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Abstract

Aging of the vasculature plays a central role in morbidity and mortality of older people. In order to 

develop novel treatments for amelioration of unsuccessful vascular aging and prevention of age-

related vascular pathologies it is essential to understand the cellular and functional changes that 

occur in the vasculature during aging. In this review, the pathophysiological roles of fundamental 

cellular and molecular mechanisms of aging, including oxidative stress, mitochondrial 

dysfunction, impaired resistance to molecular stressors, chronic low-grade inflammation, genomic 

instability, cellular senescence, epigenetic alterations, loss of protein homeostasis, deregulated 

nutrient sensing and stem cell dysfunction in the vascular system are considered in terms of their 

contribution to the pathogenesis of both micro- and macrovascular diseases associated with old 

age. The importance of pro-geronic and anti-geronic circulating factors in relation to development 

of vascular aging phenotypes are discussed. Finally, future directions and opportunities to develop 

novel interventions to prevent/delay age-related vascular pathologies by targeting fundamental 

cellular and molecular aging processes are presented.
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Introduction

Cardiovascular and cerebrovascular diseases are the most common cause of death among 

older people in the United States 1 accounting for approximately 1/3 of all deaths in the US 

at the age of 65 and nearly 2/3 at an age of 85. With a projected increase in the number of 

adults over 65 years old increasing from 12 % to 22% in the next 30 years, addressing age 

related vascular diseases is of critical importance as the annual cost to care for these older 

people are projected to more than double over that time2. As many age-related 

cardiovascular and cerebrovascular diseases are due to alterations in arterial function or are 

exacerbated by arterial functional and phenotypic changes, it is important to better elucidate 

mechanisms underlying arterial aging3. Furthermore, as the microcirculation is pervasive, 

being present in every tissue in the body, it has a unique ability to influence the local 

environment of the majority of tissues and organs. As such, aging-induced functional and 

structural alterations of the microcirculation contribute to the pathogenesis of range of age-

related diseases including vascular cognitive impairment, Alzheimer’s disease, sarcopenia, 

kidney and eye disease. Therefore, it is also critical to explore the spectrum of age-related 

microvascular functional and phenotypic changes from subclinical dysfunction to 

manifested disease as to better predict and prevent microvascular contributions to the 

pathogenesis of multiple diseases associated with old age. A better mechanistic 

understanding of macro- and microvascular aging processes is critical to find and evaluate 

both lifestyle and pharmacological countermeasures to treat this growing health issue.

Rapid advances in geroscience in the last 25 years, including studies on invertebrate models 

of aging, long-lived mammals, transgenic mouse strains and interventional studies, have led 

to the identification of evolutionarily conserved pathways involved in lifespan regulation, as 

well as common denominators of aging in different organisms4. In this review, the 

pathophysiological roles of these aging mechanisms, including oxidative stress, 

mitochondrial dysfunction, impaired resistance to molecular stressors, chronic low-grade 

inflammation, genomic instability, telomere attrition and cellular senescence, epigenetic 

alterations, loss of protein homeostasis (“proteostasis”), deregulated nutrient sensing, stem 

cell exhaustion, and altered intercellular communication in the vascular system are 

considered in terms of their contribution to the pathogenesis of both micro- and 

macrovascular diseases (Figure 1). The interconnectedness between the potential 

mechanisms of vascular aging and the interaction between the cellular and molecular aging 

processes and disease-specific pathways are discussed. Likewise, the implications of 

molecular, cellular and system theories of aging for vascular aging phenotypes are 

considered. Finally, based on our current mechanistic understanding of vascular aging, 

potential novel targets for intervention to improve cardiovascular and cerebrovascular health 

are identified. As such, it is critical to move these potential new therapies forward to reduce 

the morbidity and mortality associated with cardiovascular and cerebrovascular dysfunction/

disease and thereby improving healthspan in an increasingly aged population. We will not 
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discuss in detail data on the effects of preventive measures already available and in clinical 

use (including physical exercise, smoking cessation, dietary regimens, inhibitors that disrupt 

the renin – angiotensin system, statins) on vascular aging phenotypes, as these have been the 

subject of a recent comprehensive reviews5–8. The great deal of phenomenological work has 

been performed on the effects of aging on specific cell types within the vascular wall and on 

structural alterations and the hemodynamic consequences that result from arterial stiffening. 

We refer the interested reader to excellent reviews on these topics6, 9–11.

Molecular and cellular mechanisms of vascular aging

Role of oxidative and nitrative stress

Since Denham Harman first proposed the free radical theory of aging in the 1950s12 a large 

amount of data has been published implicating oxidative stress in vascular aging processes 

(Figure 2). In particular, there is strong evidence that increased production of reactive 

oxygen species (ROS) by NAD(P)H oxidases13–17 and mitochondria18, 19 contributes to 

endothelial dysfunction and large elastic artery stiffening with advancing age both in 

laboratory animals13, 14, 20–24 and humans 16, 25. Whilst oxidative stress may influence many 

facets of vascular function with advancing age via oxidation of critical proteins or induction 

of redox sensitive transcription factors, one of its most potent effects is inactivation of 

endothelium-derived nitric oxide (NO). Impaired bioavailability of NO is responsible for 

age-related reduction in endothelium dependent dilation, enhanced vasoconstriction and 

dysregulation of tissue perfusion13, 14, 20, 26–30. There is strong evidence that endothelial 

dysfunction caused by increased oxidative stress contributes significantly to both impaired 

dilation of coronary arteries13, promoting myocardial ischemia and neurovascular 

uncoupling, impairing the moment-to-moment adjustment of cerebral blood flow to 

increased oxygen and nutrient demand that occurs with neuronal activation31, 32. In addition 

to inactivation of NO by ROS, alterations in eNOS activation status, substrate (L-arginine) 

and cofactor (BH4) availability, increased endothelin-126 and/or reduced expression of 

eNOS 33–35 may also contribute to age-related reduction in NO bioavailability. NO exerts 

potent anti-inflammatory, anti-thrombotic and anti-leukocyte adhesion effects, thus 

reduction in NO likely promotes a pro-atherogenic vascular phenotype in aging36–38.

Many of the results of vascular oxidative stress are mediated via production of the highly 

reactive oxidant peroxynitrite (ONOO-), the reaction product of NO and superoxide39, 40 

which has been well documented in older endothelial cells and arteries 13, 15, 20, 22. The 

mechanisms by which peroxynitrite contributes to vascular aging are multifaceted and 

include direct cytotoxic effects, adverse effects on mitochondrial function, and activation of 

inflammatory pathways (Figure 2). In particular, oxidative stress and the consequent 

activation of redox-sensitive cellular signaling pathways, including NF-kB, are thought to be 

implicated in the inflammatory process in the aged vasculature. This inflammatory process 

is characterized by increased endothelial activation41 and pro-inflammatory changes in the 

cytokine expression profile of aged vascular cells18, 19, 42. Increased vascular oxidative stress 

has also been linked to activation of matrix metalloproteinases (MMPs) and consequential 

disruption of the structural integrity of aged arteries, potentially contributing large artery 

stiffening 43 and the pathogenesis of aortic aneuryms44. Furthermore, in the cerebral 
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circulation aging- and hypertension-dependent activation of the ROS-MMP axis promotes 

the development of cerebral microhemorrhages45, which contribute to cognitive decline, 

geriatric psychiatric syndromes and gait disorders46. Importantly, in preclinical models 

similar antioxidative treatments were reported to prevent large artery stiffening 47, cerebral 

microhemorrhages 45 and aortic aneurysms44, providing further evidence for shared 

pathomechanisms.

