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Abstract

Estimating animal abundance is essential for research, management and conservation pur-
poses. Although reliable methods exist to estimate absolute density for populations with
individually marked animals, robust relative abundance indices (RAls) may allow to track
changes in population size when individual identification is not possible. Their performance,
however, needs be thoroughly evaluated. We investigated the relative performance of sev-
eral common faeces-based and camera-based RAIs for estimating small-scale variation in
red fox abundance, a mesopredator of high relevance for management, in two different
study areas. We compared precision, cost and performance of the methods in capturing
relationships with covariates of local abundance. Random transect-based RAIs had a low
mean, a comparatively high coefficient of variation and a high proportion of zeros, prohibiting
or impeding analysis in relation to environmental predictors. Rectangular scat plots and tran-
sects along linear landscape features had an intermediate amount of zeros while retaining a
high precision, but were less sensitive to local variation in abundance related to environmen-
tal predictors and required a large field effort. Camera trap-based RAls yielded low to inter-
mediate precision, but were more sensitive to small-scale variation in relative abundance
than faeces-based methods. Camera traps were the most expensive methods for an initial
monitoring session, but required the lowest field effort, were cheapest in the long run and
were the least susceptible to observer bias and detection error under a robust sampling pro-
tocol. Generally, faeces count-based RAls appear more suitable for studies that aim to com-
pare local abundance between several study sites of equal landscape composition under
constant detection probability. Camera traps provide more flexible data for studies that
require accounting for influences of landscape composition on local abundance and are
more cost-effective for long-term or continuous monitoring and more suitable to achieve
high replication. Accordingly, the choice of the most suitable method and plot design is con-
text-dependent.
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Introduction

Acquiring knowledge on size, distribution and dynamics of animal populations is pivotal for
research, management and conservation issues [1,2]. To assess the effectiveness of conserva-
tion actions it is essential to implement efficient monitoring of population size [3]. Monitoring
should not only aim to estimate variation in abundance of the target species across large areas
(i.e. landscape scale; [4]), but also differences in abundance between restricted areas (i.e. small
scale), because local management actions at the district or community level require informa-
tion collected at small spatial scales, typically ranging in extent from hectares to few km?. Reli-
able estimates of absolute abundance, however, may be difficult to obtain even for common
species.

Capture-recapture methods may provide robust estimates of local density for species that
allow for individual identification [1,5,6], yet owing to the high costs they are potentially
unsuitable for long term studies. In recent years, a number of methods to estimate absolute
density without the need for individual identification have emerged [7-9], yet they also rely
heavily on sets of assumptions or have not been sufficiently validated. In these circumstances,
the use of robust population indices may present an alternative to track changes in population
size [10]. Indeed, for species that are not individually identifiable, researchers often resort to
indices that quantify differences in relative abundance based on a variety of field signs (i.e. rel-
ative abundance index, RAI [2]). Comparison of RAIs is, however, limited by differences in
detection probability across indices, space or time [2,11]. Ideally, the relationship of the index
with real abundance in different contexts should be known or at least predictable, so that dif-
ferences in detection probability can be accounted for in research design and suitable RAIs
can be selected. Evaluating the relative performance and context-specific applicability of RAIs
before commencing a survey is thus paramount [11], though this is seldom done in practice,
nor always feasible.

All RAI methods share the common assumption that the index measured is directly related
to the property of interest (i.e. absolute abundance), but the exact shape of this relationship is
often unknown [2,11]. Consequently, different RAIs should exhibit similar patterns in relation
to environmental covariates (less the method-specific noise) when applied to the same popula-
tion of animals, provided that the covariates themselves are related to true abundance and that
the indices respond to variation in the covariate within the gradient studied. While this
assumption is reasonable in the presence of a linear relationship between RAI and true abun-
dance, it might be problematic in the case of non-linear relationships as variation in abun-
dance related to the covariate might not be reflected by the index. In addition, an ideal RAI
method should have high precision (i.e. narrow dispersion) to maximize chances of detecting
differences if present (e.g. between management units), whilst being sensitive to variation in
the underlying process across space or time (i.e. animal abundance). Furthermore, variability
should also be large enough to allow for adequate representation of relationships with envi-
ronmental covariates and the data should have a low proportion of ‘false’ zeros (unless abun-
dance is truly zero) in order to facilitate analysis. Finally, labour-intensive methods should be
simple enough to ensure efficient use of volunteer field assistants [12] to allow for adequate
replication.

