression through the extensive cell prolif-
eration required in repeated cycles of wound and repair (12,72).

The sequence of tumor progression in UC

Tumor progression in UC is clinically described as a multistep 
process defined by increasing degrees of histological abnor-
malities, progressing from no dysplasia, to low-grade dysplasia, 
high-grade dysplasia and finally cancer (Figure 1). Although often 
represented linearly and sequentially, it is important to recog-
nize that tumor evolution is usually branched, not linear (73) 
and, in the case of UC tumorigenesis, not every dysplastic stage 
may be observed. This sequence might also occur independently 
in multiple locations in the colon. It is well established that in 
UC patients, multiple areas of the colon can simultaneously de-
velop dysplastic changes and that independent synchronous 
cancers can evolve in parallel within these fields (74).

Recent mounting evidence has led to the appreciation that 
clinical patterns of progression to CRC in UC may differ based 
on the age of disease onset. UC has two peaks of incidence: early 
onset occurs between 25 and 35  years of age while late onset 
arises between 55 and 65  years of age (55,75). Clinical studies 
have recognized for some time that patients with late onset tend 
to have less extensive disease and a lower risk of CRC develop-
ment (76–78). Interestingly, Brackmann et al. (57,58) reported that 
among UC patients with CRC, those with late age of onset tended 
to develop cancer without widespread dysplasia. Conversely, 
patients with early age of onset typically exhibited extensive dys-
plasia at CRC diagnosis. The presence of extensive dysplasia was 
also associated with longer disease duration prior to CRC devel-
opment, higher probability of presenting with active inflamma-
tion (57) and worse CRC prognosis (58). These findings suggested 
that the development of CRC in patients with early onset dis-
ease is related to long exposure to inflammation and subsequent 
development of dysplasia. However, in patients with late onset of 

disease, CRC might arise independently of observable dysplasia 
or, alternatively, tumors might be fast growing and displace their 
original localized dysplastic fields in a clonal sweep. Our group 
has identified molecular evidence further supporting fundamen-
tal differences between early and late onset disease. We demon-
strated that UC-cancer patients with early onset of disease have 
extensive fields of molecular abnormalities throughout their 
colons compared to UC-cancer patients who have late onset of 
disease. Specifically, large clonal populations with shortened tel-
omeres could be found in multiple non-dysplastic areas of the 
colon of early onset UC Progressors (patients with high-grade 
dysplasia or cancer), but this was almost never the case in the 
Progressors who had late onset of UC (79). While more research is 
needed to better distinguish these two modes of CRC progression 
in UC, their recognition as distinct entities has important clinical 
implications. Since patients with late onset of disease appear to 
develop cancer without a widespread field effect, these patients 
might benefit from partial colon resection instead of full colec-
tomy, which is the current standard-of-care. The ability to safely 
use segmental resection of the colon in older UC patients would 
spare them significant morbidity.

Molecular alterations characterize preneoplastic 
fields in UC

The field effect was originally described based on regions of tis-
sue sharing histological abnormalities (5), but the concept was 
later broadened to include clonal molecular abnormalities in 
otherwise histologically normal-appearing tissue, as it was rec-
ognized that multiple molecular changes produce Slaughter’s 
original observation (6). More recently, the term has been used 
more broadly to describe an “etiologic” field effect, which takes 
into consideration the contribution of environmental and gen-
etic factors that produce cancer susceptibility (80). The genetic 
component of UC is well established as well as the critical role 
of an altered microbiome, which deregulates immunity and trig-
gers inflammation. While the presence of these factors is not 
indicative of cancer progression, they contribute to the neoplas-
tic process by producing a predisposing microenvironment (80). 

Figure 1.  Proposed model of carcinogenesis in UC. This model integrates the etiological, molecular and dysplastic field effects with known cellular and molecular 

events that contribute to the different stages of carcinogenesis in UC. The arrow indicates the temporal direction of dysplastic progression and the color gradient 

reflects the increasing risk of cancer at the different stages of the process. Cancer arises within dysplastic and/or molecular fields. Molecular fields precede dysplastic 

fields and are more extensive, thus offering an excellent opportunity for precancer detection.
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Figure 1 illustrates the three conceptual types of field effects—
etiological, molecular and morphological—in the context of UC 
cancer progression. These fields represent increasing levels of 
cancer susceptibility that are operative in the colons of patients 
with UC, each level contributing to the development of the next. 
However, only molecular and dysplastic fields are indicative of 
an underlying preneoplastic process. Here we focus on molecu-
lar fields due to their importance to understand tumor progres-
sion and their potential for early cancer detection.