Role of mitochondrial dysfunction

Mitochondria play central role in regulation of aging processes4, 48, including regulation of 

lifespan49. As mammals age, the efficacy of the respiratory chain diminishes, promoting 

electron leakage and increased ROS production and reducing cellular ATP generation.

Recent studies suggest that mitochondrial ROS production (mtROS) has an important role in 

age-related vascular dysfunction18, 50–52. In the aged vasculature increased mtROS has been 

attributed to a dysfunctional electron transport chain53 and is likely exacerbated by 

peroxynitrite-mediated nitration and inhibition of MnSOD14, decline in cellular glutathione 

content54, down-regulation of p66Shc55, and/or impaired Nrf2-mediated antioxidant defense 

responses18, 56, 57. There is also evidence that aging is associated with impaired 

mitochondrial biogenesis in endothelial and smooth muscle cells both in conduit arteries53 

and the capillaries58, 59, which is likely to negatively impact cellular energetics and also may 

increase mitochondrial ROS production by increasing electron flow through the deficient 

electron transport chain. Importantly, mtROS can be pharmacologically targeted for 

vasoprotection. For example, treatment with the mitochondrial antioxidant MitoQ60, 

resveratrol61(which substantially attenuates mtROS production in endothelial and smooth 

muscle cells19, 62) and the potent mitochondria-targeted antioxidative tetrapeptide SS-3151 

has been shown to improve endothelial function in arteries from rodent models of aging. 

Treatment with SS-31 was also shown to restore endothelium-dependent regulation of 

cerebral blood flow via neurovascular coupling, improving cognitive function in aged 

mice51. There is evidence that mitochondria-derived H2O2 promotes low grade vascular 

inflammation in aging by inducing NF-κB, activation in endothelial and smooth muscle 

cells19, 24 (Figure 2). Recent studies also link increased hypertension-induced mtROS 

production in aged vascular smooth muscle cells50 to increased MMP activation in the 

vascular wall and consequential exacerbation of cerebral microhemorrhages46. Another 

potentially important link between mtROS production and vascular aging is the induction of 

apoptosis via a Bcl-2 dependent pathway63.

It is increasingly realized that the functional integrity of the vasculature, including regulation 

of membrane transport and barrier functions, depends of normal cellular energy metabolism. 

Thus, dysfunctional mitochondria and impaired mitochondrial energy metabolism can 

potentially contribute to vascular aging in addition to the effects of increased mitochondrial 

release of ROS. The mitochondrial DNA (mtDNA) has a very high mutation rate, due to the 

proximity of mtDNA to sites of ROS production in the mitochondria, the lack of protective 

histone coverage in the mtDNA, and the limited efficiency of mitochondrial DNA repair 

mechanisms. There is growing evidence that aging increases mutations and deletions in 

mtDNA, eroding mitochondrial energy production and contributing to aging processes48. 

Ungvari et al. Page 4

Circ Res. Author manuscript; available in PMC 2019 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mtDNA damage is likely a result of increased mitochondrial oxidative stress64. Although 

aging is associated with significant mitochondrial oxidative stress in the 

vasculature18, 19, 24, 50, the role of mtDNA damage is development of vascular aging 

phenotypes is not well understood. To date, only few studies have focused on the link 

between mitochondrial heteroplasmy and atherogenesis65. Mitochondrial DNA deletions 

have been detected in human atherosclerotic lesions65, 66, which may contribute to impaired 

cellular metabolism in the vascular wall. Recent studies provide direct evidence that 

mitochondrial mutations play a causal role in atherogenesis in mouse models of the 

disease67. Importantly, transgenic mice ApoE−/− harboring a version of the mitochondrial 

DNA polymerase (polG) deficient in proof-reading activity accumulate mutations in their 

mtDNA and exhibit accelerated atherosclerosis, associated with impaired proliferation and 

apoptosis of VSMCs67.

The NAD+-dependent pro-survival enzyme SIRT1 modulates mitochondrial function in the 

vasculature, controlling mitochondrial biogenesis, mtROS production and cellular energy 

metabolism42, 62, 68 as well as removal of damaged mitochondria by autophagy69. The 

mitochondrial sirtuin SIRT3 also regulates many key enzymes involved in mitochondrial 

energy metabolism. NAD+ is a rate-limiting co-substrate for sirtuin enzymes and there is 

growing evidence that cellular NAD+ availability decreases in aging70, 71, at least in part, 

due to overactivation of NAD+ utilizing PARP-141. There is strong evidence that in aged 

mice enhancing NAD+ biosynthesis (e.g by treatment with nicotinamide mononucleotide, a 

key NAD+ intermediate70) rescues age-related functional alterations in the aorta72 and 

cerebral vasculature (Tarantini, Csiszar and Ungvari, unpublished findings, 2017), likely by 

activating sirtuin mediated pathways and reversing age-related decline in mitochondrial 

function73. Other potential mechanisms contributing to impaired bioenergetics in aged cells 

include oxidation/nitration of mitochondrial proteins, destabilization of the macromolecular 

organization of electron transport chain complexes and impaired mitophagy (a 

mitochondrion-specific form of autophagy). The combination of increased mitochondrial 

damage and decreased turnover of mitochondria, due to impaired biogenesis and deficient 

mitophagy, likely contribute to the accumulation of dysfunctional mitochondria in the 

vascular cells, exacerbating vascular aging processes.

Vascular inflammation in aging

There is strong experimental and clinical evidence that chronic, sterile, low-grade 

inflammation is a hallmark of the aging process (“inflammaging”74). Age-related activation 

of inflammatory processes play a key role in a wide range of macro- and microvascular 

pathologies, ranging from atherogenesis and aneurysm formation to microvascular 

dysfunction, blood-brain barrier disruption and Alzheimer’s pathologies41 (Figure 3). 

Previous studies demonstrate that both in aged laboratory rodents and primates there is a 

pro-inflammatory shift in the gene expression profile of vascular endothelial and smooth 

muscle cells, including an induction of inflammatory cytokines (e.g. IL-6, IL-1β, TNFα), 

chemokines, adhesion molecules, iNOS and other pro-inflammatory 

mediators13, 24, 33, 61, 75–78. The resulting pro-inflammatory microenvironment in the 

vascular wall promotes vascular dysfunction79, 80, impairs cellular metabolism, increases 

apoptosis76, 79 and contributes to the pathogenesis of vascular diseases.
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The mechanisms contributing to vascular inflammation in aging are likely multifaceted. 

There is an important cross-talk between increased oxidative stress and activation of 

inflammatory processes in the aged vascular wall41. First, ROS act as signaling molecules 

activating pro-inflammatory signaling pathways, including NF-κB24, which regulate 

endothelial activation and expression of pro-inflammatory paracrine mediators and promote 

atherogenesis. Importantly, aged endothelial and smooth muscle cells exhibit significant NF-

κB activation24, 56 and selective inhibition of NF-κB in the vasculature was shown to 

improve blood flow regulation, decrease systemic inflammation, exert beneficial metabolic 

effects and extend health span81. Second, inflammatory mediators are potent inducers of 

cellular oxidative stress (e.g. TNFα activates NAD(P)H oxidases79).