Predators are often of high priority in wildlife management, either owing to their conserva-
tion status (e.g. large felids: [13-15]), or because of their impact on threatened prey [16,17] or
on valued game species [18]. For the red fox (Vulpes vulpes), a widespread mesopredator of
global relevance for conservation and wildlife management [19], individual animals are diffi-
cult to identify non-invasively [20] and, consequently, RAIs are often employed. For example,
sampling along trails or other linear features is a common method to estimate fox abundance
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[21-23], although camera-based RAIs (e.g.[24]) or spotlight counts (e.g. [12,25]) have also
been employed. Some studies have evaluated the performance of several RAIs to estimate land-
scape-scale variation in fox abundance [12,24,26], but their performance is unknown when
applied to small-scale studies, i.e. where the variance in fox abundance is low because the over-
all environmental gradient covered by the study is small.

In this paper, we aim to compare the relative performance of different RAI methods—faeces
count methods and wildlife camera-based RAIs, both of which are thought to be representative
of real abundance [23,24]-to measure small-scale variation in the abundance of red fox. We
use data from extensive field-experiments in two different environmental contexts: montane
forests and agriculturally dominated landscapes. We assessed the performance of the respec-
tive methods by comparing data quality (dispersion, percentage of zeros), the method’s ability
to detect and reflect relationships with environmental covariates of abundance as well as cost
and effort. Our results shall provide useful indications on how to collect robust data for red fox
ecology research and population monitoring, thus helping to evaluate the effectiveness of man-
agement interventions for this common generalist mesopredator.

Methods
Study area

Two study areas in South-Western Germany were chosen to represent different landscape
types, one comprising montane forests, the other agriculturally dominated lowlands. The
montane forest study sites were located in the southern Black Forest mountain range (Fig 1) at
altitudes of approximately 900 to 1300 m. The area is characterized by mixed montane forests
of spruce (Picea abies), silver fir (Abies alba) and beech (Fagus sylvatica) trees [27], inter-
spersed by settlements and small towns surrounded by extensive mountain pastures, thus cre-
ating a forest dominated land use matrix (Fig 1). The agricultural study sites were located in
the lowlands of the Upper Rhine valley between the cities of Basel and Freiburg along the river
Rhine in the West (Fig 1) at a maximum elevation of 220 m. Land use and cover is mainly agri-
cultural, with large continuous stretches of farmland (mainly cropland, some pastures, mead-
ows and orchards) accounting for about two thirds of the landscape. The remainder consists of
urban land cover types and a continuous stretch of riparian forest along the river Rhine (Fig
1). There are no reliable estimates of absolute red fox density for the study areas, but home-
range sizes obtained through VHF telemetry in a valley of the montane forest study site (100%
MCP, X = 197 ha; range 62-378 ha [28]) suggest intermediate fox density [29]. Effective moni-
toring of red fox populations has immediate management relevance in both study areas, as red
foxes are considered important predators of locally threatened prey species: the capercaillie
(Tetrao urogallus) in the Black Forest [30] and the European hare (Lepus europaeus) as well as
a number of ground nesting birds in the Upper Rhine valley [31].

Study design

To evaluate the suitability of different methods for estimating small-scale variation in the rela-
tive abundance of red fox, we conducted three sets of paired experiments with a total of six dif-
ferent methods (Fig 1) between March 2017 and May of 2018. For each set of experiments we
compared the performance of different types of methods: faeces-count methods (either using
random transects, rectangular scat plots or transects along linear landscape features) and a
wildlife camera-based method (Fig 1). Fieldwork was conducted in winter and early spring
(i.e. in November or between February and May) in order to obtain an estimate of red fox win-
ter abundance before new offspring contribute to the population size. A comprehensive sum-
mary of the methods used is included in the supplements (Table A in S1 Appendix). This
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Fig 1. Schematic representation of the experimental design used to compare different methods to estimate variation in red fox abundance in the
Black Forest mountain range (I; session A-March-May 2017 & B-March-May 2018) and in the agricultural lowlands of the Upper Rhine Valley (II;
session C-November 2017 and February 2018) in south-western Germany. In each session, we compared RAIs obtained from grid-based remote
camera traps (rectangular box labelled ‘CT’) with triangular random faecal transect counts (session A and C, orange), scat-plot based faecal counts
standardized by search duration (session B, blue) and faecal transects of fixed length along linear landscape features (session C, blue). Grey lines
represent forest tracks in session A & B and linear landscape features in session C (e.g. hedges).

https://doi.org/10.1371/journal.pone.0207545.9001
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study did not involve capture, handling or any other form of invasive interaction with animals.
It was carried out in strict accordance with national legislation. Permission of landowners was
obtained prior to commencement of the study.

Montane forest. For our Black Forest study area, we surveyed populations of red foxes in
the spring of 2017 and 2018 using three relative abundance indices (RAIs) along a network of
spatially coinciding plot locations. In the spring of 2017 (henceforth: ‘Session A’) we applied
random faecal transects paired with a plot-point based network of camera traps. In the spring
0f 2018 (‘Session B’) we combined plot based wildlife cameras with faecal counts within rectan-
gular plot areas standardized by search duration.