In this section, we first summarize the genetic alterations 
that have provided evidence of clonal field effects in UC. These 
alterations include somatic point mutations, chromosomal 
alterations and passenger mutations in polyguanine tracts. We 
then describe a second set of molecular alterations that de-
fine preneoplastic fields in UC without an implicit assumption 
of clonality. These include telomere shortening, mitochondrial 
alterations and epigenetic changes. Some of these alterations 
have provided meaningful clues in terms of the underlying mo-
lecular mechanisms that may drive tumor evolution in UC and 
for a more extensive review on that topic the readers are referred 
to a recent excellent article by Choi et al. (12). Of note, many of 
the molecular alterations discussed here, both clonal and non-
clonal, harbor potential as UC cancer biomarkers. However, our 
goal is not the description of the biomarker value of each alter-
ation, which has been previously done by us and others (81–83), 
but the review of the evidence for a field effect based on those 
alterations and the discussion of the clinical applicability of 
those fields for optimal cancer surveillance.

Clonal alterations

Point mutations
Mutations in TP53 are the most common and best characterized 
single nucleotide variants in UC-associated preneoplastic fields. 
TP53 mutations (84) and loss of heterozygosity (84,85) occur 
early in UC neoplastic development. UC patients with TP53 
mutations in non-dysplastic biopsies are four times more likely 
to progress to dysplasia and cancer (86). Additionally, there is 
a strong correlation between mutations in highly conserved 
regions of TP53 and the histological progression from low-
grade dysplasia to cancer in UC patients (82). In an early study 
by our group, we examined alterations in TP53 by fluorescence 
in situ hybridization (FISH) in order to characterize the spatial 
pattern of these mutational events in individual cells within 
crypts (87). A detailed analysis of multiple crypts demonstrated 
that most TP53 FISH abnormalities are shared by all the crypts 
within a colonic region, indicating monoclonality. The observa-
tion of the same TP53 alterations in the two branches of a crypt 
in fission strongly suggested that clonal expansion of mutated 
cells occurs by crypt fission and provided direct observation of 
how clonal fields propagate themselves in UC. In a later study, 
Leedham et al. (62) identified several molecular alterations, 
including TP53 and KRAS mutations, in individual, microdis-
sected dysplastic crypts and adjacent non-dysplastic crypts. In 
one UC Progressor case, the same founding mutation was found 
in spatially separated tumors 14 cm apart from each other and 
in the nondysplastic surrounding tissue, clearly demonstrating 
field cancerization (62). The authors also found clonally dispa-
rate tumors in another UC Progressor, supporting the idea that 
a common etiologic risk factor, i.e. inflammation, has sufficient 
carcinogenic potential to facilitate the emergence of multiple 
synchronous clonal fields throughout the colon.

Although it is rapidly becoming the new technical standard, 
we are aware of only two studies that have yet applied Next 
Generation Sequencing to the study of somatic mutations in 

UC, and both were limited to the interrogation of tumors, rather 
than of preneoplastic fields (63,64). While these reports provide 
a useful baseline from which to compare the mutational land-
scape of sporadic versus UC-associated CRC, additional knowl-
edge remains to be generated from applying this technology to 
a comprehensive study of the spatial and temporal pattern of 
mutation accumulation in preneoplastic fields.

