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Abstract
Synchrony between local field potential (LFP) rhythms is thought to boost the signal of attended sensory inputs. Other
cognitive functions could benefit from such gain control. One is categorization where decisions can be difficult if categories
differ in subtle ways. Monkeys were trained to flexibly categorize smoothly varying morphed stimuli, using orthogonal
boundaries to carve up the same stimulus space in 2 different ways. We found evidence for category-specific patterns of
low-beta (16–20 Hz) synchrony in the lateral prefrontal cortex (PFC). This synchrony was stronger when a given category
scheme was relevant. We also observed an overall increase in low-beta LFP synchrony for stimuli that were near the
category boundary and thus more difficult to categorize. Beta category selectivity was evident in partial field–field coherence
measurements, which measure local synchrony, but the boundary enhancement was not. Thus, it seemed that category
selectivity relied on local interactions while boundary enhancement was a more global effect. The results suggest that beta
synchrony helps form category ensembles and may reflect recruitment of additional cortical resources for categorizing
challenging stimuli, thus serving as a form of gain control.
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Introduction
Categorization is the ability to carve the world into functional dis-
tinctions. It is closely related to the concept of invariance
(Riesenhuber and Poggio 2000) and thus provides the fundamen-
tal grist for high-level cognition (Rosch 1973). Indeed, impaired
visual category learning is common in various cognitive disor-
ders, including autism (Hill 2004; Kobari-Wright and Miguel 2014)
and schizophrenia (Kéri et al. 2000; Micoulaud-Franchi et al. 2011).
Although categorization occurs even at basic levels of sensory
analysis (e.g., contrast enhancement and color) and is even pre-
sent in insects (Benard et al. 2006; Avargues-Weber et al. 2011),

it is at the higher levels of processing where it has additional
properties that we associate with cognition.

One is flexibility. Category membership can change depend-
ing on task demands. Sometimes an airplane is transportation;
other times it is a flying thing. Thus, category representations
need to be supported by a neural infrastructure that allows the
flexibility to favor different category representations at differ-
ent times. Also, not all categorical decisions are created equal.
Some are quite easy because members of different categories
look very different; the distinction can rely largely on bottom-
up information. But sometimes members of different categories
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look similar, at least superficially, or may rely on less obvious
criteria (e.g., “tools”). This places extra demands on top-down
processing. In visual attention, some sort of gain control is
thought to favor processing of some stimuli over others
(Buschman and Miller 2007; Saalmann et al. 2007; Lee et al.
2013). Presumably similar mechanisms can be in play for cat-
egorization, to favor different aspects of the same stimuli.

Rhythmic synchrony could play that role. Increases in local
field potential (LFP) synchrony and spike-LFP synchrony are com-
mon during cognitively demanding tasks (Buschman and Miller
2007; Gregoriou et al. 2009; Siegel et al. 2009; Buschman et al. 2012;
Nacher et al. 2013; Antzoulatos and Miller 2014). This is consistent
with reports of increased synchrony when attention is focused
(Buschman and Miller 2007; Fries et al. 2008). Different visual cat-
egories and behavioral rules result in different patterns of beta
synchrony between recording sites, suggesting the dynamic for-
mation of distinct computational ensembles (Buschman et al.
2012; Antzoulatos and Miller 2014). If so, gain control might be
implemented through changes in synchrony.

To test this, we used neurophysiological data from monkeys
trained on a category task (Roy et al. 2010). A morphing system
(Shelton 2000) generated stimuli that varied smoothly between
prototypes (e.g., cat and dog). Thus, stimuli close to the cat-
egory boundary looked like stimuli from the other category and
were therefore more difficult to categorize. Flexibility was
tested by randomly cueing monkeys to switch between using 2
orthogonal category boundaries to categorize the stimuli
(Fig. 1). We previously reported that the spiking activity of pre-
frontal cortex (PFC) neurons showed a sharp distinction
between, and generalization within, categories: both hallmarks
of categorization (Freedman et al. 2001, 2002, 2003; Cromer
et al. 2010; Roy et al. 2010). Here, we report category-specific
patterns of low-beta (16–20Hz) oscillatory synchrony that had
many properties in common with the previously reported
single-neuron spiking activity. Superimposed on this category-
dependent beta synchrony was evidence for a role of beta in
gain control. It was stronger when categories were relevant and
when the assigning category membership was more difficult.

Figure 1. Flexible categorization task overview. (A) A morphing system was used to generate stimulus images that varied smoothly between 4 original prototypes

(located in the corners). Monkeys grouped images using 2 different categorization schemes. Stimuli lying on the category boundary were ambiguous and were

assigned category labels randomly. We use the arbitrary terms Goc and Tad to describe the pairs of Cat and Dog prototypes that are on the left and right side of

Scheme B, respectively. (B) The flexible categorization task followed a delayed match-to-category paradigm. The trial began with monkeys pressing a lever and fixat-

ing on a dot. The dot changed color, which served as the context cue instructing which categorization scheme to apply. After a period of fixation, monkeys were

shown a stimulus image. After a delay stage, monkeys were then shown a test image and they had to assess whether it was a match or nonmatch based on the rele-

vant categorization scheme. If the images were a match, the monkey released a lever. Otherwise, the monkeys held onto the lever through a second delay stage, at

which point the correct matching image was shown. The letters above each stage indicate stage symbols used throughout the paper.
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Materials and Methods
This paper uses LFP data that were collected during an earlier
study (Roy et al. 2010) that focused exclusively on neuron spik-
ing activity. We briefly report data collection methods here.

Two adult monkeys (8–10 kg) used in this study were handled
conforming to National Institutes of Health (NIH) guidelines and
the Massachusetts Institute of Technology Committee on Animal
Care. Recording electrodes were implanted using previously desc-
ribed hardware (Roy et al. 2010). Eye movement was tracked using
an infrared eye tracker (Iscan), sampled at 240Hz.

Flexible Categorization Task

Monkeys were trained to perform a delayed match-to-category
task. During this task, they were required to categorize stimuli
that could vary smoothly between 4 different prototype images.
Stimuli, or “morphs,” were generated by a morphing system
that used the vector differences between the corresponding
points in 2 different prototype images to generate linear combi-
nations of the original images (Shelton 2000). This yielded a 2-
dimensional space of stimulus images (Fig. 1A), with the proto-
type morphs located at the 4 corners of this space.

Two orthogonal categorization schemes, referred to as
Scheme A and Scheme B, were defined using 2 orthogonal
boundary lines in the stimulus state space (Fig. 1A). These
boundary lines separated morphs with more than 50% contri-
bution from a prototype from those with less. This effectively
split the stimulus space into cat-like and dog-like morphs for
Scheme A (Fig. 1A, left), and Scheme B grouped together differ-
ent pairs of cat and dog prototypes (Fig. 1A, right).