For Session A, we chose a set of rectangular study sites within the study area to be represen-
tative of the landscape composition in the area and excluding large built up areas. Study sites
directly covered approximately 6.500 hectares (ca. 32% of the study area). In a second step we
assigned circular plots within the study sites to orient placement of random transects and cam-
era traps using a systematic grid of 500 m spacing. We distributed survey effort proportionally
across the study sites stratified by expected fox abundance (fox abundance based on camera
model in [24], predictions as in [30]).

At each plot, we conducted faeces count surveys along random triangular transects centred
on each plot location (i.e. transects never overlapped between plots, Fig 1). Faecal sampling
along trails and other linear features has been a standard field method to estimate fox abun-
dance [21-23], but foxes only deposit a minority of scats along linear features [22]. Transects
along such features have thus been criticised due to the inherent bias with regards to selective
habitat coverage and lower precision than random transect sampling [26]. We therefore
adapted the linear random transect method [32] for application on a smaller spatial scale. Tri-
angular transects were 1.3km long and randomly oriented, equalling the maximum triangle
size in a 250m radius circular plot (i.e. half the distance between plot centres). In general, fae-
ces abundance of foxes is thought to be representative of real abundance [23,24]. Transect
counts for spring abundance were conducted in spring (29.03.2017 and 10.05.2017) after snow
melt and before ground vegetation (mainly Vaccinium myrtillus) interfered with search effi-
ciency. Transects were walked at a speed of approximately 1km/h and all scats spotted by the
observers were collected. We identified fox faeces according to their size, shape, odour and
content [33]. Species with potentially similar scat in the study system are pine (Martes martes)
and beech marten (Martes foina), which both typically produce scats that are much smaller,
and dogs. For this method as well as other scat-based methods in this study area, we applied
multi-observer validation for scat identification (i.e. each scat was validated to be fox scat by at
least one expert in addition to field personnel). We randomly assigned observers to scat plots
within the study areas (session A&B: 6 observers; session C: 3 observers). In addition, we
scored scats along a gradient of scat quality and identification certainty using three classes
(A-C, A being highest).

We additionally surveyed red foxes using non-baited remote, heat and motion triggered
cameras (Bushnell Trophy Cam Aggressor Low Glow) placed at plot locations (Fig 1: symbol
‘c’). Camera surveys of fox abundance have been shown to deliver comparable estimates to
scat transects and thus to be related to real abundance, albeit at higher variance [24]. To stan-
dardize detection probability across all sample plots and to maximize red fox detection rates
we placed one camera per plot in the same fashion on trees along machine roads and logging
tracks [24]. We selected the closest suitable track outwards from the plot centre. Camera orien-
tation was slightly angled to ensure good coverage of the track and detect fast-moving individ-
uals with higher certainty. All efforts were made to select similar tracks within each plot. We
also recorded trail width and trail class (4-level factor: 1 = game trail or almost completely
overgrown logging track; 2 = non-maintained logging track with young vegetation;
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3 = maintained machine track, 4 = unpaved forest road) to correct for differences between the
probability of trail use by foxes among trail types. In addition, we also quantified the percent-
age of ground in a 20m plot around the camera covered by structures that would hinder fox
movement and thus channel foxes onto the tracks (i.e. dense vegetation <1m, coarse woody
debris, large rocks; abbr.: ‘“%Resistance’). Cameras were placed in the field for at least 21 opera-
tional camera days before collection. Cameras were deployed in two consecutive sessions of

N = 70 each between 17.03.2017 and 12.05.2017. We set cameras to take sequences of three pic-
tures with a 1-second delay between series. Final sample sizes were N = 132 camera sites and
N = 114 random transects for session A.

For session B we also used a grid of 500m spacing for plot allocation. However, instead of
sampling faeces along random transects we searched for fox faeces within quadrat grids (i.e.
500x500m cells; 25ha each; henceforth ‘scat plots’). Scat plots were surveyed hap-hazardly aim-
ing for representative plot coverage, but search effort was standardized by searching for three
man-hours on each plot. Trail-based sampling has low precision, whilst sampling within small
grid cells (0.25ha) was found to return a very small mean (i.e. large proportion of zeros [26]).
Accordingly, we designed larger scat plots to ensure a larger mean and higher precision by rep-
resentatively sampling the whole plot (i.e. including tracks as well as all available habitat types).
Due to the higher field effort involved compared to random transect sampling, we concen-
trated our field effort on a subset of four study sites of 10km” size (i.e. 4.000 ha), each including
approximately 20 plots (overall sample size N = 82) and covering the same landscape gradient
as in Session A. We surveyed all scat plots between 03.04.2018 and 18.04.2018 before ground
vegetation could interfere with search efficiency and while some plots still retained partial old
snow cover to maximize the detection of fresh scats. Scat identification was validated and
scored as described above.