SIRT1 exerts potent anti-inflammatory effects and decreased SIRT1 activity likely 

contributes to vascular inflammation in aging42, 82, 83. Importantly, pharmacological 

activators of SIRT1 were shown to attenuate vascular inflammation in aged mice61, 83.

Endothelial senescence (see below) is associated by a significant increase in the production/

release of a wide range of inflammatory cytokines and chemokines84, termed the 

“senescence-associated secretory phenotype”, or SASP. Induction of SASP is likely 

mediated by activation of NF-κB, p38MAPK, the DNA damage response pathway and 

GATA485, 86. There is growing evidence that presence of senescent cells contributes 

significantly to the heightened inflammatory status of the aged vasculature87.

Sterile inflammation in the vascular wall is also exacerbated by danger-associated molecular 

patterns (DAMPs), which activate innate immune system effectors, including toll-like 

receptors (TLRs) and the NLRP3 inflammasome complex. TLRs are activated by a wide 

range of DAMP ligands (e.g. molecules released to the extracellular matrix from necrotic 

cells, breakdown products of the extracellular, matrix and/or bacterial breakdown products 

leaking through a damaged gut barrier) and control the secretion of a number of pro-

inflammatory paracrine mediators (e.g. IL-1, IL-6, IL-8, TNFα). There is evidence that 

aging induces a proinflammatory phenotype in vascular smooth muscle cells, at least in part, 

due to activation of TLR4-mediated, MyD88-dependent signaling pathways78. Strong data 

suggest that the canonical Nlrp3 inflammasome contributes to systemic low-grade age-

related sterile inflammation in mice88, but further studies are needed to establish the exact 

role of this mechanism in age-related vascular pathologies.

There is growing evidence that impaired oxidative stress resilience in aging also exacerbates 

vascular inflammation induced by cardiovascular risk factors, including obesity, metabolic 

disease and hypertension89–91. The interaction between aging and the effect of 

environmental inflammatory factors (e.g. particulate exposure92) to exacerbate vascular 

inflammation warrants further studies.

Further studies are needed to differentiate between adaptive and maladaptive inflammatory 

responses in the aged vasculature and to define the role of chronic low-grade microvascular 

inflammation in a wide range of functional impairments in multiple organs. The interaction 

between cell-autonomous mechanism of age-related vascular inflammation and 

inflammatory processes induced by bacterial breakdown products getting to the circulation 
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through a leaky intestinal barrier or by chronic infection with viruses that exhibit endothelial 

tropism in vascular inflammation also has to be further clarified. For example, over 90% of 

adults 80 years of age or older have persistent human cytomegalovirus (CMV) infection93. 

CMV replicates in the vascular endothelial cells during the entire life of the host following 

initial infection and severity of CMV infection (antibody titers) was shown to predict 

increased incidence of frailty and risk of mortality94.

Maladaptation to molecular stresses: role of Nrf2 dysfunction

Recent progress in geroscience research has identified a critical hallmark of the aging 

process: impaired ability of aged cells to respond to molecular stresses and return to 

homeostasis. In young organisms in response to increased generation of ROS in the vascular 

endothelial and smooth muscle cells adaptive homeostatic mechanisms are invoked that 

involve activation of Nrf2-driven antioxidant defense pathways56, 57, 95. Nrf2 is an 

evolutionarily conserved redox sensitive transcription factor, which coordinates the 

antioxidant response, including up-regulation of enzymes that detoxify ROS and repair 

ROS-induced macromolecular damage96. In the young vasculature this adaptive homeostatic 

response serves to reduce oxidative stress and attenuate cellular and macromolecular damage 

caused by increased ROS levels. Induction of Nrf2 was also shown to exert potent anti-

inflammatory97 and pro-angiogenic98 effects. There is strong evidence that aging promotes 

Nrf2 dysfunction in the vasculature, exacerbating oxidative stress and increasing sensitivity 

of aged vascular cells to ROS-mediated cellular and molecular damage56, 57. This loss of 

oxidative stress resilience may be a major determinant for the development of age related 

vascular pathologies99. Importantly, anti-aging effects of caloric restriction is associated 

with induction of Nrf2-mediated pathways18, 100. Further studies are warranted to determine 

how pharmacological activation of Nrf2 exerts anti-aging vasoprotective effects.

Loss of proteostasis in vascular aging

Impaired maintenance of proteostasis is thought to contribute to organismal aging101. There 

is evidence that activity of proteostasis networks and proteome stability determine healthy 

cardiac aging102, 103. It is suspected that disequilibrium between protein synthesis, 

maintenance, and degradation also compromises vascular health. Indeed, increased presence 

of misfolded protein aggregates is associated with cardiovascular diseases104. Aging impacts 

multiple components of the proteostasis systems in heart and the vasculature, including 

chaperones105, the ubiquitin-proteasome and the lysosome-autophagy system101. 

Chaperones assist the folding, assembly, disassembly and transport of other proteins and 

play a major role in preventing protein misfolding and aggregation. Many age-related 

molecular alterations can impact chaperoning activities. For example, aging results in down-

regulation of HSP70 in the vascular tissue105. Further, mitochondrial dysfunction and the 

resulting decline in cellular ATP content likely also impairs the function of ATP-dependent 

chaperones. The processes of autophagy (macroautophagy, microautophagy, and chaperone-

mediated autophagy) allow the degradation and recycling of cellular constituents. Recently 

hypotheses were put forward that dysregulation of autophagic processes, including 

mitophagy, may be a common pathway promoting vascular aging and development of age-

related vascular diseases106. Experimental findings showing increased oxidative stress, 

impaired bioavailability of NO and up-regulation of inflammatory mediators in autophagy-

Ungvari et al. Page 7

Circ Res. Author manuscript; available in PMC 2019 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



deficient endothelial cells support this view107. Further, pharmacological interventions that 

stimulate autophagy (e.g. trehalose or spermidine treatment) were reported to reverse aspects 

of arterial aging108, 109. Proteasomes degrade unneeded or damaged proteins by proteolysis. 

There is evidence that proteasome activity declines in advanced aging101 and is diminished 

in atherosclerotic plaques of elderly patients110 and in hearts of ageing rats111. In addition to 

direct effects on protein degradation the ubiquitin-proteasome system (UPS) is critical for 

the activation of key regulators of atherogenesis and vascular inflammation112. Future 

studies should identify the role of the UPS and other proteostatic pathways that are impaired 

in specific vascular disease states associated with aging and elucidate age-related factors, 

including neuroendocrine factors, that regulate proteostasis machineries in the vascular wall.

Role of genomic instability

Since the original formulation of Somatic Mutation Theory of aging 113, a large amount of 

data has been published both in support and against a causal role of DNA damage and 

mutation accumulation in aging114. There is evidence that diverse genetic lesions may 

accumulate within aged cells, including somatic mutations, chromosomal aneuploidies and 

copy number variations and telomere shortening. Despite these advances the role of genomic 

instability in vascular aging is not well understood. Hypotheses that predict that genomic 

instability plays a role in vascular aging, usually focus on the primary role of oxidative 

stress-induced DNA damage, illustrating how these hypotheses and the oxidative stress 

hypothesis of aging are interconnected115. Importantly, endothelial cells appear to have less 

efficient DNA repair pathways than many other cell types84. In that regard it is interesting 

that known interventions that cause extensive DNA damage (e.g. whole brain irradiation) 

result in significant phenotypic and functional alterations in endothelial cells, promoting 

microvascular rarefaction, impaired vasodilation and pro-inflammatory changes, mimicking 

several aspects of the aging phenotype84, 116, 117. In vascular endothelial cells DNA damage 

readily triggers replicative senescence (see below) 84, to prevent propagation of damaged 

DNA. In light of recent developments it seems to be likely that induction of senescence is a 

major mechanism by which DNA damage contributes to vascular aging118.