During training, animals were exposed to a wide range of pos-
sible morphs that could vary from the original prototypes, to
morphs within several percentage points of the category bound-
ary, and to the 50% morphs themselves. During testing and
recording, 34 images were generated from 7 morph mixtures
(100%, 80%, 60%, 50%, 40%, 20%, 0%). The pair of images at the
center of the stimulus space represent 50% morphs between the
2 diagonally opposed prototypes (i.e., between (100%,100%) and
(0%,0%) and between (0%,100%) and (100%,0%)); they are offset
from the center (50%,50%) for visualization purposes. Monkey
behavioral performance for this data set is reported in our earlier
paper (Roy et al. 2010), which used the same data. Briefly, both
monkeys classified stimuli at >80% correct, even for stimuli close
to the category boundary. There were no significant differences
in their performance for categorization Scheme A or B at each
morph level (Roy et al. 2010).

The task began with the monkeys pressing and holding a
lever and maintaining fixation on a target for 1000ms (Fig. 1B).
For the first 500ms (cue), this target was either red or blue and
served as a context cue. This cue instructed the animal which
categorization scheme to implement; blue denoted Scheme A
and red denoted Scheme B. For the next 500ms (fixation), the
fixation dot reverted to white and remained white for the rest
of the trial. Monkeys were then shown a sample image for
600ms (sample). This was followed by a 1000-ms delay, after
which a test image was presented. If the category of the test
image matched the category of the sample (based on the con-
text cue), then the trial was considered a match and the mon-
key released the lever for a juice reward. If the categories did
not match, then the monkey continued holding the lever. After
a second 1000-ms delay, a second test image was shown that
matched the category of the sample image, and the monkey
released the lever for a juice reward. Monkeys were randomly

rewarded for trials containing ambiguous stimuli (50% morphs).
Match/nonmatch trials and category Scheme A/B context cues
were randomly interspersed with similar frequencies.

Recording

Full details of recording procedures are supplied in Roy et al.
(2010). Briefly, placement of recording chambers over lateral PFC
was stereotaxically guided using magnetic resonance imaging
images and an anatomical atlas (Paxinos et al. 2000). The cham-
ber targeted the principal sulcus and anterior arcuate sulcus
(areas 45, 46, and 12). On each day of recording, between 8 and 16
epoxy-coated tungsten electrodes (FHC Inc.) were inserted into
the brain using customized microdrives. Each microdrive lowered
2 electrodes through a 1-mm plastic grid (Freedman et al. 2001,
2002, 2003; Cromer et al. 2010; Roy et al. 2010). LFP waveforms
were digitized and stored. Firing activity was recorded from well-
isolated neurons (in general 0–2 per electrode) and digitized wave-
forms were saved for offline sorting using principal component
analysis (Offline Sorter, Plexon Inc.). Over 40 recording sessions,
209 neurons and 300 electrodes were recorded from monkey L.
Over 39 recording sessions, 340 neurons and 573 electrodes were
recorded from monkey O. Recording locations included both
ventrolateral and dorsolateral PFC.

Data Analysis

Preprocessing
All analysis was performed in Matlab (Mathworks). First, LFP
recordings were filtered to remove 60Hz line noise using an
ideal notch filter between 59.5 and 60.5 Hz. Bad electrodes were
identified and excluded from the study.

Coherence Estimates
Field-to-Field Coherence (FFC) was estimated using Matlab
(Mathworks) and Chronux (chronux.org) (Mitra and Bokil 2007).
Coherence Cxy(f) between LFP signals from 2 different electro-
des, x(y) and y(t), was estimated as
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where Gxy(f) is the multitapered cross-spectrum and Gxx(f) and
Gyy(f) are the multitapered autospectra, with * denoting complex
conjugate. Coherence, Cxy(f), ranges between 0 and 1, with values
close to 1 indicating that y(t) can be well represented by linear
system acting on x(t) at frequency f. Different tapers settings
were used depending on the situation. When analyzing FFC
spectra and spectrograms (time vs. frequency plots), tapers were
set with time-bandwidth product (TW) equal to 3 and number of
tapers (K) equal to 5 unless otherwise specified. Partial FFC esti-
mates were noisier due to the removal of shared components of
the signal, and therefore it was necessary to use additional band-
width smoothing. Hence, for partial FFC, we used TW = 5 and
K = 9. In estimating FFC we only considered correct trials, with
the exception of 50% morphs. For 50% morphs, all trials were
included regardless of the animal’s response.

Z-Score Statistics
We quantified evidence for FFC modulation by experimental
conditions nonparametrically using a bootstrap normalized
sensitivity statistic. This statistic was calculated by, first, esti-
mating the absolute difference in FFC (|ΔFFC|) for the 2 groups
of trials corresponding to 2 conditions of interest (e.g., cat
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stimuli vs. dog stimuli). Then, a null distribution of |ΔFFC| was
generated by randomly shuffling the trials between these 2
groups. Lastly, we divided the original |ΔFFC| by the mean of
the shuffled distribution. Because the shuffling destroys any
special influence of trial conditions, this quantity has an
expectation value of 1 under the null hypothesis of no FFC
modulation. Values greater than 1 indicate greater differences
in FFC than expected by chance and, therefore, increasing evi-
dence for FFC modulation. Values less than 1 may arise in spe-
cial situations but are not prominent in our data and indicate
smaller differences in FFC than expected by chance. This quan-
tity is similar to a z-score in that it is normalized by the spread
of the data. Throughout the paper, we will use the term z-score
to refer to data that have been bootstrap normalized in this
manner. Evidence for modulation of neuron firing activity by
experimental conditions was assessed in the same manner.

Significance Testing
In addition to examining the average behavior of the network,
we also identified specific electrodes of interest via significance
testing. The same permuted null distributions that were used
to calculate z-scores were used here. Specifically, an electrode
pair was considered significant if its |ΔFFC| (as defined above)
was greater than the 1-α percentile of the permuted null distri-
bution of |ΔFFC|, where α is the desired Type 1 error. Unless
otherwise stated, false discovery rate (FDR) was controlled by
using the Benjamini–Hochberg (BH) step up procedure to deter-
mine α so as to give an FDR of 20%. The FDR rate of 20% was
used to achieve a balance between Type I and Type II error
rates. In other words, while we wanted to limit false discover-
ies, we did not want to have so many false negatives that it
would decimate our pool of electrode pairs available for subse-
quent analysis.

Identification of significant electrode pairs was generally an
intermediate step in our analysis and, as discussed below, sub-
sequent statistical tests were conducted at α = 0.05. However,
we repeated our analysis with an FDR of 5% and arrived at
similar findings, although in some cases spectra appeared
more noisy due to fewer trials.