As for session A, camera traps were deployed in all study sites (final N = 151 plots), includ-
ing the N = 82 scat plots. Cameras were deployed following the same protocol as in session A
between 15.03.2018 and 16.05.2018.

Agricultural lowlands. For our agricultural study area in the Rhine valley (‘Session C’) we
used a systematic grid array with 1x1km cell size for plot allocation to account for a more con-
tinuous land cover composition (i.e. less turnover) as compared to the forest study area. We
selected a total of 40 plots representative of the landscape composition in the study area (total
area covered by plots: 4000ha). Within each plot we compared three different methods in two
rounds of field work in the winter of 2017/2018: one in November 2017 and another in Febru-
ary 2018, when ground vegetation and standing agricultural crops on farmland were minimal,
thus ensuring high visibility.

For the first method we conducted scat surveys along random triangular transects in each
plot with the same method and survey protocol as for session A. When transects partially over-
lapped with urban areas, they were moved away from the settlement until no overlap occurred
to improve accessibility. Random transects were conducted between 20.11.2017 and
24.11.2017. In this study area, we used fewer, more experienced observers and thus only
applied expert validation for scats considered uncertain.

As a second method, we conducted a faeces count along linear transects oriented alongside
linear landscape features, a sampling strategy that has been used previously to monitor fox
abundance (cf. [22]). Transects of 1.3km in length (equal to the random transect length) were
allocated beforehand within each plot (N = 40) using GIS software along linear landscape
structures such as groves, hedges, ditches and forest edges, identified using geodata and aerial
imagery. Unpaved and paved roads were avoided due to the large differences in availability
within each plot and the high presence of dog walkers (and associated potential of scat
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misidentification). Apart from transect allocation, the field protocol was analogous to random
transect sampling. Transects were conducted between 06.02.2018 and 08.02.2018.

Finally, we deployed one camera trap at each plot in both rounds as a third method and left
it operational for at least 21 days between 14.11.2017 and 13.12.2017 and between 31.01.2018
and 23.02.2018, respectively. Cameras were placed outwards from the plot centre along the
closest suitable linear landscape feature (i.e. groves, hedges, ditches and forest edges): this
design allowed to standardize detection probability and enhance encounter rate, as foxes were
hypothesized to use such structures for movement within otherwise very open landscapes. A
different site was chosen in the second round to maximize the coverage of environmental vari-
ability and reduce site effects. Cameras were set up at approximately 20cm above the ground
on trees or using wooden poles if no trees were present. At each location we recorded the type
of linear structure (four types), the type of ground cover at the camera plot (five types) and
proximity to roads (paved and unpaved) to control for potential differences in detection prob-
ability among sites. Sample sizes for session C were N =77 (38 + 39) camera sites, N = 40 ran-
dom transects and N = 40 transects along linear features.

Data preparation

For transects and scat plots during all sessions, we summed the number of faeces found per
plot ID to obtain the faeces count-based RAIs. Scats of all three classes (i.e. A-C) were consid-
ered in the RAIs.

With regards to camera trap data, we downloaded images from each camera in each study
session and sorted images at the species level. We then extracted the image metadata using the
package camtrapR [34] in R [35] and grouped image sequences into events using a break value
of 5 minutes between images as a conservative value based on visual assessment of the images.
All fox events were exported and assigned to their respective plot ID before being summed as
the number of fox events per trap station. For each camera, we finally calculated the number of
active trap nights (i.e. nights that the camera was operational in the field) using the recorded
images to determine periods during which cameras were not operational. This procedure was
applied to all camera traps during all sessions.

Environmental predictors. We assigned environmental predictors to all our RATs at the
spatial scale of the plot.

For session A, a circle of 250m radius around camera locations and transect centres was
chosen (i.e. area of 19.6 ha), since this is the smallest circle containing the transect triangles as
well as the half-distance between plot centres. We did not choose a larger radius to avoid over-
lap between plots as we were aiming to depict local variation in abundance. For session B, we
used the size of the quadrat scat plot (i.e. 500x500m, area of 25 ha) to assign environmental
data to the scat plots, but for the camera method we followed the procedure as in session A.
For both sessions we extracted the elevation above sea level, the mean distance to human settle-
ments of the plot (including single farms) and quantified landscape heterogeneity using the
Shannon Index [32,36] with the proportions of the four land cover types in the study area (i.e.
forest, pasture, arable, settlement) at the scale of a mean fox home-range in the area (i.e. 200ha,
r =~ 800m; [28])

Similarly, for session C a 250m buffer was defined around each camera location. Faecal
counts were, however, processed differently to better compare both transect methods within
plots of session C. We extracted environmental covariates in a 75m buffer around the transect
lines for both transect types (i.e. aiming for a buffer size of 20ha as for the camera method).
Due to the different landscape composition and terrain of the study area in session C (i.e. no
elevation difference, different landscape matrix), we extracted the proportion of the plot
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covered by forest and settlements, respectively, and calculated the Shannon Index of landscape
heterogeneity as described above.