Aneuploidy and chromosomal alterations
For more than 25 years, aneuploidy has been recognized as an 
early occurring alteration in UC carcinogenesis, often found 
even before the appearance of dysplasia (88,89). The presence 
of aneuploid fields is associated with a higher risk of progres-
sion to dysplasia (90), histological grade (90), disease duration 
(90) and the presence of primary sclerosing cholangitis (91). 
More sensitive technologies, including comparative genomic 
hybridization (92) and FISH, revealed that chromosomal altera-
tions occur early in UC tumorigenesis, often preceding his-
tologically defined dysplasia (93) and affecting the entirety of 
the colon (10). The relative timing and frequency of numerical 
chromosomal alterations in UC differs significantly from those 
of sporadic CRC, supporting the conclusion that neoplastic pro-
gression follows distinct pathways in these diseases (93). More 
recently, CGH-array studies have demonstrated that in UC 
Progressors, chromosomal alterations can be found in distant 
normal-appearing biopsies (94) and the same alteration can be 
shared by multiple biopsies spanning most of the length of the 
colon (95). This indicates that the field effect can be very large 
and raises the fundamental question of how these clones propa-
gate. The fields also appeared to be graded in nature, as copy 
number alterations increased in frequency and magnitude with 
proximity to dysplasia.

While the mechanisms for localized clonal expansions have 
been well characterized (12), it is unclear how a clone can gen-
erate the extensive pancolonic fields described above. Clones 
originate from stem cells that expand to occupy the whole 
crypt via niche succession and then crypts laterally expand by 
crypt-fission to generate monoclonal patches (12). Niche suc-
cession might occur by neutral drift (96), but the expansion of 
certain mutations beyond a crypt appears to involve selection 
(97,98). This process can generate clones of >10 cm in size (62), 
but it appears unlikely that the same process would extent 
throughout the whole organ. Alternative hypotheses are conver-
gent evolution and long-distance stem cell migration aimed at 
mucosal healing, as proposed in Choi et al. (12). Further inves-
tigation in this area is highly needed and would greatly benefit 
from more advanced methods of lineage detection, as explained 
in the next section.

Clonal expansions detected by passenger mutations
The ability to recognize clonal expansions requires the pres-
ence and identification of one or more genetic changes that 
identically mark the clone’s progeny as related to each other, yet 
distinct from adjacent cells. This lineage marker is typically a 
putative molecular driver of the clonal outgrowth. The challenge 
is, however, that just as with tumors, multiple genetic changes 
can drive the clonal expansion. These changes vary from one 
person to another, and even among different clones within a 
single individual. Thus, many of these fields might be undetect-
able if only screening for known driver mutations. An alterna-
tive approach is to focus on passenger mutations. As cells divide, 
replication errors produce mutations, the vast majority of which 
are functionally neutral and offer no selective advantage or dis-
advantage (7). These mutations are carried in the daughter cells 
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as ‘passenger’ mutations and offer a much larger repertoire of 
somatic variants to enable the detection of clonal fields and elu-
cidate lineage relationships.

Our group pioneered an approach for clone detection based 
on passenger mutations in polyguanine tracts (PolyG), which 
are highly mutable repetitive DNA sequences interspersed 
throughout the genome (99,100). We demonstrated that exten-
sive clonal fields defined by PolyG mutations were present in 
histologically normal colonic biopsies of UC Progressors, but 
were almost entirely absent in UC Non-progressors (patients 
without dysplasia). These fields were composed of thousands 
of cells that appeared microscopically normal, but had aber-
rantly proliferated from an original precursor cell, indicating the 
presence of an ‘occult’ process of neoplastic evolution. In a later 
study, these clonal fields were only found in patients with early 
onset of disease, suggesting that alternative pathways of pro-
gression without extensive clonal expansions might be opera-
tive in patients that develop UC later in life (100).

Other molecular alterations identified in 
preneoplastic fields

Telomere shortening
Telomere shortening is another well-documented, early event 
in UC tumorigenesis. While it is not informative about clonality, 
telomere shortening has provided insight about the extent 
of the field effect and mechanisms of tumor progression in 
UC (101–106). The colonic epithelium of patients with UC has 
shorter telomeres than age-matched non-UC patients (102,107). 
This shortening appears to occur within the first 8 years of 
disease duration (102) which, interestingly, coincides with the 
time at which clinical risk of CRC for UC patients increases. This 
suggests that the onset of cancer may depend upon telomeres 
becoming critically short. Telomere shortening occurs diffusely 
in the colonic epithelium of UC patients (102), especially in 
those with more severe clinical phenotypes (108). Additionally, 
telomere shortening is more common in biopsies closer to dys-
plasia (103) and is more extreme in UC Progressors compared to 
Non-progressors (103,105,106).