Significant differences in coherence between groups of elec-
trode pairs were tested using the Wilcoxon signed-rank test for
paired data and Wilcoxon rank-sum test for unpaired data,
with a Holm–Bonferroni correction applied for multiple com-
parisons (α = 0.05). The time windows of analysis were slightly
delayed to allow for propagation delays from sensory regions.
For the sample and delay stages, the analysis windows were
100–600 and 900–1700ms, respectively, after sample onset. For
FFC analysis, spectral broadening resulted from the multitaper
method (Thomson 2007). Thus, statistical tests for differences
in FFC centered at a specific frequency (e.g., 18 Hz) actually
incorporated a range of frequencies approximately 18 ± W,
where W = x/T, T is the time window and x is the time-
bandwidth product in use. We denote this central frequency of
analysis using the “@” symbol (e.g., @18 Hz).

Category Index
To evaluate the strength of category representation, we used a
category index (CI), introduced in previous works (Freedman
et al. 2001, 2002, 2003). This statistic depends on both the
between category difference (BCD) and the within category dif-
ference (WCD). We considered both adjacent stimuli (“one-
step” differences, WCD1 and BCD1) and also pairs of stimuli
that differed by 2 steps (WCD2 and BCD2), calculated as follows:

= ( − + − + − + − )F F F F F F F FWCD /41 100 80 80 60 40 20 20 0

= −F FBCD1 60 40

= ( − + − )F F F FWCD /22 100 60 60 0

= ( − + − )F F F FBCD /22 80 40 60 20

Here, Fx refers to the estimated FFC (at a particular fre-
quency) for morph percentages x. We took the final WCD as the
average of WCD1 and WCD2, and likewise for BCD. This ensured
that the average morph distance was identical for WCDs and
BCDs. Ci was defined as a standard contrast index of these 2
quantities, yielding CI = (BCD − WCD)/(BCD + WCD). CI ranges
from −1 to +1, with a value close to +1 denoting a large differ-
ence between categories and a value close to −1 denoting a
large difference within categories.

Normalized Analysis of Boundary Trials
In our analysis of the monkeys’ responses to boundary trials,
we implemented 2 procedures to ensure our results were
unbiased. First, estimates of coherence are biased by sample
size (number of trials), increasing when few trials are available
(Bokil et al. 2007). We found this affected our estimates of
coherence in certain situations. In particular, in order to keep
monkeys engaged in the task, it was necessary to use some-
what fewer boundary trials than nonboundary trials. This pau-
city of boundary trials meant coherence bias could be an issue
when comparing boundary with nonboundary trials. Hence, for
comparisons between 2 experimental conditions C1 and C2 with
N1 and N2 trials respectively, assuming for example N1 < N2,
we repeatedly estimated FFCC2 ⌊N2/N1⌋ times, using N1 ran-
domly selected trials each time, until all trials were consumed.
Here ⌊x⌋ is the largest integer ≤x. These estimates of FFCC2

were averaged together for a final value. In this manner, esti-
mates of both FFCC1 and FFCC2 were always calculated using N1
trials and were therefore comparable. When comparing more
than 2 experimental conditions, the minimum number of trials
across all conditions was used.

Second, from Figure 1A, it is clear that there were fewer
choices of boundary morphs than nonboundary morphs. For
example, along the Cat/Dog boundary, possible morphs were
(100%,50%), (50%,50%) and (0%,50%). In contrast, nonboundary
morphs consisted of the set of (X,Y) with Y = 100% or 0% and
X = 100%, 80%, 60%, 50%, 40%, 20%, or 0%. To ensure a balanced
comparison between boundary versus nonboundary condi-
tions, only nonboundary morphs with X = 100%, 50%, or 0%
were included in our analysis of the Cat/Dog boundary (likewise
for Goc/Tad). We repeated our boundary response analysis
using instead the full set of nonboundary morphs and arrived
at similar results (not shown).

Time-Frequency Visualizations
Changes in coherence were visualized over time using spectro-
gram plots. This involved calculating coherences (or z-score
statistics) with 90% overlapping 300ms windows. For visualiza-
tion of firing rates (FRs) over time, average FRs (or z-score sta-
tistics) were smoothed with a third order Savitsky-Golay filter
of duration 301ms.

Effect of Ensemble Membership on Neuron Firing Activity
Upon identifying LFP ensembles that modulated their coher-
ence in response to experimental conditions, we sought to
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characterize the behavior of neurons that were part of these
ensembles. This allowed assessment of the effects of LFP
ensemble membership on neural activity. Our method for clas-
sifying membership of a neuron in an ensemble is as follows.
First, we identified all pairs of electrodes that exhibited signifi-
cant responses to the experimental conditions of interest using
the permutation test (described above). For each neuron, we
then identified all possible electrode pairs involving that neu-
ron’s recording electrode. If at least x% of these electrode pairs
were significant (e.g., for Cat vs. Dog trials), we considered it as
being part of the LFP ensemble. We refer to x as the “ensemble
inclusion threshold” and its default value was 10%, although a
range of values from 1% to 50% were explored. Setting x to a
very small value (close to zero) corresponds to the very liberal
requirement of selecting neurons on “any” electrode in the LFP
ensemble, while setting x to a high value corresponds to the
conservative requirement of only selecting neurons on electro-
des that modulate their coherence with a large number of other
electrodes.

Rejection of Bad Data
It was necessary to reject data from certain electrodes. This
was due to a technical issue whereby high amplitude LFP sig-
nals caused the amplifier to saturate. We identified electrodes
where this was the case and rejected all electrode pairings
involving those channels. Generally, LFP amplitudes were high-
er during the delay stage than during the sample stage, so there
were typically fewer pairings during the delay stage.

Results
Monkeys were required to categorize stimuli using 2 category
schemes. One boundary divided “Cat versus Dog” (Scheme A)
while the other divided the same stimuli along an orthogonal
dimension (“Goc vs. Tad,” Scheme B) (Fig. 1A). Visual cues
instructed animals which categorization scheme was currently
relevant (see Materials and Methods).

Several previous studies (Buschman et al. 2012; Antzoulatos
and Miller 2014; Bastos et al. 2015) found coherence effects
across both long and short distances. Since it was not clear a
priori which electrodes were relevant, we used a data-driven
approach. We initially considered all electrode pairs and tested
for changes in their coherence in response to task conditions;
subsequently, we used statistical testing to identify specific
electrode pairs of interest.

We began by examining the average population FFC across
all correct trials and all electrodes. We found that FFC syn-
chronization was primarily confined to low-beta (peak centered
at 18 Hz) with also some alpha (peak centered at 11 Hz,
Supplementary Fig. 1). This occurred during presentation of the
to-be-categorized sample and subsequent memory delay.

Category Selectivity of Low-Beta Coherence

Previous studies have shown category and rule-specific increases
in beta FFC between electrode pairs within the PFC and between
the PFC and striatum (Buschman et al. 2012; Antzoulatos and
Miller 2014). We tested for such category selectivity in FFC using
the entire population of electrode pairs. We computed the
z-score of the absolute difference in FFC to Cat versus Dog stimuli
and to Goc versus Tad stimuli. This analysis included all trials
(whether the category distinction was currently relevant or not;
below we test the effects of relevance) and covered a wide range
of frequencies (1–100Hz). This statistic has a mean value of 1

under the null hypothesis (no modulation). Values greater than
1 indicate FFC modulation by category over that expected by
chance. This z-score statistic is roughly proportional to the frac-
tion of electrodes exhibiting significant responses (see Materials
and Methods and Supplementary Fig. 2).