To elucidate the causal role of DNA damage in vascular aging an interesting recent study 

reported that mouse models with genomic instability resulting from the defective nucleotide 

excision repair genes (ERCC1, XPD) exhibit aging-like vascular phenotypes, including 

endothelial dysfunction, increased vascular stiffness, increased presence of senescence cells 

and hypertension119. However, these mouse models also exhibit severe liver, kidney, bone 

marrow, neurological and/or bone phenotypes, which associate with reduced lifespan119 and 

it is unclear how closely these phenotypes indeed mimic aging. Mice with genetic deficiency 

in the spindle assembly checkpoint protein BubR1, which promotes progressive aneuploidy, 

were also shown to exhibit aging-like vascular phenotypes, including endothelial 

dysfunction, increased vascular stiffness, media atrophy and fibrosis120. However, this 

mouse model also exhibits short life span associated with severe functional deficits in 

multiple organs, including cachectic dwarfism and lordokyphosis. Thus, the relevance of this 

model to normal aging remains unresolved. It was also proposed that an association exists 

between single-nucleotide polymorphisms in human DNA repair genes and vascular 

stiffness119, yet the mechanistic role of DNA repair pathways in the genesis of age-related 
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vascular diseases in humans remains to be determined. There are studies reporting that 

increased oxidative DNA damage121 and increased expression of multiple biomarkers of 

DNA double strand breaks122 are present in atherosclerotic plaques. While accelerating or 

retarding repair of double strand breaks in transgenic mouse models have lesser effect on 

atherogenesis, they significantly alter plaque stability122.

Children with Hutchinson-Gilford progeria syndrome and other laminopathies exhibit 

accelerated vascular pathologies leading to fatal myocardial infarction or stroke at a very 

young age123. There is evidence implicating DNA damage response induced by genetic 

nuclear lamina dysfunction in aging-like phenotypic changes in vascular smooth muscle 

cells124, 125, however, it remains to be demonstrated that these pathways also contribute to 

“normal” vascular aging.

Impairment of mechanisms responsible for maintaining the appropriate length and 

functionality of telomeres is thought to play a role in vascular aging and hypertension by 

inducing cellular senescence (see below)87, 126.

Role of cellular senescence

Cellular senescence is a fundamental aging process in which cells, including vascular 

endothelial and smooth muscle cells, permanently withdraw from the cell cycle in response 

to a range of endogenous and exogenous stressors (e.g. ROS, dysfunctional telomeres, DNA 

damage, paracrine signals) and undergo distinctive phenotypic alterations, including 

profound pro-inflammatory secretome changes127 (Figure 4). Recent studies demonstrate 

that elimination of senescent cells expressing p16INK4A extends lifespan and healthspan in 

mice128, 129, suggesting that cellular senescence plays a fundamental role in physiological 

decline associated with aging. The available evidence indicate that endothelial senescence 

also contributes to endothelial dysfunction in aging and pathophysiological conditions 

associated with accelerated vascular aging117, 130–132. Endothelial senescence has also been 

implicated in the pathogenesis of heart failure133. Replicative senescence may also be 

potentially important for impairment of regenerative and angiogenic capacity of the vascular 

endothelium. Studies using mouse models of irradiation-induced, DNA damage mediated 

senescence84 demonstrate that induction of cellular senescence in the neurovascular unit 

associates with significant cerebromicrovascular dysfunction117 and microvascular 

rarefaction, mimicking the aging phenotype. Advanced atherosclerotic lesions contain 

senescent cells and recent studies using genetic and pharmacological approaches to 

eliminate senescent cells in Ldlr−/−mice suggest that senescent cells promote atherogenesis, 

contributing to plaque instability by up-regulating matrix metalloproteases134 and/or by 

exacerbating vascular inflammation135. The hypothesis was put forward that 

pharmacological treatment with senolytic agents to clear senescence cells may exert 

atheroprotective effects134. Importantly, long-term senolytic treatment was also shown to 

improve endothelial function in mouse models of aging130. However, the exact role of 

different senescence mechanisms in age-related vascular pathophysiology is not well 

understood. Future studies should address the relationship among acquisition of a 

senescence-associated secretory phenotype (SASP) in the endothelium and the vascular 

smooth muscle cells and specific disease processes. There is evidence that the SASP can 
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also induce paracrine senescence and/or alter the function of neighboring cells and the role 

of this mechanism in vascular aging should be further evaluated. The possibility of paracrine 

transmission of senescence from microvascular endothelial cells to parenchymal cells also 

requires further investigations. It should be noted that many studies assess only senescence 

associated β-galactosidase activity as a marker of senescent cells. Future studies assessing 

should use novel molecular markers of senescence and senescence reporter mouse models 

and analyze senescence-related gene expression in individual cells.

Role of increased apoptosis and necroptosis

Apoptosis is an evolutionarily conserved cell death program that is tightly regulated and 

executed through the interaction of extrinsic and intrinsic signaling pathways136. There is 

strong evidence that alterations in apoptotic potential contribute to a number of aging 

phenotypes across species, including the genesis of age-related cardiovascular pathologies. 

In the vasculature there is an increased presence of apoptotic endothelial cells, which has 

been attributed to impaired bioavailability of NO, up-regulation of TNFα and/or 

mitochondrial oxidative stress61, 76, 79, 137. Increased apoptotic cell death likely contributes 

to aging-induced microvascular rarefaction and the pathogenesis of atherosclerotic vascular 

diseases and aneurysm formation11.

Necroptosis is a newly identified form of programmed cell death that does not involve 

caspase activation but critically depends on receptor-interacting serine-threonine kinase 3 

and mixed lineage kinase domain-like (MLKL) and is characterized by morphological 

features of necrosis138. Necroptosis plays a role in inflammaging by promoting pro-

inflammatory phenotypic changes in tissues due to the release of cell debris (damage‐
associated molecular patterns, DAMPs)139. DAMPs are a major activator of NLRP3 

inflammasome, which is an important mechanism involved in low‐grade chronic 

inflammation in aging (see above). Inhibition of necroptosis either genetically, 

pharmacologically or by dietary means was shown to reduce inflammation in mouse 

models138, 139. Importantly, biomarkers of necroptosis are evident in the atherosclerotic 

plaques in apolipoprotein E (ApoE)-knockout mice and inhibition of necroptosis pathways 

reduce atherosclerosis burden and increases the lifespan in these models138. Biomarkers of 

necroptosis are also increased in human aorta aneurysmal tissues and up-regulation of 

necroptosis pathways promote aorta aneurysm progression in mouse models140.

Taken together, pathways involved in programmed cell death are promising targets for 

interventions in multiple aging-related diseases, including cardiovascular protection as well 

as prevention of cell loss leading to muscle atrophy and neurodegeneration.

Role of epigenetic alterations

A wide range of epigenetic alterations affect the cells during the lifespan, which may 

modulate vascular aging phenotypes141. Epigenetic changes that may contribute to vascular 

aging processes involve alterations in DNA methylation patterns, posttranslational 

modification of histones, microRNAs, long noncoding RNAs and chromatin remodeling.