Mitochondrial dysfunction
Growing evidence indicates that epithelial cell mitochondrial 
dysfunction is present in UC (109), although it remains unclear 
whether it is a cause or consequence of the disease and whether 
it contributes to cancer progression. The role of mitochondria in 
cancer, in general, is controversial. A prevailing hypothesis was 
that mutations in mitochondrial DNA were somehow advanta-
geous to tumors and clonally expanded into fields under positive 
selection (110). This was proposed to be the basis of the Warburg 
effect—the observation that most cancers use glycolysis for en-
ergy production (111–113). This idea has been challenged, how-
ever, by more recent studies arguing that many cancers do, in 
fact, rely on oxidative phosphorylation and mitochondrial func-
tion (114–116) and that mitochondrial DNA mutations either ac-
cumulate randomly and clonally expand as passengers without 
selective pressure, or are selected against (117–119).

In UC, genetic (120), proteomic (37,121–123) and metabolic 
(124–126) studies have identified mitochondrial alterations 
in colonic biopsies, both in non-dysplastic mucosa and in 
UC-associated cancers. Unfortunately, some results are contra-
dictory and the relevance of these findings is still unclear. Our 
group previously demonstrated that in UC Progressors, the lev-
els of cytochrome C oxidase subunit I (COX), a protein of com-
plex I of the electron transport chain, decreased with proximity 
to dysplasia, indicating the presence of a gradient field effect. 

COX staining was completely absent in some dysplastic areas 
but, remarkably, was typically high in high-grade dysplasia and 
cancer (127). These results are concordant with mitochondrial 
dysfunction as a feature of UC colonic epithelium (109), but sug-
gest that function might be restored later in progression to allow 
for the metabolic demands of cancer cells (116).

The mechanisms that trigger these processes are unknown. 
Field effects that include mitochondrial dysfunction can some-
times arise from clonal expansions of mitochondrial DNA muta-
tions through crypt conversion and crypt fission, as previously 
characterized in the aging colon (128). Additionally, PGC1α, the 
master regulator of mitochondrial biogenesis, might mediate 
mitochondrial dysfunction. PGC1α expression is decreased in 
the intestinal epithelium of patients with UC. Notably, in mice, 
its deletion confers susceptibility to colitis, whereas restoration 
of the protein ameliorates the disease and restores mitochon-
drial integrity (129). PGC1α also offers a potential link between 
telomeres and mitochondria: in telomerase knockout mice, 
shortened telomeres trigger mitochondrial dysfunction via 
TP53 and PGC1α signaling (130,131). This intriguing connection 
deserves further investigation in UC tumorigenesis, especially 
since both alterations exhibit a similar pattern of initial dys-
function followed by later recovery.

Epigenetic changes
Chronic inflammation is well known to play a role in the pro-
gression of cancer—UC-mediated CRC being only one of many 
examples (132). As noted above, the inflammatory state can 
mutate DNA and lead to disruption of growth control genes 
as well as accelerate mutation acquisition by increasing cell 
turnover. Additionally, chronic inflammation can epigeneti-
cally alter epithelial cells without a clonal relationship (132). 
Gloria et al. (133) first identified DNA methylation changes in 
the setting of UC by measuring the incorporation of labeled 
methyl groups into DNA. They demonstrated that UC colonic 
DNA is globally hypomethylated compared to normal con-
trols and suggested that epigenetic changes in UC colonic 
mucosa contribute to cancer progression. Since then, epige-
netic changes have been more extensively studied as precursor 
lesions in UC. It has been observed that histone modification 
genes are overexpressed in UC and that the level of overex-
pression correlates with both disease extent and duration 
(134). In non-dysplastic, but inflamed, UC tissue, hypomethyla-
tion of bivalent H3K27me3-associated promoters facilitates the 
upregulation of cancer progression associated genes, includ-
ing those associated with cell movement, death, survival and 
proliferation. These inflammation-induced changes create a 
field of susceptibility that might predispose to cancer progres-
sion (135). Additionally, both dysplastic and normal-appearing 
UC Progressor epithelium features hypermethylation at CpG 
islands, similar to what is seen with aging, and might contrib-
ute to increased susceptibility (136–138). Other studies have 
observed significantly higher methylation in genes associated 
with UC inflammation from UC Progressor non-dysplastic tis-
sues when compared with UC Non-progressor tissue (139). 
Collectively, these findings in preneoplastic fields are consist-
ent with the epigenetic alterations found in CRC, in which both 
global hypomethylation and regional hypermethylation are 
observed (140). Thus, the current view is that epigenetic alter-
ations play a role in the development and progression of UC 
(141). These alterations might create an epigenetic field effect 
as a result of the clonal expansion of stem cells that carry epi-
genetic changes or non-clonally as a result of environmental 
exposures and inflammation (132,141,142).
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Model of cancer progression in UC: accelerated 
colon aging?