Figure 2A shows the z-score statistic for FFC category select-
ivity for Cat versus Dog (Scheme A) and Figure 2B shows it for
Goc versus Tad (Scheme B). Mirroring the peaks in the raw FFC
spectrum (described above), category-dependent modulation of
FFC could be seen in low beta during the sample presentation
and memory delay. FFC category selectivity was stronger for
Cat versus Dog during sample presentation and stronger for
Goc versus Tad during the delay (Fig. 2). Cat/Dog and Goc/Tad
coherent ensembles overlapped in terms of their spatial distri-
butions and spanned a range of electrode distances, suggesting
that volume conduction was not the source of these effects
(Supplementary Fig. 3).

Low-Beta Category Selectivity Is Enhanced When
Categories Are Relevant

The behavioral task required animals to switch between the 2
category schemes from trial to trial. When one scheme was
relevant, the other was irrelevant. We found that FFC category
selectivity was stronger when the given category scheme was
relevant. This is shown in Figure 3, which collapses the z-score
for category selectivity across time (separately for sample and
delay epochs) and plots it separately for the 2 category schemes
when they were relevant versus irrelevant.

The effects of category scheme relevance were mixed when
the sample was in view but when the memory delay ensued,
FFC category selectivity was higher for both schemes when
they were relevant. During the sample presentation (Fig. 3A,
top-left), FFC category selectivity for Cat versus Dog (Scheme A)
was equally high whether relevant (blue line) or irrelevant
(green line). For Goc versus Tad (Scheme B), though, FFC cat-
egory selectivity was much higher when that scheme was rele-
vant versus irrelevant (Fig. 3A, top-right). During the memory
delay, however, FFC category selectivity for both schemes was
significantly higher when relevant versus irrelevant (Fig. 3A,
bottom). These results are summarized in Figure 3B, which
shows the average category selective FFC z-score centered at
low beta (18 Hz, but results do not depend on the exact beta
peak used). There was also some FFC category selectivity in the
alpha band, especially in the delay, but there is a clear and
higher peak in beta (Fig. 3A). Time courses of this activity at
18 Hz are presented in Figure 3C, which shows that Goc/Tad
selectivity was attenuated when it was irrelevant, particularly
during the sample stage. Attenuation of Cat/Dog selectivity
when irrelevant did not emerge until the delay stage and, then,
only weakly. These time courses are extracted from spectro-
grams, which are presented in Supplemenatry Figure 4.

Category-Selective Coherence as a Function of Morph
Level

Next, we examined FFC category selectivity as a function of
morph level. The morphs allowed us to test for a hallmark of
categorization: a sharp transition across the category boundary.
The prototypes of each category were the most physically dis-
tinct from one another. In Figure 1, the prototypes are arbitrar-
ily designated at the 0% and 100% morphs. At intermediate
levels (80% and 60%, 20%, and 40%), there is progressively more
of the other category blended in. The boundary is at the 50%
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morph level. Thus, the 60% and 40% category morphs belonged
to different categories, but nonetheless physically look alike.
Spiking activity in the PFC is known to show a sharp change at
the category boundary (i.e., between 60% and 40%) and rela-
tively little distinction within a category (i.e., from 100% to 60%
or from 0% to 40%) (Freedman et al. 2001, 2002, 2003; Roy et al.
2010). We tested for the same effect in FFC category selectivity
and found it.

Figure 4A plots the average beta-band FFC for all electrode
pairs as a function of morph level. For each pair, the prototypes
of the preferred category (the one that elicited higher average
FFC) were defined as the 100% prototypes. Note the marked dif-
ference between the average FFC for the 60% morphs of one
category relative to the 40% morphs of the other (i.e., across the
category boundary) with relatively less difference for morphs
within each category. Thus, low-beta FFC, like spiking activity,
showed hallmarks of categorization: sharp transitions across
the category boundary and generalization within categories.

To quantify these effects, we calculated a CI (Freedman et al.
2003) using the 0–40% and 60–100% morph levels (the 50% morphs
will be considered below). This statistic ranges from −1 to +1.
Positive values indicate a sharper difference to equally spaced
pairs of morphs that straddle the category bound compared with
those that do not. Negative values indicate greater differences
to morph pairs within the same category (see Materials and

Methods). During the memory delay, the CI values were signifi-
cantly positive (Fig. 4B), showing that the delay low-beta response
exhibits the sharp transition across the boundary that we would
expect from a category representation. During the sample stages,
the CI values, although positive, were not significant (Fig. 4B).

Note in Figure 4A the high level of FFC to the 50% morphs,
particularly during the sample stage. It is curious that the FFC
response to them was even higher than to the preferred cat-
egory. These morphs do not belong to either category. Thus, we
would have expected their FFC to be halfway between the 2 cat-
egories. It occurred to us that there could be 2 effects at play
here: higher low-beta FFC for preferred categories (i.e., category
selectivity) and, added on top, increased FFC for more difficult
category decisions. The 50% morphs, being unclassifiable, were
the most difficult to classify. We examine this next.

Increased Low-Beta Coherence Near the Category
Boundary

The patterns of results described in the previous section raised
the possibility that 2 effects were contributing to higher beta
FFC: higher FFC for a given category (i.e., category selectivity)
and a boost in FFC when the category decision was difficult. To
investigate this, we examined 2 sets of trials: boundary trials,
in which the sample stimuli were situated directly on the

Figure 2. Low-beta coherence is modulated by stimulus category. Modulation of FFC was assessed for (A) Cat versus Dog categories and (B) Goc versus Tad categories.

Evidence for FFC modulation was quantified by measuring the absolute difference in coherence (|ΔFFC|) and normalizing this quantity by its trial-shuffled null distri-

bution. The resulting z-score has an expected value of 1 under the null hypothesis (no sensitivity). Spectrograms show average z-scores of |ΔFFC| for all electrode pairs

across time and frequency. Histograms show distributions of these z-scored |ΔFFC| values, and also of raw coherence differences (ΔFFC), at 18 Hz for both sample and

delay stages. Electrode pairs with significant category selectivity (Sig.) were identified by permutation test. C, cue; F, fixation; S, sample; D, delay.
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category boundary (i.e., 50% morphs), and near-boundary trials,
in which morphs from the preferred category were adjacent to
the category boundary (60% morphs). The 50% morphs were
the most difficult to categorize because they had no category
membership (the animals were randomly rewarded). The 60%
morphs were next most difficult because they were physically
similar to the 40% stimuli from the nonpreferred category. We
compared the beta FFC for these morphs with that for the 100%
morphs (which were the easiest to categorize).