DNA methylation is thought to be a central regulator of genome function. Aging is 

associated with complex, likely sexually dimorphic alterations in methylation patterns in 
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many organs, which can be partially reversed by anti-aging interventions (e.g. caloric 

restriction) 142. Also, in animal models of aging altered methylation of genes important for 

vascular function has been observed143, 144. There is preliminary evidence that in vascular 

diseases DNA methylation patterns of cells within the vascular wall are altered145, however, 

understanding the pathogenic role of these changes in vascular aging requires further 

studies.

Understanding how post-translational histone modifications (lysine methylation, 

acetylation), which were demonstrated to regulate lifespan in lower organisms and to 

modulate aging phenotypes in mammals, modulate vascular aging processes is an area of 

intense current research4. Histone acetylation is dynamically regulated by histone 

acetyltransferases and histone deacetylases (HDACs). There is particularly strong data that 

decreased activity/expression of class III HDACs (the NAD+ utilizing sirtuin family) 

contributes to vascular aging42, 72, 82, 83, 146.

DNA- and histone-modifying enzymes act in concert with key epigenetic factors that 

determine changes in chromatin architecture, regulating lifespan and healthspan in 

evolutionarily diverse organisms4. Such chromatin remodeling factors include the Polycomb 

group proteins, which can remodel chromatin such that epigenetic silencing of genes takes 

place. The role of the Polycomb group proteins in regulation of endothelial progenitor cell 

function has been extensively studied147. There is evidence that expression/activity of many 

of these chromatin remodeling factors are altered in aging4, yet, their mechanistic role in 

vascular aging has yet to be elucidated.

The expression of 60% of human protein coding genes is controlled through post-

transcriptional repression by microRNAs [miRNAs], a class of small non-coding RNAs. 

There is a complex interplay between miRNAs and other epigenetic factors, and 

dysregulation of miRNA expression is an emerging field in age-related epigenetics. In the 

vasculature miRNAs contribute to the regulation of important biological processes, 

including angiogenesis148, atherogenesis149 and restenosis150. There is growing evidence 

that aging is associated with dysregulation of miRNA expression in vascular endothelial and 

smooth muscle cells, which likely contributes to age-related impairment of angiogenic 

processes151, decreased cellular stress resilience18 and plaque formation, destabilization and 

rupture152. Importantly, there is also evidence that IGF-1 deficiency during a critical period 

during early in life results in persistent changes in post-transcriptional miRNA-mediated 

control of critical target genes for vascular health, which likely contribute to the deleterious 

late-life cardiovascular effects known to occur with developmental IGF-1 deficiency153.

Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides, which 

regulate multiple aspects of RNA transcription and translation. There is growing evidence 

that lncRNAs interact with pro-inflammatory signaling pathways and regulate senescence, 

however, their role on regulation of vascular aging processes is virtually unknown154. 

Interestingly, there is initial evidence linking the expression of the lncRNA Meg3 to age-

related impairment of angiogenic capacity of endothelial cells155.

Ungvari et al. Page 11

Circ Res. Author manuscript; available in PMC 2019 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Further studies are definitely needed to understand the contribution of alteration of 

epigenetic patterns to the development of various age-related vascular pathologies and to 

elucidate age-related changes in cellular mechanisms assuring the generation and 

maintenance of epigenetic patterns (e.g. DNA methyltransferases, histone acetylases and 

deacetylases, methylases, and demethylases, protein complexes implicated in chromatin 

remodeling). Epigenetic alterations are reversible, thus efforts should persist to develop 

epigenome-influencing interventions for prevention/treatment of age-related vascular 

diseases.

Role of dysregulated nutrient sensing pathways in vascular aging: mTOR, sirtuins, AMPK

Evolutionarily highly conserved cellular energy sensing pathways were reported to regulate 

fundamental aging processes by controlling cellular responses to nutrient availability and 

growth signals, including mTOR (mechanistic/mammalian target of rapamycin) 

signaling156, adenosine monophosphate protein kinase (AMPK), and sirtuins.

It is now recognized that mTOR acts as a critical molecular regulator of key anabolic 

processes, controlling biosynthesis of proteins, lipids and nucleic acids. In low nutrient 

conditions, mTOR activity is reduced, which relieves mTOR-dependent inhibition of 

autophagy, a major catabolic cellular process. Reduced activity of the mTOR pathway has 

been reproducibly shown to regulate aging and extend lifespan in invertebrates and in 

mice157. Consistent with the concept that mTOR regulates fundamental molecular processes 

of aging, there is growing evidence that attenuating mTOR activity inhibits or delays the 

pathogenesis of age-associated diseases, including Alzheimer’s disease158, 159. There is 

growing evidence that mTOR inhibition also confers protective, anti-aging vascular effects, 

delaying endothelial cell senescence160, 161 and promoting endothelium-mediated, NO-

dependent vasodilation159, 162–165. mTOR inhibition also regulates phenotypic switch of 

vascular smooth muscle cells166. Recently it was reported that chronic treatment with the 

mTOR inhibitor rapamycin reverses age-associated arterial dysfunction, decreasing vascular 

stiffness and oxidative stress167. The potential significance of these findings for human 

aging stems from the availability of inhibitors for mTOR signaling pathways that are 

approved for clinical use. There is considerable excitement about the potential of mTOR 

inhibitors to treat cancer and neurological diseases of aging, and potentially to improve 

health span in elderly patients. Preliminary preclinical studies suggest that mTOR inhibition 

may also exert certain beneficial effects on cardiovascular pathologies associated with old 

age, including stroke168–171. More importantly, recent studies159, 172 identified mTOR as a 

major regulator of brain vascular damage and dysfunction in Alzheimer’s disease 

models159, 173–175 and in models of atherosclerosis176. In mouse models of Alzheimer’s 

disease mTOR inhibition with rapamycin was shown to reduce Aß vascular pathology and 

improve cerebral blood flow via an endothelial NO-dependent mechanism159, 172, 

significantly improving cognitive outcomes. Thus, while further studies are needed to define 

the role of mTOR in vascular aging, the available evidence indicates that mTOR has an 

important role in cerebrovascular dysfunction associated with neurodegenerative diseases.

Sirtuins and AMPK are critical cellular energy sensors that are activated by cellular 

metabolic factors, such as NAD+ in the case of sirtuins and the AMP:ATP ratio for AMPK. 
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These pathways are thought to be activated in times of low nutrient status in order to provide 

the cell with enhanced stress resistance to prevent cellular loss or derangement. Both 

pathways been shown to be enhanced in response to longevity promoting interventions (eg 

calorie restriction) and are known to interact with one another. Activators of both the 

sirtuins, specifically Sirt-1 and −6, and AMPK have been effective in improving endothelial 

function, enhancing NO bioavailability, and reducing oxidative stress and inflammation. 

Sirtuins are evolutionarily conserved NAD+-dependent protein deacetylases and ADP-

ribosyltransferases, which regulate multiple pathways involved in the aging process. There is 

strong evidence that in the vasculature, activation of members of the sirtuin family, 

particularly Sirt-1, confers multifaceted anti-aging effects42, 61, 62, 68, 72, 83, 146, 177–180. 

