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Abstract

Summary: Copy number variation is an important and abundant source of variation in the human

genome, which has been associated with a number of diseases, especially cancer. Massively paral-

lel next-generation sequencing allows copy number profiling with fine resolution. Such efforts,

however, have met with mixed successes, with setbacks arising partly from the lack of reliable ana-

lytical methods to meet the diverse and unique challenges arising from the myriad experimental

designs and study goals in genetic studies. In cancer genomics, detection of somatic copy number

changes and profiling of allele-specific copy number (ASCN) are complicated by experimen-

tal biases and artifacts as well as normal cell contamination and cancer subclone admixture.

Furthermore, careful statistical modeling is warranted to reconstruct tumor phylogeny by both

somatic ASCN changes and single nucleotide variants. Here we describe a flexible computational

pipeline, MARATHON, which integrates multiple related statistical software for copy number profil-

ing and downstream analyses in disease genetic studies.

Availability and implementation: MARATHON is publicly available at https://github.com/yuchao

jiang/MARATHON.

Contact: nzh@wharton.upenn.edu or yuchaoj@email.unc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Copy number variations (CNVs) refer to duplications and deletions

that lead to gains and losses of large genomic segments. CNV is

pervasive in the human genome and plays a causal role in genetic

diseases. With the dramatic growth of sequencing capacity and the

accompanying drop in cost, massively parallel next-generation

sequencing (NGS) offers appealing platforms for genome-wide CNV

detection. In this note, we describe an analysis pipeline that inte-

grates multiple aspects of CNV analysis, which can flexibly adapt to

diverse study designs and research goals.

Despite the rapid technological development, CNV detection by

high-throughput sequencing still faces analytical challenges due to

the rampant biases and artifacts. Proper data normalization is

crucial for sensitive and robust CNV detection, regardless of experi-

mental designs and sequencing protocols. In whole-exome sequenc-

ing (WES) and targeted sequencing, where technical biases are

usually magnitudes larger than CNV signals, data normalization is

usually the pivotal step in affecting detection accuracy. Our pro-

posed pipeline starts with data normalization using CODEX (Jiang

et al., 2015) and CODEX2 (Jiang et al., 2017), which allow
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full-spectrum CNV profiling and are sensitive to both common and

rare variants. Many large-scale genetic studies involve samples that

have previously collected microarray data. It is currently unclear

how microarray data can be used to improve sensitivity and robust-

ness of the sequencing-based analyses. The pipeline proposed here

seamlessly combines CODEX-normalized sequencing data with

array-based log-ratio and B-allele-frequency measurements through

iCNV (Zhou et al., 2017).

Germline and somatic copy number changes are common in can-

cer and are associated with tumorigenesis and metastasis. In add-

ition to the detection of total copy number changes, sequencing data

give, at germline heterozygous loci, reads containing both alleles.

This allows the disambiguation of allele-specific copy number

(ASCN), which quantifies the number of somatic copies of each in-

herited allele. Compared to total copy number analysis, ASCN ana-

lysis gives a more complete picture of the copy number states,

including copy-neutral loss of heterozygosity (LOH), which cannot

be detected by total copy number analysis. Here we show how

FALCON (Chen et al., 2015) and FALCON-X (Chen et al., 2017)

integrate with CODEX and CODEX2 for estimation of ASCN.

Tumors are heterogeneous, genetically related populations of

cells undergoing constant evolution. Much effort has been devoted

to the reconstruction of the evolutionary phylogeny of tumors

from bulk DNA sequencing data (Kuipers et al., 2017). In addition

to somatic ASCN changes, single nucleotide variants (SNVs) also

provide valuable information for the reconstruction of the tumor

phylogeny. We show that Canopy (Jiang et al., 2016) for tracking

of longitudinal and spatial clonal evolution can be applied to the

outputs from FALCON and FALCON-X in an integrative ana-

lysis. This enables researchers to get both total and allele-specific

DNA copy number calls and tumor phylogeny directly from BAM

files.

2 Materials and methods

The possible analysis scenarios are listed in Table 1. Figure 1 gives

an outline for the relationship between the software: CODEX and

CODEX2 perform read depth normalization for total copy number

profiling; read depth normalized by CODEX/CODEX2 is received

by iCNV, which combines it with allele-specific read counts and

microarray data (if available) to detect CNVs; FALCON and

FALCON-X perform ASCN analysis; and Canopy receives input

from FALCON/FALCON-X to perform tumor phylogeny recon-

struction. We propose MARATHON (copy nuMber vARiAtion and

Tumor pHylOgeNy) as the integrated pipeline.