We found increased low-beta FFC to boundary and near-
boundary morphs during sample presentation and similar but
weaker effects during the memory delay. Figure 5A plots the %
change in FFC for boundary (50%) morphs versus the 100%
morphs. As above, there was a peak of increased FFC for the
50% morphs (relative to the 100% morphs) in the low-beta
band. This peak was largest late into the sample presentation

and the first part of the memory delay. The FFC increase was
significantly higher for Cat/Dog boundary (50% morphs) than
for Goc/Tad boundary (Fig. 5B).

This analysis was repeated for near-boundary (60%) morphs
versus the 100% morphs (Fig. 5C). Unlike the 50% morphs, 60%
morphs had clear category membership and only correct
responses were considered. Nonetheless, the low-beta augmen-
tation also appeared for 60% morphs and was concentrated in
the sample stage, where the effect was significantly stronger
than during the delay stage (P < 0.001, Wilcoxon rank-sum test).
The boundary effect was even evident when the morphs were
on or near the currently irrelevant boundary (Supplementary
Fig. 5), although this effect was weaker than that for the relevant
boundary. We also examined in isolation morphs at the center of
the morph space (see Fig. 1), which were ambiguous under both
category schemes. However, we did not find any evidence that

Figure 3. Low-beta (16–20 Hz) category response is flexibly modulated by the context cue. (A) To assess flexibility of FFC modulation, we compared the z-score statistic

in response to Cat/Dog categories when Cat/Dog was both relevant and irrelevant. Likewise was done for Goc versus Tad. (B) Examining the differences in z-score

metric at low-beta (centered at 18 Hz) for relevant and irrelevant conditions, we found evidence for flexible modulation of Goc/Tad responses in the sample stage,

and both Cat/Dog and Goc/Tad responses in the delay stage. (C) Time courses showing progression of low-beta FFC selectivity under relevant and irrelevant condi-

tions (sampled at 18Hz from spectrograms in Supplementary Fig. 4). Solid and dotted vertical lines in (A) denote locations of peaks centered at 11 and 18Hz in

raw FFC (Supplementary Fig. 1). Significance in (B) was tested by Wilcoxon signed-rank test with a Holm–Bonferroni correction for multiple comparisons. *P < 0.05;

***P < 0.001.
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Figure 4. Morph-response profiles of low-beta FFC. (A) Average low-beta (18 Hz) FFC responses are plotted as a function of stimulus morph percentage. Responses

were sorted prior to averaging, so that the preferred category of each electrode pair always corresponded to morph percentages >50% (black). This provides a visual-

ization of the morph-response profiles. These profiles indicate that low-beta FFC responded not only to category, but also to morphs near the boundary. (B) CI was sig-

nificantly positive during the delay stages, but not the sample stage. Significance in (B) was tested by Wilcoxon signed-rank test with a Holm–Bonferroni correction

for multiple comparisons against CI = 0 and against adjacent columns. **P < 0.01.

Figure 5. Low-beta LFP coherence is augmented for stimuli close to the category boundary. (A) Percent increase in FFC for Cat/Dog and Goc/Tad boundary trials versus

their nonboundary counterparts. Boundary effect was strongest during the sample stage. (B) On average, the boundary effect was significantly greater for Cat/Dog

than for Goc/Tad. Additionally, the boundary effect was significantly greater during the sample stage than during the delay stage for both category boundaries.

(C) Response for 60% near-boundary trials versus 100% nonboundary trials (Cat/Dog and Goc/Tad data pooled together). Bar plots ***P < 0.001 by Wilcoxon signed-

rank test for Cat/Dog versus Goc/Tad and Wilcoxon rank-sum test for Sample versus Delay; all statistical tests were Holm–Bonferroni corrected for multiple

comparisons.
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these “doubly ambiguous” morphs had any greater FFC than
those ambiguous only under Cat/Dog (at least when Cat/Dog was
relevant; Supplementary Fig. 6).

Finally, we examined spiking activity to boundary morphs
to determine whether there was a single neuron correlate to
the boundary effect. Like previous studies (Freedman et al.
2001, 2002, 2003; Cromer et al. 2010; Roy et al. 2010), our ana-
lysis detected no significant boundary effects on the level of
PFC single-neuron activity (Supplementary Fig. 7). The contrast
between single-neuron and FFC activity near the boundary is
perhaps most readily apparent by comparing morph-response
profiles (compare Supplementary Fig. 7C and Fig. 4A). This dif-
ference is quantified in Supplementary Figure 8 and is shown
to be significant for all cases, with the exception of the Goc/Tad
boundary during the delay stage.

There is Greater Category Selectivity for Neurons That
Are Part of the Corresponding Low-Beta Category
Ensemble

The pattern of FFC results described above suggests that low-
beta synchrony helps form the functional networks (“ensem-
bles”) that contribute to the category decisions. PFC neurons
are known to show category selectivity in spiking activity (e.g.,
Roy et al. 2010 using these same data). Here, we test whether
these neurons had any relation to the category-selective beta
ensembles.

The category selectivity of individual neurons was quanti-
fied by the z-score of the absolute differences in spike rate. As
in Roy et al. (2010), we found individual neurons with category
selectivity. Across all recorded neurons, category selectivity
under the 2 schemes was roughly equal, so we pooled their
results for subsequent analyses. Figure 6A plots the average dif-
ference in spike rate (across all 549 recorded neurons). Note
that across the population, there is significant selectivity in
spikes rates for both category distinctions.

We then asked whether category selectivity was stronger for
neurons belonging to (i.e., colocalized with) the “ensemble” of
electrodes preferring Cat/Dog or Goc/Tad. For each neuron, we
examined all possible pairings between its electrode and other
electrodes. If at least 10% of the neuron’s electrode pairs had
low-beta FFC that was significantly sensitive to Cat versus Dog
(by permutation test, see Fig. 2 and Materials and Methods), we
considered this neuron as part of the Cat/Dog ensemble.
Likewise for Goc/Tad, neurons part of both ensembles (i.e., with
at least 10% of pairings significant for Cat vs. Dog and for Goc
vs. Tad) were not considered; thus all neurons had a preference
(in terms of their LFP pairings) for one category scheme over
the other. We refer to the percentage (10% in this case) as the
“ensemble inclusion threshold.” Below, we will show that
results were impervious to the exact percentage used. See
Materials and Methods for details of ensemble calculations.

We found that average neuron category selectivity was sig-
nificantly stronger for the preferred category distinction of its
corresponding low-beta FFC ensemble. Figure 6B,C illustrates
this for the sample and delay epochs, respectively. In both
cases, the blue line shows the average z-score statistic of neural
spiking selectivity for the ensemble’s preferred FFC category.
The green line is the average z-score of the selectivity of those
same neurons for the ensemble’s nonpreferred category dis-
tinction. As can be seen, average neuron category selectivity is
significantly higher for the category distinction that matches
its electrode’s FFC ensemble’s category preference. This effect
was impervious to how we define electrode membership in an

ensemble. Different ensemble inclusion thresholds from 1% to
20% produced similar results to those presented in Figure 6.
Above 20%, the same trend was apparent (higher z-scores for
the preferred category), but results were not significant due to
the low number of neurons in the ensemble group (see
Materials and Methods).