Sirt-1 specifically contributes to the vasoprotective effects of calorie restriction42, 181, 

augments eNOS activation 146, reduces oxidative stress, exerts anti-inflammatory effects180, 

is anti-apoptotic, reduces DNA damage, and promotes telomere stability. Sirt-6 also exerts 

endothelial protective and anti-atherogenic effects in mice182, 183. In addition to regulating 

redox homeostasis, mitochondrial function, endothelial vasodilation and protecting against 

apoptosis and senescence, Sirt-1 and −6 have been shown to regulate the DNA damage 

response in VSMCs184. Studies also suggest that Sirt-1 is reduced in human atherosclerosis 

and that Sirt-1 exerts anti-atherogenic effects in mouse models by protecting against DNA 

damage184. Importantly, the activity of many sirtuins, including Sirt-1 and −6, is dependent 

on the cellular NAD+ supply, which is known to decline with age.

Due to the multitude of beneficial effects, many sirtuin activators have been utilized to 

determine if sirtuin activation can reverse the vascular aging phenotype. Resveratrol, a 

naturally occurring polyphenol, can activate sirtuins and numerous other pathways and has 

been used extensively to reverse arterial aging 185, 186. Additionally, more specific and 

potent Sirt-1 activators, such as SRT1720, have recapitulated the beneficial effects afforded 

by resveratrol treatment, demonstrating anti-oxidant and anti-inflammatory effects. 

However, although SRT1720 rescued endothelial function in aged mice, that was the result 

of enhanced cyclooxegenase vasodilators instead of increased NO bioavailability. 

Supplementation with nicotinamide mononucleotide (NMN), a key NAD+ intermediate, has 

also been shown increase sirtuin activation187, resulting in reversal of mitochondrial 

dysfunction in advanced age70. In the aged vasculature, 8 weeks of NMN supplementation 

increases SIRT-1 activity and reverses age-related endothelial dysfunction and oxidative 

stress72. In summary, Sirt-1 and other sirtuins are considered promising drug targets180 and 

future studies should evaluate the efficacy other sirtuin activating compounds for 

cardiovascular protection in older persons.

AMPK signaling is an important energy sensing pathway that is involved in regulation of 

aging processes, integrating energy balance, metabolism and cellular stress resistance 
188, 189. In lower organisms increased AMPK activity was shown to extend lifespan. 

Treatment of aged mice with pharmacological activators of AMPK, including metformin or 

aminoimidazole carboxamide ribonucleotide (AICAR), was also shown to confer significant 

health benefits. There is currently an aging clinical trial, TAME (targeting aging with 

metformin), that aims to determine if metformin can delay the onset of age-related diseases 

in humans190. In the context of vascular aging, AMPK was shown to confer vasoprotective 

effects, augmenting eNOS activation191–194. Furthermore, inhibition of NF-κB signaling by 
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AMPK suppresses inflammatory processes. Importantly, AMPK activity is reduced in the 

aorta195 and cerebral arteries 196 of old rodents. Pharmacological activation of AMPK by 

AICAR was shown to restore endothelium-dependent vasodilation in old mice 195, 

suggesting that inactivation of arterial AMPK contributes to age-associated endothelial 

dysfunction. Still, little is known regarding the effects of AMPK activators on other vascular 

functions and much more research is needed to better understand the similarities and 

differences between the effects of various AMPK activators.

Role of the renin-angiotensin system in vascular aging

In model organisms (C. elegans) reducing the activity of acn-1, a homologue of the 

angiotensin converting enzyme (ACE), results in significant extension of lifespan suggesting 

that peptide hormones produced by these enzymes regulate fundamental aging processes197. 

There is initial evidence that the anti-aging effects of pharmacological ACE inhibitors are 

mediated by pathways that partially overlap with other evolutionarily conserved mechanisms 

involved in regulation of lifespan (e.g. FOXO signaling197). Studies on laboratory rodents 

extend these findings showing that inhibition of the renin-angiotensin system (RAS) 

pharmacologically or by genetic means exerts significant anti-aging effects, extending 

lifespan and reversing age-related phenotypic and functional changes in the aged 

vasculature198–200. There is growing evidence demonstrating that up-regulation of tissue 

RAS plays a role in vascular aging promoting intimal thickening and remodeling in large 

conduit arteries of aged animals and elderly human subjects77, 201–203. Proof-of-concept is 

derived from studies demonstrating that infusion of angiotensin II into young rats promotes 

aging-like changes in the vascular phenotype, promoting carotid media thickening and 

intima infiltration by vascular smooth muscle cells203. Further, pharmacological inhibition 

of RAS activity can reduce arterial stiffness in aged animals and elderly humans 

independently of changes in blood pressure204, 205. Up-regulation of RAS in the vascular 

wall likely also promotes chronic low-grade vascular inflammation and oxidative stress, 

enhancing the vascular response to injury and rendering the aged vascular wall susceptible to 

atherogenesis77, 202. Activation of RAS/increased angiotensin II levels in aging have also 

been linked to induction of mitochondrial oxidative stress in the vasculature206, development 

of cerebral microhemorrhages45 and disruption of the blood brain barrier207.

More recently the view has emerged that an extended renin-angiotensin-aldosterone system, 

including local expression of mineralocorticoids and their receptors in the vasculature, plays 

a tissue-specific role in regulation of aging processes. It has been well established that 

circulating aldosterone regulates water and electrolyte homeostasis and thereby controls 

blood pressure. In addition, aldosterone also promotes structural and functional alterations in 

the vasculature, including inflammation and pathological remodeling208. Recent studies 

demonstrate that age-associated changes of aldosterone and mineralocorticoid receptor 

signaling dysregulation occur in vascular smooth muscle cells, which may contribute to age-

associated arterial remodeling208. These findings encourage further experimentation aiming 

to better characterize the pathophysiological relevance of aging-induced alterations in the 

extended renin-angiotensin-aldosterone system and to the efficiency of treatments targeting 

the extended renin-angiotensin-aldosterone system for cardiovascular protection in older 

individuals.
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Role of ECM remodeling in vascular aging

The ECM is an important contributor to health and longevity. This non-cellular 

compartment, ubiquitous to all tissues and organs does not only provide essential 

mechanical scaffolding but mediates highly dynamic bio-mechanical and bio-chemical 

signals required for tissue homeostasis, morphogenesis and cell differentiation. Studies on 

model organisms suggest that evolutionarily conserved pathways regulate ECM remodeling 

during aging and that promotion of ECM youthfulness by anti-aging interventions is an 

essential signature of longevity assurance209. Aging in mammals also result in significant 

changes in ECM biosynthesis, postsynthetic modifications of ECM components and 

alterations of cell-matrix interactions, which contribute to the development of a spectrum of 

age-related pathologies210.

Age-related alterations of the ECM, including the subendothelial basement membrane, 

intima, media, adventitia, and interstitial matrix (which constitute more than half of the mass 

of the vascular tissue), play a fundamental role in impairment of both structural and 

regulatory homeostasis of the vasculature211. With age, the expression of growth factors that 

regulate ECM biosynthesis is altered45 and the synthesis of many ECM components (e.g. 

elastin) declines, which impairs elasticity and resilience of the vascular wall to mechanical 

damage and rupture induced by bursts in wall-tension due to pulsatile pressure waves211. 