Data analysis

We assessed the performance of the different methods in all three seasons with respect to their
ability to detect and reflect relationships with environmental covariates of abundance, the
quality of the resulting data (measured as: dispersion, percentage of zeros), as well as the cost
and effort of the method.

Relationships with environmental covariates. We analysed our RAIs from all sessions in
dependence of an environmental covariate known to be related to fox abundance to evaluate the
ability of the method to reflect and test for differences in habitat and landscape related patterns
and assess whether the resulting patterns corresponded well amongst the methods. We used the
Shannon Index of land cover diversity, as this predictor is known to be closely related to varia-
tion in both camera- and scat-based RAIs for foxes in our study area [24,32]. We fitted general-
ized linear models (GLM) with negative binomial distribution of errors and the abundance
index as a response for each RAI method. The Shannon Index of land cover diversity was
included into each model for comparison across methods. We also included a set of additional
environmental predictors at the plot scale into each global model to control for differences in rel-
ative abundance between plots. For sessions A and B we included the elevation of the plot and
the mean distance of the plot to human settlements into each global model. For session C we
included the proportion of plot area covered by settlements and forests into all global models. A
number of further control variables were included to account for differences in detection proba-
bility between plots. For the camera-based RAIs: the type of track at the trap site (large track vs.
small trail) and the ‘%Resistance’ around the camera site (r = 20m) in session A & B and the type
of linear landscape feature used for camera placement (four types), the type of ground cover at
the camera plot (five types) and the round of fieldwork (November vs. February) for cameras in
session C. For all camera methods we also included the number of active trapnights as a model
offset. For the scat-based RAIs we included observer ID into the models to account for differ-
ences in detection probability between observers. We standardized all continuous predictors by
subtracting the mean and dividing by the standard deviation to allow for comparison of effect
sizes. GLMs were fitted using the MASS library [37]. We then performed AIC-based stepwise
model selection on each global model selecting the model with the lowest AIC value while hold-
ing the predictor Shannon diversity fixed in all models. We calculated Pseudo-R? for each
method as R* = 1 — Reldual Daviance 5 5 coarse indication of variance explained by our covariates.

Data quality. For each RAI, we measured data quality using variability and precision (i.e.
dispersion of the data) and the proportion of zeros in the dataset. In order to assess the disper-
sion of the data we quantified the mean and variance of the negative binomial distribution esti-
mated by the models. The variance of the negative binomial distribution can be defined as var
(Y) = u + a * 4> [38] and the dispersion parameter o as o = 7 with 0 being estimated by the
model: Accordingly, the data exhibit larger spread around the mean with increasing o and
increasing mean. To compare precision between methods we report the o parameter and cal-

(r

culated the coefficient of variation (CV) as CV = %, since data were on different scales and

the CV provides a standardized (i.e. dimensionless) measure of dispersion. We plotted the
empirical probability density function in comparison to the negative binomial function pre-
dicted by the model. We also calculated the proportion of zeros (i.e. no fox signs detected at a
plot) for each RAI method.

Cost and effort quantification. We quantified field effort and costs based on the mean
costs of conducting a single plot and then standardized cost estimates to an effort of 100 plot
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sites for each method by multiplying the costs. We assessed the effort as the mean number of
staff working hours per plot and the cost as the sum of material costs and wages for each plot.
We used a wage estimate of 240€ per day (8h) for a qualified worker in our study region [24].
We used 250€ as a price estimate for a mid-range motion triggered infrared wildlife camera
including accessories (e.g. SD card, locks). We included working hours for post processing (i.e.
downloading and identifying fox images) into each estimate, which averaged 0.25h / camera
trap for processing and sorting images (this estimate is likely quite low, owing to the compara-
tively small number of pictures/trap in our data; Table C in SI Appendix) and 0.1h / transect or
scat plot for multi-observer validation of faeces. Transportation costs to and from the plot sites
as well as working hours needed to delineate plot locations were assumed to be equal across
methods and are thus not included in our estimates. We provide cost estimates for an initial
sampling session (i.e. including full initial material costs) and a subsequent session with existing
technical equipment and only running equipment costs (i.e. mainly labour costs).