The molecular alterations that define preneoplastic fields in 
UC are remarkably similar to the changes that occur in normal, 
aging tissue. Based on this, our group proposed the idea that 
UC can be thought of as a disease of accelerated colon aging. In 
normal individuals, telomere length declines progressively with 
age (81), but in UC the rate of decline is accelerated, especially 
within the first 8 years after disease diagnosis (102). On average, 
individuals with UC at age 40 carry colonocyte telomeres as 
short as non-UC individuals at age 60. This finding fits with 
the epidemiological observation that CRC develops at a mean 
age of 64 in the general population, but a mean age of 43 in UC 
patients—about 20 years earlier (66).

Similarly, chromosomal alterations (96,143), mitochondrial 
loss (144,145) and DNA methylation (146) changes have been 
reported in both normal aging colon and preneoplastic fields in 
UC. In the normal colon, these age-related alterations are attrib-
uted to the increased load of somatic mutations and molecular 
damage over time. While somatic mutations can lead to clonal 
fields through biased competition and expansion of mutated in-
testinal stem cells (147), extensive molecular damage can lead 
to non-clonal fields of cancer predisposing alterations, such as 
telomere shortening caused by oxidative damage (148).

We have made an effort to integrate the findings described 
above in our proposed model of carcinogenesis in UC (Figure 1). 
We postulate that in UC, genetic susceptibility and an altered 
microbiome and immunity lead to chronic inflammation and 
concomitant increased cell turnover and oxidative damage. This 
accelerates the rate of mutation accumulation and molecular 
damage, thus effectively producing accelerated aging of the 
colon. When telomeres become critically short, uncapped chro-
mosome ends trigger a DNA damage response (149). In the pres-
ence of proficient TP53, this response results in the activation 
of cellular senescence; however, if TP53 is mutated, cells bypass 
senescence and cell division continues, producing preneoplas-
tic fields in which dysfunctional telomeres trigger end-to-end 
fusions and chromosomal instability (106). This instability and 
the progressive exhaustion of telomeres eventually leads cells to 
crisis and death (150). During this process, however, additional 
genetic and epigenetic alterations accumulate and might dis-
rupt other tumor suppressors genes and activate proto-onco-
genes. One of the many consequences of this can be mutational 
or epigenetic reactivation of telomerase. Reactivated telomerase 
rescues the cells from crisis, allows further proliferation under 
the drive of mutated oncogenes, and eventually results in the 
development of invasive malignancy (151). At that step cancer 
cells might also acquire proficient mitochondria to cover the 
metabolic needs to rapid growth (116).

Field effect implications: opportunities for early 
cancer detection

Preneoplastic fields are an indication of an emerging neoplastic 
process and, therefore, they could be used to improve cancer 
detection in UC. The current cancer surveillance system is based 
on colonoscopic screening for dysplasia and it is likely to be one 
of the factors contributing to the decrease in UC-associated CRC 
in recent years (43). However, this approach has limited sensitiv-
ity (152), fails to detect every patient at risk (153), and it is time 
consuming and expensive. A more efficient and sensitive sys-
tem would be highly desirable, especially in view of the world-
wide overall increase in UC incidence (154).