Age-related ECM changes also likely alter vascular mechano-transduction, dysregulating 

cell responses to alterations in the hemodynamic environment. Additionally, aging and 

cellular senescence alter the secretory phenotype of vascular endothelial and smooth muscle 

cells, increasing MMP secretion45. This, together with increased MMP activation211 induced 

by high ROS levels compromises the structural integrity of the vasculature and promotes 

pathological remodeling (e.g. in hypertension), resulting in increased likelihood of aneurysm 

formation and vessel rupture, including the development of cerebral microhemorrhages45. 

The available evidence suggests that many of these age-related ECM alterations are 

governed by circulating factors and factors produced in the vascular wall, including the 

extended renin-angiotensin-aldosteron system (see above) and an age-related decline in 

circulating IGF-1 212.

Collagen synthesis is also dysregulated with age in the vascular wall likely due to the effects 

of increased paracrine action of TGF-β126, which contributes to vascular fibrosis and arterial 

stiffening211. Additional features that contribute to increased arterial stiffness include 

decreased elastin synthesis, elastin degradation and fragmentation, elastin calcification, 

alterations in cross-linking of extracellular matrix components (e.g. by increased presence of 

advanced glycation end-products [AGEs])211, 213, 214.

The pathophysiological consequences of age-related ECM remodeling and arterial stiffening 

have been the subject of a recent comprehensive review by AlGhatrif and Lakatta6. In brief, 

as the large conduit arteries stiffen in aging, aortic pulse wave velocity, systolic pressure and 

pulse pressure significantly increase215, whereas diastolic pressure decreases. Decreased 

diastolic pressure leads to a decline in coronary blood flow. Increased systolic pressure 

promotes left ventricular remodeling, diastolic dysfunction and exacerbates atherogenesis. 

Due to the dilation of conduit arteries wall tension significantly increases, contributing to the 

development of aneurysms. In addition to alterations in the biomechanical properties of large 
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arteries, age-related ECM remodeling likely also affects microvascular transport and barrier 

functions216. Age-related alteration of the ECM structure and composition are also 

manifested in the wall of veins, contributing to the pathogenesis of varicosities217.

Role of pro-geronic and anti-geronic circulating factors: lessons learnt from heterochronic 
parabiosis and caloric restriction

There is growing evidence that non-cell-autonomous mechanisms play a critical role in 

orchestrating vascular aging processes (Figure 1). Aging-induced alterations in 

vasoprotective endocrine factors are of particular importance. Such changes include an age-

related decline in circulating levels of GH218, IGF-1219 and estrogens, all of which regulate 

multiple aspects of endothelium-dependent vasodilation220, autoregulation of blood flow221, 

vascular structural remodeling, atherogenesis222 and angiogenic processes223.

The impact of circulating factors on aging phenotypes was also demonstrated by studies 

using mice with heterochronic parabiosis, which involves surgically connecting the 

circulatory system of a young and an aged mouse224. Cerebromicrovascular density 

typically declines with advanced age225, and there is initial evidence that circulating “anti-

geronic” factors (which reverse/ prevent development of aging phenotypes) present in young 

mice can rejuvenate microvascular network architecture in aged heterochronic parabionts224. 

The anti-geronic circulating factors present in young mice are currently unknown, and the 

previously proposed role for GDF11224 remains controversial. Future studies should identify 

additional anti-geronic factors that might be targeted by interventions to extend vascular 

health-span. Pro-geronic circulating factors increase with age and impair tissue homeostasis 

in young animals. There is initial evidence that mediators secreted by senescent cells (e.g. 

inflammatory cytokines, such as TNFα79) may serve as pro-geronic circulating factors. 

Further studies are warranted to identify additional pro-geronic proteins and determine their 

impact on atherogenesis, endothelial function, blood brain barrier integrity and 

microvascular function in aging.

Additional evidence to support a central role of anti-geronic circulating factors governing 

vascular aging processes is derived from studies on caloric restriction, a dietary regimen, 

which improves health and slow the aging process in evolutionarily distant organisms226. 

Caloric restriction was shown to promote a youthful endothelial phenotype by up-regulating 

and activating eNOS in aged animals226–228 and perhaps humans229. A critical role of anti-

geronic circulating factors in vasculoprotective phenotypic responses induced by caloric 

restriction was first indicated by the observations that in vitro treatment of cultured aged 

endothelial cells with sera derived from caloric restricted animals mimics phenotypic effects 

observed in vivo during caloric restriction, promoting anti-inflammatory and pro-angiogenic 

effects42, 230. Treatment with sera derived from caloric restricted animals up-regulates 

SIRT-1231, however, the exact nature of the circulating factor responsible for this effect 

remains elusive. One potential candidate anti-geronic protein mediating the vasoprotective 

effects of caloric restriction is adiponectin, whose serum level is known to be increased by 

caloric restriction232–234.

Human studies are needed to identify novel pro-geronic and anti-geronic circulating factors 

and their cofactors, activators or inhibitors/antagonists and to seek associations with vascular 
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aging phenotypes. Future studies should also identify cellular origins of circulating pro-

geronic and anti-geronic factors that impact vascular aging and characterize pathological 

conditions that alter their levels in circulation with aging. Further, mechanistic studies 

describing the cellular effects of pro-geronic and anti-geronic circulating factors in the 

vascular wall are warranted.

Progenitor cell exhaustion

On the basis of the stem cell theory of aging it is postulated that the inability of various types 

of vascular progenitor cells to continue to replenish the circulatory system with functional 

differentiated endothelial and smooth muscle cells compromises the biological functions of 

the aged vasculature. Importantly, aging impairs neovascularization, which depends on the 

function of highly proliferative endothelial progenitor cells (EPCs). Previous studies provide 

evidence that aging compromises the function of circulating EPCs 235–237, likely by altering 

the production of factors promoting cell proliferation, migration, and survival (e.g. IGF-1), 

and/or by enhancing inflammation and oxidative stress, activating the renin-angiotensin 

system and promoting senescence. There are data demonstrating that sera derived from 

young animals improves the function of cultured EPCs isolated from aged rats 238, 

suggesting a key role for circulating factors. There are also preclinical data extant suggesting 

that progressive progenitor cell deficits may contribute to the development of 

atherosclerosis237. In particular, treatment with bone marrow–derived progenitor cells 

isolated from young mice prevents atherosclerosis progression in ApoE−/− mice, whereas 

treatment with progenitor cells from older mice is ineffective237. It should be noted that role 

of EPCs in the genesis of vascular aging phenotypes in humans is note well understood. For 

example, patients with peripheral artery disease exhibit low EPC numbers239, while patients 

with chronic myocardial ischemia from coronary microvascular disease240 or abdominal 

aorta aneurism have significantly higher levels of circulating progenitor cells than age‐
matched controls241. Future studies should investigate the synergistic effects of aging and 

associated cardiovascular risk factors in humans and determine how declining EPC function 

contributes to different vascular aging phenotypes.

Future directions

Although significant progress has been achieved in characterizing aging-induced changes in 

vascular function and phenotype, research efforts should persist in this direction to develop 

innovative strategies based on recent achievements in the biology of aging to improve 

vascular health-span. Understanding the interaction of processes of aging and chronic 

diseases and should be a high priority. Better alignment of preclinical studies on vascular 

aging and human investigations is needed. Limitations of translating the results of pre-

clinical studies should be recognized. An important recent example is caloric restriction242. 