Low-Beta Category Selectivity Is Local While Boundary
Enhancement Is Global

Above, we showed that 2 different factors influenced low-beta
FFC. There was increased FFC for one category over the other
(i.e., category selectivity) and increased FFC for morphs near
the category boundary (i.e., a boundary effect). This led us to
wonder whether these effects were the result of a common
mechanism. In other words, is the boundary enhancement

Figure 6. Single-neuron category selectivity is enhanced for the preferred cat-

egory of the corresponding low-beta ensemble. (A) The z-score statistic for cat-

egory selectivity of single-neuron FR was evaluated for Cat versus Dog and Goc

versus Tad. As in Roy et al. (2010), neurons responded to Cat/Dog and Goc/Tad;

these responses were similar and were pooled together for subsequent ana-

lysis. (B,C) We identified ensembles of electrodes preferring either Cat/Dog or

Goc/Tad category schemes (see text). We plotted the category selectivity of neu-

rons within these ensembles in response to the ensemble’s preferred (blue) and

nonpreferred (green) category schemes. We found that the neural response was

significantly stronger for the ensemble’s preferred category scheme than for

the nonpreferred scheme. This was true for ensembles identified in both the

sample (B) and delay (C) stages. Significance was tested by Wilcoxon signed-

rank test with a Holm–Bonferroni correction for multiple comparisons. *P <

0.05; **P < 0.01.
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simply a “turning up the volume” of the same mechanisms
that produce the category selectivity? Alternatively, the bound-
ary effect could result from an independent mechanism. We
found evidence for the latter.

If the FFC boundary effect was an enhancement of category
selectivity, we would expect a correspondence between them.
For example, if a given electrode pair prefers (shows FFC
selectivity for) Cat/Dog over Goc/Tad, we would expect to see a
boundary effect for the former and not the latter. Instead, we
found something different. The boundary effect tended to be
stronger for the Cat/Dog boundary, regardless of whether the
electrode pair in question showed FFC selectivity for Cat/Dog
or Goc/Tad. This is shown in Figure 7. For the Cat/Dog prefer-
ring electrodes (Fig. 7A), FFC % difference for the Cat/Dog
boundary (blue line) was higher than that for the Goc/Tad
boundary (green). But note that this is also true for the Goc/
Tad preferring electrodes. Their FFC for the Cat/Dog boundary
(blue) was higher than for the boundary for the Goc/Tad dis-
tinction that the electrode pair preferred (Fig. 7B, green). This
was significant for both the sample and delay epochs (Fig. 7C).
Thus, the boundary enhancement of FFC is not simply an
amplification of the FFC category selectivity of a given elec-
trode pair. Rather, the fact that both Cat/Dog and Goc/Tad elec-
trodes responded more strongly to the Cat/Dog boundary is
likely a result of the fact that the Cat/Dog boundary effect was

much stronger overall (Fig. 5) and was the first category dis-
tinction learned by the animals. This suggests that the bound-
ary enhancement is governed by a broader and less electrode-
specific mechanism.

Other evidence for the broader nature of the boundary effect
came from a repeat of our FFC analyses using partial field–field
coherence (pFFC). Partial coherence measures the coherence
between pairs of electrodes only considering activity that is
temporally uncorrelated with the rest of the network. In other
words, any coherence that is common across all electrodes is
subtracted. Thus, pFFC captures local synchrony and removes
highly correlated system-wide effects, such as those locked to
the stimulus or to input activity from another brain region
(DeGutis and D’Esposito 2009).

Figure 8 shows a re-analysis of our results of category select-
ivity and boundary effects using pFFC. The average pFFC of all
electrode pairs showed significant category selectivity (Fig. 8A).
However, the boundary enhancement was almost completely
abolished (Fig. 8B). Note that the plot of pFFC by morph level no
longer shows enhancement to the 50% boundary morphs
(Fig. 8C) like we found using FFC (contrast this with Fig. 4A).
Direct comparison to the FFC boundary effect showed that the
reduction for pFFC was significant in all cases (Fig. 8D). Thus, it
seems that FFC category selectivity is a locally generated effect
while the boundary effect is more global.

Figure 7. The boundary response of an electrode pair was always stronger for Cat/Dog than for Goc/Tad, regardless of the electrode pair’s preferred category selectiv-

ity scheme. For Cat/Dog preferring electrodes (A), we compared their boundary responses along preferred (Cat/Dog) and nonpreferred (Goc/Tad) category boundaries.

Likewise for Goc/Tad preferring electrodes (B), despite the difference in category preference, both groups exhibited stronger boundary responses along the Cat/Dog

boundary (C). This was mainly the case during the sample stage, when the boundary response was strongest. However, it also appeared weakly during the delay

stage. Stimulus-sensitive electrode pairs were identified by estimating P values relative to the trial-shuffled null distribution (alpha = 0.05). C/D = Cat/Dog; G/D = Goc/

Tad. Significance tested by Wilcoxon rank-sum test with a Holm–Bonferroni correction for multiple comparisons. ***P < 0.001.
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Discussion
We found low-beta (16–20 Hz) LFP oscillatory coherence in lat-
eral PFC that was influenced by 2 factors. First, coherence was
category selective. Different pairs of recording sites showed
increased coherence for one or the other category. In other
words, across the PFC, there were different patterns of low-beta
coherence for the different categories, as if low-beta coherence
was helping to form the neural ensembles that represented the
categories. Second, we found that low-beta coherence was aug-
mented for exemplars close to the category boundary, as if the
brain was turning up the gain for the more difficult category
decisions. By contrast, there was no boundary effect on the
single-neuron level.

Category and rule-selective beta coherence has been seen
within the PFC as well as between the PFC and striatum
(Buschman et al. 2012; Antzoulatos and Miller 2014). The
hypothesis that it helps form ensembles is supported by our
observation that category selectivity of spiking of single neu-
rons was better if that neuron’s recording site showed
category-selective coherence for that category distinction.
Similarly, Buschman et al. (2012) showed that individual PFC
neurons that were selective for the color or orientation of a vis-
ual stimulus synchronized to the corresponding beta rule
ensemble (pay attention to color vs. orientation). We do not yet
conclusively know the directionality of the relationship bet-
ween spiking and LFP synchrony. Does local spiking generate
beta coherence on the LFP level or do local neurons entrain to

Figure 8. Partial coherence showed low-beta response to categories but not to boundaries. (A) Z-score statistic showing sensitivity of partial coherence (pFFC) to

stimulus category (left). Significantly more electrode pairs responded to Cat/Dog and Goc/Tad categories than expected by chance (right). (B) Percent change in FFC in

response to boundary versus nonboundary trials for Cat/Dog and Goc/Tad boundaries. Responses were not significant. (C) Morph-response profiles for low-beta partial

coherence, showing a sharp category response and the absence of any boundary effect. Cat/Dog and Goc/Tad responses were similar and were merged. (D) Direct

comparison of the boundary effect for pFFC to that for FFC, previously measured, shows that the pFFC boundary effect was significantly weaker in all cases.