CODEX (Jiang et al., 2015) adopts a Poisson latent factor model

for normalization to remove biases due to GC content, exon capture

and amplification efficiency, and latent systemic artifacts. CODEX2

(Jiang et al., 2017) builds on CODEX with a significant improve-

ment of sensitivity for both rare and common variants. CODEX2

can be applied to two scenarios: the case control scenario

(CODEX2.c in Fig. 1) where the goal is to detect CNVs that are en-

riched in the case samples; and the scenario where control samples

are not available (CODEX2.nc in Fig. 1) and the goal is simply to

profile all CNVs. CODEX and CODEX2 take as input assembled

BAM files as well as bed files specifying targets for WES and tar-

geted sequencing and output normalized read counts and tab-

delimited text files with copy number calls.
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Fig. 1. A flowchart outlining the procedures for profiling CNV, ASCN and re-

constructing tumor phylogeny. CNVs with common and rare population fre-

quencies can be profiled by CODEX and CODEX2, with and without negative

control samples. iCNV integrates sequencing and microarray data for CNV

detection. ASCNs can be profiled by FALCON and FALCON-X using allelic

read counts at germline heterozygous loci. Canopy infers tumor phylogeny

using somatic SNVs and ASCNs

Table 1. Analysis scenarios and pipeline design

Goal Study design Sample requirements Pipeline

1. Total copy number analysis of normala

sample

WES/WGS with or without matched

array data

>20 samples CODEX2.nc! iCNV

2. Total copy number analysis of tumor

sample with normal controls

WES/WGS/targeted sequencing >20 normal controls (no need to

be matched)

CODEX2.c

3. Tumor allele-specific copy number

analysis

WGS 1 tumor with matched normal

sample

FALCON

4. Tumor allele-specific copy number

analysis

WES/WGS 1 or more tumor samples, multiple

(>20) normal controls (no need

to be matched)

CODEX2.c! FALCON-X

5. Tumor phylogeny analysis WGS Multiple spatially or temporally

separated tumor samples with

matched normal sample

FALCON! CANOPY

6. Tumor phylogeny analysis WES/WGS Multiple spatially or temporally

separated tumor samples, multiple

(>20) normal controls

CODEX2.c! FALCON-X

! CANOPY

Note: The last column shows the sequence of software that should be used for each analysis scenario.
aBy ‘normal’ we mean samples that are not derived from tumor tissue, which are not expected to carry chromosome-level copy number changes.
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iCNV (Zhou et al., 2017) uses the normalized coverage from

CODEX/CODEX2, and makes use of sequenced reads at inherited

single nucleotide polymorphism (SNP) positions for CNV detection.

These heterozygous loci are shown to be valuable in improving de-

tection and genotyping accuracy. If microarray data are available,

iCNV also integrates log-ratios and B-allele frequencies from these

platforms to boost accuracy and enable CNV detection in intronic

regions. iCNV takes as input normalized coverage by CODEX/

CODEX2, allelic frequency at inherited SNP positions from

sequencing, and log-ratio and B-allele frequency from SNP array.

Output is CNV calls with quality scores.

For ASCN estimation in a matched tumor-normal setting,

FALCON (Chen et al., 2015) is based on a change-point model on a

process of a mixture of two bivariate Binomial distributions.

FALCON takes as input allelic read counts at germline heterozygous

loci by GATK (DePristo et al., 2011) and outputs ASCN estimates

with genome segmentations. For WES data, biases and artifacts can-

not be fully captured by comparing the tumor sample to the matched

normal sample. FALCON-X (Chen et al., 2017) extends upon

FALCON, where it takes as inputs allelic read counts at germline

heterozygous loci and total coverage biases for each of these loci

estimated by CONDEX2.c (Fig. 1) and outputs ASCN estimates.

Canopy (Jiang et al., 2016) identifies subclones within a tumor,

determines the mutational profiles of these subclones, and infers the

tumor’s phylogenetic history by NGS data from temporally and/or

spatially separated tumor resections from the same patient. Canopy

jointly models somatic copy number changes and SNVs in a similar

fashion to non-negative matrix factorization and adopts a Bayesian

framework to reconstruct phylogeny with posterior confidence as-

sessment. Canopy takes as input both somatic ASCN changes re-

turned by FALCON/FALCON-X as well as somatic SNVs and

outputs tumor phylogenetic trees with somatic mutations placed

along tree branches and subclones placed at the leaves.

3 Results

The proposed pipeline adapts to different study designs and research

goals (Table 1). For population genetic and disease association stud-

ies, one would start with read depth normalization using CODEX/

CODEX2, followed by CNV calling using iCNV. For cancer gen-

omics studies where the goal is to obtain ASCNs and reconstruct

tumor clonal history, one would start with read depth normalization

using CODEX/CODEX2, followed by ASCN profiling using

FALCON/FALCON-X and clonal history analysis using Canopy.

An R notebook with rich display is available for MARATHON. We

also demonstrate in Supplementary Results a cancer phylogenetic

study of a neuroblastoma patient (Eleveld et al., 2015), as well as a

breast cancer (Maxwell et al., 2017) and a melanoma (Garman

et al., 2017) study where copy numbers are estimated.
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