Results

Table 1 provides an overview of dispersion, data quality and cost per plot. Overall, camera data
had larger means and thus larger variance than the faecal count methods during all sessions in
both study areas (Table 1; Fig 2). This is reflected by a larger o parameter for camera data than
faeces-based methods, but this pattern is not evident for the coefficient of variation. Random
transects had the lowest mean and the highest percentage of zeros in the data, regardless of the
study area (43.9 and 50.0%; Table 1). Scat plots and transects along linear features had the
smallest o values (Table 1). CVs were highest for random transects in session A and camera
traps in session B and C. Cameras in session A and transects along linear features in session C
had an intermediate CV. CV was lowest for the scat plot method.

Costs per plot were lowest for random transects for an initial sampling session (Table 1).
Costs for camera trapping were, however, much lower than for all other methods in subse-
quent sessions, once equipment costs were removed (Table 1). Average costs for 100 plots
were thus €27040 for camera trapping, €9450 for scat plots and €4950 (session A) or €4350

Table 1. Descriptive statistics on dispersion and effort for each method in all three sessions. Variance estimates are provided for the raw data (naive) and as obtained
from the final models assuming a negative binomial distribution (negbin). Cost per plot is estimated as the sum of costs for material and personnel (excluding travel; see
method section) and provided for both a first session and any consecutive session. A more comprehensive version of this table can be found in Table A in S1 Appendix.
Note that the methods have different units: Camera traps (CT): number of fox events over 21 days; Random and linear transects: number of scats per transect; Square scat

plots: number of scats per plot.

Session A Session B Session C
CT Random Transect CT Square Scat Plot CT Random Transect Linear features
Mean 7.94 1.12 4.38 3.88 4.36 0.68 1.68
Median 5.46 1.00 2.17 3.00 2.86 0.50 1.00
Var (naive) 81.4 2.10 31.1 11.1 45.7 0.64 4.02
Var (negbin) 67.3 1.89 32.5 8.21 30.7 - 2.46
6 (negbin) 1.20 1.65 1.04 3.47 1.08 - 3.56
o (negbin) 0.83 0.61 0.96 0.29 0.93 - 0.28
(®\% 1.03 1.23 1.30 0.74 1.27 - 0.93
Min 0 0 0 0 0 0 0
Max 59 7 34 23 50 3 9
% Zeros 6.8 43.9 17.8 4.9 24.7 50.0 27.5
Hours / plot 0.6 1.6 0.6 3.1 0.6 1.4 1.4
Cost / plot 1% 270.4€ 49.5€ 270.4€ 94.5€ 270.4€ 43.5€ 43.5€
Cost / plot (2"d) 20.4€ 49.5€ 20.4€ 94.5€ 20.4€ 43.5€ 43.5€

https://doi.org/10.1371/journal.pone.0207545.t001
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(session C) for transect in the initial session. Costs were reduced to €2040 for camera trapping
in each subsequent session, while they remained the same for all other methods. In session C,
3.75% of the traps were stolen, representing an additional cost of €9.38 for each plot or €938
for each consecutive session of 100 plots. No camera was stolen in session A and B.

Model results

The negative binomial probability density distributions estimated by the models fit the empiri-
cal data distributions well (Fig 2), with the exception of random transects in session C, where
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Fig 2. Overview of the results obtained by the methods in each session. Each column corresponds to one method with letters representing the sessions A-C, while
rows contain different evaluation metrics for the RAI methods. a) Boxplot of the distribution of raw RAI values (camera data standardized to 21 trapnights); b)
Conditional effect plots of the relationship of the predictor Shannon Index of land cover diversity (x-axis)with the RAI as predicted by the final models, with all other
predictors set to the mean. A bold line indicates a significant effect in the model. Note the different range of Shannon values in landscapes of session C; ¢) Empirical
and predicted probability density functions for the RAI values (x-axis) obtained from each method. Final models for each method were used for the predicted PDF
assuming a negative binomial distribution of the data. *Y-axis scaling in a) omits 4 (Cam A; 3.0%) and 2 (Cam C; 2.6%) RAI values > 36.

https://doi.org/10.1371/journal.pone.0207545.9002
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Table 2. Model results of the best model for each method in each session. Parameter estimates and associated standard errors (in brackets) are provided for each
model. Asterisks indicate term significance in the model. For abbreviations see method section. The first half of the table contains environmental predictors at the plot
level, the second half site specific control variables and other covariates of detection probability retained in the models. For brevity, we only report whether control vari-
ables were included in the model. Comprehensive parameter estimates are reported in Table B in S1 Appendix.