Significance in (A, right) was tested by binomial test against those values expected by chance at alpha = 0.05 (dotted line; no false discovery control). Significance in

(D) was tested by Wilcoxon rank-sum test. In all cases, a Holm–Bonferroni correction was used for multiple comparisons. **P < 0.01; ***P < 0.001.
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beta oscillatory LFP afferents? Local spiking activity could syn-
chronize at beta frequencies via inhibition from local interneur-
ons (such as low-threshold spiking cells), and thus give rise to
local beta LFP oscillations (Roopun et al. 2010; Lee et al. 2013).
Afferent sources of low-beta input could include the inferior
temporal cortex (ITC), which is associated with processing
high-level visual features (Miller et al. 1996; Freedman et al.
2003; De Baene et al. 2008) and which also synchronizes at low
beta (15–20Hz) (Tallon-Baudry et al. 2004). Additionally, the
category-selective low-beta observed during the delay stage
may be associated with input from posterior parietal cortex
(PPC). PPC and PFC have been previously shown to synchronize
at low beta (15–25Hz) during the delay stages of a visual work-
ing memory task, with PPC being more influential in driving
this process (Salazar et al. 2012).

It is important to note that, although we found category
selectivity of single-neuron firing activity and FFC to be related
(Fig. 6B,C), the relationship is not one-to-one. For example, Cat/
Dog and Goc/Tad selectivity peaked at roughly the same times
near the end of the sample stage for neuron activity; however,
for FFC, Goc/Tad selectivity emerged much later (compare time
courses in Fig. 6A with Figs. 2 and 3C). This could be due to an
initial lack of synchrony among neurons underlying the Goc/
Tad ensemble, or synchrony at shorter length scales (higher
frequencies) than the electrode grid could accommodate (1mm
spacing).

Additionally, both the raw FFC peaks (Supplementary Fig. 1)
and strongest category selectivity were observed at low beta
(~16–20Hz), whereas other studies have reported LFP activity at a
higher frequency range (25–35Hz) (Siegel et al. 2009; Buschman
et al. 2012; Antzoulatos and Miller 2014). There are a number of
possible reasons for this difference. It may be due to differences
in recording location, as Buschman et al. recorded in dorsolateral
PFC, while the majority of our electrodes were in ventrolateral
PFC. It may also be due to differences in the stimuli or task struc-
ture, which were different across all 4 studies. Future work will
be required in order to build a clear picture of which frequencies
correspond to which tasks and brain regions.

Low-beta category selectivity and boundary enhancement at
low-beta seemed to have different mechanisms of genesis. We
drew this conclusion because, first, their temporal patterns did
not always match. For example, category selectivity appeared
during both sample and delay stages, whereas the boundary
effect was concentrated primarily during the sample stage.
Second, in terms of spatial patterns, the boundary effect was
stronger for the Cat/Dog boundary, even for the recording sites
preferring Goc/Tad in terms of their low-beta category selectiv-
ity (Fig. 7). This could be a consequence of the Goc/Tad categor-
ization scheme being innately less challenging or because it
was the second scheme learned. In any case, it is clear that the
boundary enhancement did not just “turn up of the volume” of
local category selectivity; instead, it seemed to blanket the
entire network, regardless of local selectivity. Indeed, the
boundary effect was largely eliminated when we used partial
coherence, a measure that eliminates global and stimulus-
locked effects, whereas category-selective coherence remained.

The lack of boundary effect on the neuron level suggests
that the observed boundary responses on the LFP level might
be generated by neurons located outside the recording site (i.e.,
extrinsic inputs). Alternatively, it is also possible the LFP
boundary responses might be mediated entirely by interneur-
ons that we failed to record due to their small size or number.
These neurons could nonetheless have wide-ranging effects on
synchronization in the lateral PFC.

Low-Beta Boundary Effect as a Source of Top-Down
Attentional Control

What might be the function of the enhancement of low beta at
category boundaries? One possibility is that it provides add-
itional attentional control for processing “difficult” stimuli that
are close to the category boundary. It could be a top-down sig-
nal to devote more cortical resources to processing these diffi-
cult stimuli. Beta oscillations have been implicated in top-
down feedback processing in the cortex (Buschman and Miller
2007; Engel and Fries 2010; Bastos et al. 2015). It can be thought
of as a form of gain control: the physical differences between
morphs near the boundary are subtle and must be amplified to
achieve reliable categorization. This is consistent with our
observation that low-beta boundary enhancement was evident
when the category exemplars were being viewed and presum-
ably their category being determined. It was not evident in the
memory delay, presumably after the exemplar had already
been categorized. Indeed, our analysis of PFC neurons showed
that category distinctions were maximally resolved by the
beginning of the delay epoch (Supplementary Fig. 9). Also, we
previously tested PFC neuron activity with purely ambiguous
stimuli (50% morphs) (Roy et al. 2014). Because these stimuli
had no correct categorizations, monkeys guessed about their
category membership. Neural information corresponding to the
monkeys’ guess appeared during viewing of the category exem-
plar and well before the beginning of the delay epoch. Thus,
evidence suggests that categorical decisions were made when
exemplars were viewed, in other words, before the memory
delay and abatement of the low-beta boundary enhancement
effect.

It is also possible that the increased low-beta coherence for
boundary trials reflects uncertainty. This could certainly be the
case for 50% morph trials, for which there were no correct
answers. However, the boundary effect was also observed for
near-boundary trials (60% morphs, Fig. 5C) and animal behav-
ioral performance on these trials was almost as good as for
100% morphs (Roy et al. 2010). Thus, while signatures of cat-
egorization uncertainty have been observed in PFC (Grinband
et al. 2006), it is unlikely that they are the cause of the bound-
ary effect observed here.