While caloric restriction confers significant lifespan extension and cardiovascular protection 

in laboratory rodents5, 18, 42, 100, 226, 243, 244 and in certain cohorts of non-human 

primates230, 245, its protective effects in non-human primates in other studies246 and in 

patients with multiple cardiovascular risk factors are less evident247. Additionally, in cross-

sectional studies the older groups may represent a selected long-lived subset of the younger 

population. There are existing longitudinal studies in humans (e.g. InCHIANTI study) and 

Ungvari et al. Page 17

Circ Res. Author manuscript; available in PMC 2019 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



non-human primates, and important information related to mechanisms of vascular aging 

could be derived from add-on studies to these existing cohorts.

Critical areas of vascular aging research include the role of senescence, epigenetics, stress 

resilience, inflammation, macromolecular damage, proteostasis, mitochondrial and 

metabolic dysfunction and impaired stem cell biology. The specific roles for cell-

autonomous and non-cell-autonomous mechanisms contributing to vascular aging need to be 

elucidated further. The role of signal transduction pathways linked to regulation of cellular 

energetics in the vascular aging process should be better defined. Future studies should also 

lead to improved understanding of the role circadian clocks to vascular aging. New studies 

investigating cellular heterogeneity in vascular aging are warranted. Stochastic 

macromolecular damage leads to regional variability in the presence of senescent cells, cells 

with altered metabolism, mitochondrial dysfunction and increased ROS production. Such 

regional variability likely contributes to the focal development of vascular pathologies, 

ranging from atherosclerotic plaques to microhemorrhages. Single-cell gene expression 

analysis should facilitate better understanding of the pathophysiological role of functional 

heterogeneity. Finally, the impact of environmental factors and lifestyle choices impact the 

vascular aging processes should be better understood.

The disposable soma theory of aging predicts age-related functional decline occurs due to 

the accumulation of random macromolecular damage and that the proportion of energy 

investment into cellular maintenance and repair processes will determine longevity of the 

organism. Numerous studies investigating cellular and molecular stress responses in the 

vasculature agree with the predictions of this theory. For example, cells of the long-lived 

muroid rodent species white-footed mouse (Peromyscus leucopus; maximum lifespan: >8 

years) exhibits decreased production of ROS, improved antioxidant defense mechanisms, 

increased resistance against oxidative stressors, superior DNA repair mechanisms and more 

efficient mitochondria than the shorter-lived Mus musculus248–250. Similar findings were 

reported in the vasculature of the longest-living rodent species, the naked mole-rat 

(Heterocephalus glaber; maximum lifespan: >30 years)251. Importantly virtually all of the 

mechanistic hypotheses related to vascular aging are tested solely in Mus musculus (one of 

the least successfully aging species), which is potentially a source for significant bias and 

limit the translatability of the results to the clinical scenario. Therefore, there is a great need 

for interspecies comparative studies using animals with disparate longevity as well as human 

studies to understand generalized mechanisms of vascular aging and identify translationally 

relevant treatments for the promotion of vascular health in older adults.

The same cellular and molecular aging processes that affect arterial vessels and capillaries 

also affect veins and the lymphatic/glymphatic system, likely contributing to various disease 

pathologies. Examples include the potential role of cerebral venules in neuroinflammation, 

Alzheimer’s disease and cerebral microhemorrhages46 and the potential link between age-

related glymphatic dysfunction and amyloid pathologies252. These areas are attractive 

targets for future studies.

Taken together, instead of targeting a single disease, interventions that target fundamental 

aging processes have the potential to prevent/delay a range of vascular pathologies and other 
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age-related diseases simultaneously. In recent years a variety of candidate drugs/

interventions have emerged from basic research and translational studies that may target 

aging processes. These interventions can be adapted for prevention/treatment of age-related 

vascular pathologies.
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Figure 1: Conceptual model for the role of cell-autonomous and non-cell-autonomous 
mechanisms in vascular aging.
The model predicts that circulating pro-geronic (e.g. inflammatory cytokines, RAS/renin-

angiotensin system, aldosterone) and anti-geronic factors (e.g. IGF-1, mediators of caloric 

restriction, estrogen) derived from the brain, the endocrine system, cells of the immune 

system and/or the adipose tissue orchestrate aging processes simultaneously in the 

endothelial and smooth muscle cells within the large vessels and microcirculation. The 

hierarchical regulatory cascade for vascular aging involves modulation of cell-autonomous 

cellular and molecular aging processes. The resulting functional dysregulation of vascular 
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cells (i.e. impaired vasomotor, barrier, secretory and transport functions of the vasculature as 

well as adverse structural remodeling) promote the development of a wide range of age-

related vascular pathologies.
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Figure 2: Proposed scheme for mechanisms and pathological consequences of age-related 
oxidative stress in vascular endothelial cells.
The model predicts that in aged endothelial cells dysfunctional mitochondria and NAD(P)H 

oxidases are critical sources of increased ROS production. Increased levels of O2
.- generated 

by the electron transport chain are dismutated to H2O2, which can penetrate the 

mitochondrial membrane increasing cytoplasmic H2O2 levels. Increased oxidative stress is 

exacerbated by age-related impairment of Nrf2-dependent homeostatic antioxidant defense 

mechanisms. H2O2 plays important signaling roles, including activation of NF-κB, which 

contribute to age-associated low grade chronic vascular inflammation. Increased levels of 

O2
.- generated by NAD(P)H oxidases (stimulated by elevated TNFα levels and/or by the 

activated local renin-angiotensin system [RAS] in the vascular wall) decrease the 

bioavailability of NO by forming ONOO-. Increased nitrative stress lead to PARP-1 

activation, which promotes vascular inflammation and contributes to cellular energetic 

dysfunction by consuming NAD+ , compromising sirtuin-mediated anti-aging pathways. 

Impaired bioavailability of NO promotes vasodilator dysfunction and compromises 

endothelial viability. In addition, increased vascular oxidative stress in aging also induces 

MMP activation, promoting the pathogenesis of intracerebral hemorrhages, aneurysm 

formation and blood brain barrier disruption.
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Figure 3: Mechanisms and consequences of age-related vascular inflammation.
The model predicts that multiple pathways converge on activation of inflammatory processes 

in the vascular tissue. During aging increased ROS production, exacerbated by Nrf2 

dysfunction, enhances NF-κB activation, which promotes inflammatory cytokine and 

chemokine expression, microvascular endothelial activation, leukocyte adhesion and 

extravasation. Increased nitrative stress promotes PARP1 activation, which contributes to 

impaired activity of anti-inflammatory sirtuins. Sterile inflammation in the vascular wall is 

also exacerbated by increased secretion of inflammatory mediators from senescent cells and 

danger-associated molecular patterns (DAMPs), which activate innate immune system 

effectors, including toll-like receptors (TLRs) and the NLRP3 inflammasome complex. The 

aging vasculature in humans is also affected by the high prevalence of endothelium-trophic 

persistent cytomegalovirus (CMV) infection. Inflammatory processes contribute to a wide 

range of macro- and micro-vascular pathologies affecting older people.
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Figure 4: Conceptual model for the pathogenic role of cellular senescence in vascular aging.
The model predicts that increased presence of senescent endothelial and/or smooth muscle 

cell (SMC) in the aged vasculature and their proinflammatory secretome (SASP: 

senescence-associated secretory phenotype) contributes to impaired angiogenesis and 

microvascular rarefaction, pathological remodeling of the ECM, barrier disruption, chronic 

inflammation and atherogenesis.
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