Intercept
Shannon
Elevation
Dist. Settle.
Prop. Settle
Prop. Forest

%Resistance
Small trail
Observer ID
Ground cover
Type of feature
Round 1 vs. 2
Model R?

https://doi.org/10.1371/journal.pone.0207545.t1002

CT

2.16*
(0.24)

0.25 *
(0.02)

-0.06 *
(0.02)

0.09

Session A Session B Session C
Random Transect CT Square Scat Plot CT Linear features
0.07 1.87* 134~ 2.54* 0.36
(0.12) (0.02) (0.08) (0.08) (0.29)
0.31* 0.11* 0.03 0.44* 0.01
(0.12) (0.02) (0.08) (0.03) (0.16)
- -0.18* -0.18* - -
(0.02) (0.09)
- 0.05* - - -
(0.02)
- - - 0.22* -
(0.03)
= . - 0.70 * -0.34
(0.06) (0.19)
v
v
v
v
v
v
0.06 0.15 0.06 0.37 0.28

data quality did not allow model convergence (i.e. 50% zeros in the data). Accordingly, we
only provide model results for the remaining six methods in three sessions. An overview of the
final models is shown in Table 2. The Shannon Index of land cover diversity had a positive
relationship with the RAI for each method and both study areas, but the slope was not signifi-
cant for the scat plot method in session B and transects along linear features in session C (Fig
2). The effect size of the Shannon Index was larger for camera based RAIs than for transect
methods (regardless of the study area) and largest for the camera model in session C, followed
by session A (Fig 2). Elevation had a significant negative relationship with RAIs in session A
and B, except for the random transect method in session A for which the final model only
included the Shannon Index. There was a significant but small negative effect of distance to
settlements in the final model of camera RAISs in session B. The final model for camera RAIs in
session C included a significant negative relationship with the proportion of urbanized area in
the plot and a significant positive relationship with the proportion of forest in the plot. The
effect of forest cover was retained in the final transect model for session C with a negative
slope, but the slope estimate was not significant.

Discussion

In this study, we compared the relative performance of several commonly used RAI methods
in two study landscapes, montane forests and agricultural lowlands, with respect to data qual-
ity, cost and the ability to depict small-scale variation in fox abundance in relation to selected
environmental characteristics. A decision tree for choosing the appropriate method in specific
contexts based on our findings is included in the supplements (Figure A in S1 Appendix).
While mean and variance were lower for scat-based than for camera-based methods, sur-
prisingly there were no clear differences in precision between the methods as indicated by the
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coefficient of variation, in contrast to previous work [24]. When random transects were used
in study sites similar to ours, they yielded high precision and offered the possibility to depict
significant differences in RAIs between study areas [26]. Furthermore, in our study low means
were associated with a high proportion of zeros for random transects in both sessions. By con-
trast, camera data and linear transects in session C had comparable (moderate) percentages

of zeros, while scat plots and camera data in session A and B were characterized by low to
intermediate amounts of zeros. However, assumptions of equal detection probability across
different sites when comparing RAIs are problematic [11], thus we refrained from testing for
differences in absolute RAIs between study areas and limit our evaluation to comparison of
different performance metrics. Nonetheless, mean RAIs were comparable for random tran-
sects in the Black Forest and transects along linear features in the Rhine valley, but the linear
feature method had a more balanced empirical distribution (Fig 2C) and fewer zero values.
The random transect method in the Black Forest successfully captured variation in abundance
related to landscape composition, albeit with a very small effect size, whilst transects along lin-
ear features did not, even though the range of the landscape predictor (i.e. Shannon Index)
was much larger in session C (Fig 2). Conversely, random transects in session C were charac-
terized by a very low mean and an extreme proportion of zero values in the dataset (i.e. 50%),
to a degree that was prohibitive for analysis. This value would have increased, if only scats of
high identification certainty had been included in the analysis. Since foxes occur anywhere

in both study areas, zeros in the dataset most likely represent ‘false’ zeros (i.e. failure of the
method to detect the animal). This is supported by successful fox detection by the camera
traps in those plots where no scats were found (e.g. in session A 42 of 46 zeros identified as
false zeros by cameras in the same plot). While zeros are an intrinsic realisation of the assumed
probability distribution and not per se adversely affecting analyses, excessive amounts of ‘false’
zeros strongly reduce the information content of the data, impose unnecessary burdens of fac-
toring in (potentially immeasurable) control variables of detection probability and thus chal-
lenge the appropriateness of a method given the high field effort involved. The amount of zero
in the data will, however, be related to the size of the plot searched for faeces. This is reflected
in the results of the scat plot method, which had larger means and higher precision when com-
pared to the other faeces count-based methods, resulting in a mean similar to camera data, but
at higher precision (Table 1, Fig 2C) and the lowest proportion of zeros in the dataset. This
method was, however, not sensitive to the environmental predictors used in this study (except
elevation; Table 2). While this may be related to the spatial scale of the plot, scat plots were
only 20 per cent larger than camera plots and random transect plots (i.e. 20ha vs. 25ha), which
were both able to capture a significant relationship of local abundance with landscape hetero-
geneity in the Black Forest (session A&B; Table 2). While both cameras and faeces-based RAIs
responded well to environmental covariates when studying landscape scale differences in
abundance [24], in our study only camera traps were able to always capture variation in local
abundance related to landscape heterogeneity in both study areas (Table 2, Fig 2B). Overall,
study sites within the Black Forest study area covered a relatively small gradient of landscape
heterogeneity (i.e. compare predictor ranges in Fig 2B). Therefore significant relationships
reported by the models are likely reflecting local, small-scale variation in abundance. Faeces-
based methods generally appear less capable of capturing this local variation (i.e. small effect
for random transects, no effect for scat plots), potentially indicating that scat deposition is
either random and thus not indicative of local variation in abundance at this density, highly
decoupled from local abundance (i.e. because it serves as a territory marker) or that the gradi-
ent of landscape heterogeneity covered by the study sites falls within a value range of low vari-
ability in the index value due to a non-linear relationship with true abundance (e.g. positive
quadratic).
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In general, RAIs obtained by camera traps are sensitive to differences in detection probabil-
ity that are related to choice of camera location and site characteristics, which need to be
accounted for. In our study, this was reflected in the number of detection covariates retained
after model selection (Table 2) as compared to other methods.