The neural circuit underlying the low-beta boundary
enhancement is not clear. A previous fMRI study on face cat-
egorization found that a number of brain regions exhibited ele-
vated responses to boundary stimuli, including face-selective
ITC, lateral PFC, and dorsal striatum (DeGutis and D’Esposito
2007, 2009). In contrast, the authors found that hippocampus
and left superior frontal sulcus responded most to faces farthest
from the category boundary (i.e., to stimuli more similar to the
category prototypes). Several other studies have found that ITC
neurons show greater activity for boundary stimuli, in particular
emphasizing critical stimuli and features useful for performing
categorization (Baker et al. 2002; Sigala and Logothetis 2002;
Freedman et al. 2003; DeGutis and D’Esposito 2007; Seger and
Miller 2010). Parietal cortex, known for its role in processing spa-
tial categories, may also play a role in boundary processing.
Studies using visual motion categorization tasks showed that
neuron firing activity in lateral intraparietal area (LIP) reflected
monkey decisions about the category membership of ambigu-
ous stimuli (Williams et al. 2003; Swaminathan and Freedman
2012). This selectivity during ambiguous stimuli was in fact
stronger for LIP neurons than for PFC neurons (Swaminathan
and Freedman 2012), although this could be particular to LIP
and the spatial nature of these tasks (Goodwin et al. 2012;
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Crowe et al. 2013) and may be correlative rather than causal
(Katz et al. 2016). Another study, using magnetoencephalogra-
phy to investigate processing of bistable images, reported
increases in beta synchronization (14–30Hz) in occipital and
parietal brain regions following a perceptual shift in the percep-
tion of the bistable image (Okazaki et al. 2008). Previous studies
have reported top-down beta-frequency (22–34Hz) interactions
between prefrontal and parietal cortices (Buschman and Miller
2007).

Implications for System Architecture

The findings in this paper are indicative of the underlying PFC
architecture. One possibility is that the animals automatically
computed Cat/Dog categorization as a default strategy immedi-
ately after sample onset during each trial, because it was the
first scheme trained, and then overrode this with Goc/Tad later
on in the trial. This is supported by Figure 2, which shows that
Goc/Tad FFC selectivity emerged later in the trial than did Cat/
Dog selectivity. Additionally, selectivity for Cat/Dog was not
significantly modulated by the rule cue in the sample stage,
suggesting that Cat/Dog categories were initially calculated
regardless of the rule, whereas Goc/Tad was significantly sup-
pressed on Scheme A trials (Fig. 3).

Another possibility is that, during the sample stage, the Cat/
Dog circuit was still useful in some way for processing the Goc/
Tad categorizations, and this is why it was not attenuated dur-
ing Scheme B trials. During training, animals originally learned
the Cat/Dog categorization. When they later learned the Goc/
Tad categorization scheme, perhaps they did not begin from
scratch, but rather built on their familiarity with the stimulus
shapes. Thus, underlying circuitry originally established for
processing the Cat/Dog categorization may have been co-opted
in learning the Goc/Tad categorization, which would explain
why some Cat/Dog selectivity was still present during Scheme
B trials (Fig. 3). Similarly, although Goc/Tad selectivity was sig-
nificantly reduced when irrelevant, it was still present for
Scheme A trials, particularly during the delay stage (Fig. 3C),

and thus this circuit might have been employed by the Cat/Dog
ensemble. In other words, rather than conceptualizing the sys-
tem in terms of Cat/Dog and Goc/Tad ensembles, it might be
more appropriate to think of an overall task-relevant ensemble
with interdependent subspecializations in Cat/Dog and Goc/
Tad (Fig. 9A).

The concept of an overall task-relevant ensemble is supp-
orted by previous studies on a similar categorization task, which
identified neurons responding to high-level visual features in
ITC and, to a lesser extent, in PFC (Freedman et al. 2003). These
neurons might, for example, specialize in responding to specific
subregions of the morph space in Figure 1, and thus be useful
inputs to both Cat/Dog and Goc/Tad ensembles. It is also likely
that the PFC neurons are not so rigid in their function, but
rather exhibit mixed selectivity (Rigotti et al. 2013). For example,
a neuron selective for Cat/Dog may also carry information about
high-level visual features, which would make it a useful input
to Goc/Tad-selective neurons. In fact, it is entirely possible that
the majority of PFC neurons multiplex their categorization
duties with more specialized roles.

Such architecture could also help explain the global nature
of the boundary effect. Specifically, the boundary effect appears
not to follow specific local patterns of Cat/Dog or Goc/Tad select-
ivity (Fig. 7). Thus, the boundary effect might be more associated
with the processing of high-level visual features of the boundary
morphs, rather than calculating the categories themselves. Like
the boundary effect, neurons processing high-level visual fea-
tures in PFC and ITC were generally most active during sample
presentation (Miller et al. 1996; Freedman et al. 2003).

This invites comparison with an earlier study on decision
making in PFC, which used much simpler stimuli and lacking
categorical ambiguity (Buschman et al. 2012). This study
reported 2 distinct beta-synchronized ensembles in PFC, each
one associated with a different task rule (Fig. 9B). In contrast, in
our study, we did not observe substantial modulation of low-
beta activity in response to the rule cue. Thus, it appears the
PFC arrived at 2 very different “optimal” solutions for process-
ing these tasks. In Buschman et al.’s case, beta is synchronizing

Figure 9. Proposed organization of beta inputs to PFC in our task versus that of Buschman et al. (2012). (A) In our flexible categorization task, Cat/Dog and Goc/Tad

category-sensitive ensembles might be built upon a larger ensemble. This larger ensemble processes high-level visual features of the stimulus morphs (i.e., a “task

relevant” ensemble) and provides this information to the category-sensitive neurons. Low-beta input for boundary trials activates the task relevant ensemble as a

whole. (B) The task by Buschman et al. (2012) involved classification of much simpler objects (i.e., bars). Bars were classified based on orientation (horizontal/vertical)

or color (red/blue), depending on a rule. They observed beta-frequency synchronization in 1 of 2 distinct ensembles in response to the current rule cue.
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the rule-relevant ensemble; in our case it is synchronizing the
entire task-relevant ensemble depending on difficulty. In both
cases, however, it is essentially performing the same function
of top-down control. The differences between these 2 cases are
likely driven by differences in complexity of the stimuli, with
the shapes in Bushman et al.’s task being simple horizontal
and vertical bars and therefore not requiring high-level feature
processing or consideration of boundaries.

This idea of a common underlying architecture yields an
experimentally falsifiable hypothesis. Specifically, this study
used a flexible categorization task in which 2 categorization
schemes were applied orthogonally to the same set of stimulus
morphs. In contrast, an earlier study required monkeys to learn
2 distinct sets of morphs (Cat vs. Dog and Sport Cars vs.
Sedans), for which we would not expect a shared architecture
to be necessary (Cromer et al. 2010). In the latter study, we
would predict that boundary enhancement would depend on
local, not global, circuitry.

We identified category-sensitive low-beta oscillations in PFC
that appear to be locally generated and associated with category-
sensitive PFC neurons, previously characterized (Freedman et al.
2001, 2003; Miller et al. 2002; Cromer et al. 2010; Roy et al. 2010).
We also found that low-beta oscillations are augmented for
boundary trials, an effect that cannot be decoded from single-
neuron FR alone. We suggest that low-beta oscillations provide a
mechanism for increasing the gain of PFC neurons, thereby
allowing them to accurately respond to stimuli close to the cat-
egory boundary. While beta oscillations have previously been
associated with visual categories and rules in PFC, this is the first
demonstration of their response to category boundaries.

Supplementary Material
Supplementary data is available at Cerebral Cortex online.
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