The American Gastroenterology Association recommends 
that colonoscopic surveillance should begin 8–10  years after 
disease diagnosis and should occur every 1–2 years depending 
on dysplasia findings (155,156). Until recently, the guidelines 
included collection of at least 32 random quadrant biopsies to 
achieve 90% sensitivity for histological identification of dysplasia 
(90). However, gastroenterologists’ non-adherence to colonos-
copy guidelines, patients’ non-compliance to the surveillance 
plan, and a lack of agreement between pathologists upon his-
tological assessment reduce the efficacy of this surveillance 
approach (56,157,158). Over the last decade, the superiority of 
chromoendoscopy (CE) for the detection of dysplasia has been 
established (159–161). Whereas standard colonoscopic methods 
rely on the use of white light to visualize areas of dysplasia, CE 
uses dyes that stain the mucosa, increasing the contrast and the 
sensitivity to find dysplasia. CE is the method currently recom-
mended for colonoscopic surveillance (162), but it is still limited 
by the requisite detection of morphological changes that are vis-
ible by endoscopy.

As described above, cumulative evidence demonstrates 
that molecular changes precede the morphological changes 
associated with dysplasia. Thus, focusing on the identifica-
tion of preneoplastic fields may prove to be the most sensitive 
approach for identifying patients at risk of CRC progression. 
Figure 2 illustrates the potential use of the field effect to im-
prove cancer colonoscopic surveillance in patients with UC. 
The premise is that CE with targeted biopsies is performed, in 
accordance to current recommendations (162), but in addition, 
two biopsies are collected at each colon segment for molecular 
analysis of field effects. The extension of the fields, as well as 
the degree of molecular alterations, might reflect the likeli-
hood of cancer progression and could potentially be used to 
personalize colonoscopic surveillance, even in the absence of 
dysplastic findings. This hypothesis is based on the fact that 
cancer is a probabilistic process that depends not only on the 
rate of mutation, but also on the number of cells at risk (163). 
Thus, patients with pancolonic and multifocal fields might 
benefit from closer monitoring as compared with patients 
with localized, unifocal fields. Given the vast heterogeneity of 
genetic changes that can lead to UC-CRC (64), traditional gen-
etic markers such as TP53 mutations are unlikely to be uni-
versal detectors of preneoplastic fields. Passenger mutations, 
such as indels in PolyG tracts, overcome this problem and 
might offer a promising solution for the identification of pre-
neoplastic progression in UC. This information could be inte-
grated into predictive statistical models to identify patients 
at risk. In addition, studies of the field effect and its role in 
early cancer detection in UC could be supported by the use of 
mathematical modeling to quantify the extent and behavior 
of these fields and identify at-risk patients (164,165). Such 
computational approaches have been successfully applied to 
predict the size, shape and distribution of fields (164), to pre-
dict cancer risk in Barrett’s esophagus (166) and head and neck 
premalignant lesions (167), and to evaluate the prognostic 
value of putative biomarkers (165).

Moving forward, large studies are required to establish the 
value of molecular fields for cancer detection and prediction in 
a clinical setting. Fortunately, large repositories of archival UC 
biopsies already exist, which include multiple longitudinal colo-
noscopies for each patient, each containing multiple random 
colonic biopsies. Such repositories are an excellent resource 
for determining the biomarker potential of molecular fields for 
cancer prediction.
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Conclusions
Here, we have discussed the concept of the field effect, the mo-
lecular alterations that define these fields and their implications 
for early cancer detection in UC. Preneoplastic fields precede 
cancer progression in UC and have been characterized through 
the analysis of TP53 mutations, chromosomal alterations, telo-
mere shortening, mitochondrial dysfunction and epigenetic 
alterations. Biologically, these fields reflect the early events that 
lead to tumor progression in UC and enable accurate spatial and 
temporal characterization of in vivo tumor evolution. Clinically, 
preneoplastic fields provide an opportunity to improve early 
cancer detection in UC and to personalize colonoscopic surveil-
lance. Beyond its applications in UC, the study of the field effect 
is highly relevant to current efforts to understand ‘precancer’ in 
order to improve early detection and prevention of cancer (168).
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