With regards to costs and effort, faeces count-based methods were cheaper than camera
traps for an initial sampling session, but camera traps had much lower costs for long-term
research or monitoring (i.e. 213-463% lower, depending on the method). When considering
upscaling of wildlife monitoring to a larger number of studies sites, methods should either be
less labour-intensive or, if labour-intensive, comparatively simple in order to make efficient
use of volunteer field assistants [12]. Although the choice of larger scat plots removed the issue
of excessive zeros in the data while retaining comparatively high precision (Table 1), this
method was associated with significant field effort and cost (i.e. 3 man hours per plot). This
may be prohibitive for application in large-scale monitoring or if monitoring of fox abundance
is only one of several objectives of the study. Conversely, camera trap deployment was less
time consuming (371-857% faster per plot than faeces-based methods; 233-516% when
including post-processing time), strongly decreasing the number of personnel required and
thus the dependency on volunteers. It is worth noting, however, that if cameras are set to
record large numbers of pictures per session post-processing may become a significant cost.
Also, camera traps are potentially subject to technical failure, manipulation and theft-espe-
cially in densely populated areas. Yet, camera traps remained the cheapest method in the long
run even after accounting for theft.

In either case, the performance of faeces-count based methods in this study supports their
use for studies aiming at paired testing of differences in local abundance between study sites of
equal landscape composition and otherwise similar detection probability, rather than for stud-
ies with a design that requires accounting for influences of landscape composition on local
abundance. In this context, camera trap-based methods appear to provide more flexible data
as long as differences in detection probability due to camera setup and camera site can be stan-
dardized and accounted for. Such standardized camera data are also not subject to identifica-
tion error or observer bias, while faeces-based methods are influenced by identification
uncertainty (i.e. similarity to marten or domestic dog scat) and differences in search efficiency
between observers. While faeces count-based methods are relatively easy to conduct with the
help of trained volunteers (e.g. students, hunters), the effects of differences in observer qualifi-
cation on scat detection rates and identification certainty are unknown and potentially difficult
to quantify. Misidentification rates of expert observers were low in previous studies in our
study area (e.g. 4.8% in [26]). In our study, we used multi-observer validation of the doubtful
scats to account for differences in identification certainty, but inter-observer variation in
detection rates remained impossible to quantify. Finally, camera traps can produce RAIs for a
variety of species apart from the focal species, which may be useful for monitoring of multiple
species, as long as assumptions of detection probability with regards to camera design (e.g. in
our case detectability of the species on tracks) hold for all species within the study area [11].
While faeces-based methods are potentially capable of detecting other species as well, the rela-
tionship of scat frequency with true abundance as well as assumptions regarding scat place-
ment and detectability need to be assessed on a case by case basis. Finally, another advantage
of camera traps may be that the resulting RAI data (i.e. counts of detection events over time)
could be used with one of the emerging methods to estimate absolute density without the need
for individual recognition-such as the random encounter model [7], the Bayesian spatial
count model for unmarked populations [8] or the recently proposed time- and space to event
models [9]-but data analysis may be challenged by the need to fulfil method specific assump-
tions, some of which may be impractical to achieve. Accordingly, the choice of the appropriate
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method will depend on the environmental context and the objectives of the study under
explicit consideration of the respective advantages and weaknesses of each method (Figure A
in S1 Appendix).
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S1 Appendix. Supporting information for Kimmerle et al. Methods for assessing small-
scale variation in the abundance of a generalist mesopredator.
(DOCX)

S1 Data. Red fox RAIs and model data in three study sessions.
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