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Abstract

Driver mutations are the genetic variants responsible for oncogenesis, but how specific

somatic mutational events arise in cells remains poorly understood. Mutational signatures

derive from the frequency of mutated trinucleotides in a given cancer sample, and they pro-

vide an avenue for investigating the underlying mutational processes that operate in cancer.

Here we analyse somatic mutations from 7,815 cancer exomes from The Cancer Genome

Atlas (TCGA) across 26 cancer types. We curate a list of 50 known cancer driver mutations

by analysing recurrence in our cohort and annotations of known cancer-associated genes

from the Cancer Gene Census, IntOGen database and Cancer Genome Interpreter. We

then use these datasets to perform binary univariate logistic regression and establish the

statistical relationship between individual driver mutations and known mutational signatures

across different cancer types. Our analysis led to the identification of 39 significant associa-

tions between driver mutations and mutational signatures (P < 0.004, with a false discovery

rate of < 5%). We first validate our methodology by establishing statistical links for known

and novel associations between driver mutations and the mutational signature arising from

Polymerase Epsilon proofreading deficiency. We then examine associations between driver

mutations and mutational signatures for AID/APOBEC enzyme activity and deficient mis-

match repair. We also identify negative associations (odds ratio < 1) between mutational sig-

natures and driver mutations, and here we examine the role of aging and cigarette smoke

mutagenesis in the generation of driver mutations in IDH1 and KRAS in brain cancers and

lung adenocarcinomas respectively. Our study provides statistical foundations for hypothe-

sised links between otherwise independent biological processes and we uncover previously

unexplored relationships between driver mutations and mutagenic processes during cancer

development. These associations give insights into how cancers acquire advantageous

mutations and can provide direction to guide further mechanistic studies into cancer

pathogenesis.
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Author summary

Cancer develops when cells acquire somatic driver mutations that confer a growth advan-

tage. The origins underlying the development of many of these mutations remain largely

unknown. Mutational signatures represent the frequency of different somatic mutations

across a genome and can be used to characterise the mutational processes that have oper-

ated over time within an individual cancer. In this study, we use mutational signatures as

a tool to identify associations between mutational processes and cancer-causing mutations

known as drivers. We hypothesised that in some cases a driver mutation would be the

underlying cause of an associated signature. In other cases, the altered trinucleotide pref-

erences arising from a signature would have increased the likelihood of the associated

driver mutation arising. We determine which scenario is most likely to be the case by

examining the trinucleotide context of each driver mutation. Here we identify 39 signifi-

cant associations using a cohort of 7,815 cancer exomes. We examine known and novel

associations between driver mutations and mutational signatures arising from processes

such as defective proofreading during DNA replication, AID/APOBEC enzyme-associ-

ated mutagenesis and deficient mismatch repair. Our study explores important relation-

ships that can inform our understanding of the complex pathogenic history associated

with cancer development.

Introduction

Cancer occurs following the accumulation of somatic mutations within cellular DNA [1].

Somatic mutations can arise as a result of exposure to external DNA damaging agents, or as a

consequence of internal errors in DNA replication or repair [2]. Cells undergo malignant

transformation following the acquisition of a subset of somatic mutations, termed driver

mutations [3]. Driver mutations confer a growth advantage to cells, and subsequently undergo

positive selection in a population. Driver mutations typically affect certain cancer-associated

genes by, for example, activating an oncogene or inactivating a tumour suppressor gene.

Research in recent years has led to the identification of hundreds of driver mutations in can-

cer-associated genes, but only a handful of driver mutations are sufficient for oncogenesis in a

single cancer sample [4]. Driver mutations form in the cancer genome alongside potentially

hundreds of thousands of passenger mutations [3]. Passenger mutations are not directly

involved in cancer progression and do not confer a selective advantage.

One method developed to characterise the spectrum of mutations that have accumulated

in an individual cancer genome is to determine which mutational signatures are present in

that sample’s DNA. Mutational signatures are displayed according to six substitution types

(C>A, C>G, C>T, T>A, T>C and T>G) in the context of all trinucleotide combinations,

thus representing each of the 96 possible mutation frequencies. Thirty mutational signa-

tures have been curated following Alexandrov et al [5] at the ‘Signatures of Mutational Pro-

cesses in Human Cancer’ website, hosted by the Catalogue of Somatic Mutations in Cancer

(COSMIC) database [6, 7]. These signatures reveal which mutational processes have been

operative in a cancer genome, as these processes leave a characteristic imprint on the muta-

tional profile [5, 8]. The underlying aetiology of many of these mutational signatures has

already been defined. Some signatures have been attributed to defective DNA replication or

repair, and others to particular exogenous or endogenous mutagenic processes [5, 8, 9]. The

final mutational landscape in any cancer genome will be determined by the strength and
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exposure duration of each mutational process, which will result in a unique combination of

mutational signatures [5, 8].

A recent study suggested that approximately two-thirds of mutations in human cancers

arise due to errors in DNA replication occurring over time [10]. Even cancers that have a

strong environmental component therefore still harbour mutations incurred by unavoidable

DNA replication errors [10]. Relatively little research has focused on investigating which spe-

cific driver mutations typically arise due to factors associated with the environment, heritabil-

ity or DNA replication. We therefore undertook this study to determine the association

between common driver mutations and distinct mutational processes in human cancer. Many

mutational processes operating in cellular DNA alter the frequencies of mutation accumula-

tion at certain trinucleotide contexts, thus resulting in these definable mutational signatures

[5]. We hypothesised that these mutational preferences would increase the likelihood of cer-

tain driver mutations arising in the genome, revealing new insights into cancer pathogenesis.

We analysed somatic mutations accumulating in the exomes of 7,815 cancer samples from The

Cancer Genome Atlas (TCGA), across 26 cancer types. Combining 50 driver mutations with

30 known mutational signatures, we observed 39 significant associations at a false discovery

rate (FDR) of< 5%. Many of these associations have not previously been explored, and we

reveal relationships that improve our understanding of cancer development. Our findings

have the potential to inform new avenues of research into cancer treatment and prevention.

Results

Landscape of mutational signatures and driver mutations

Our curation and filtering criteria used to select samples for downstream analysis are detailed

in the Methods (see also S1 Fig). We selected a cohort of 7,815 samples across 26 cancer types

for analysis (Tables 1 and S1). These samples harboured a median of 100 single nucleotide

somatic variants per exome.

We identified mutational signatures in these samples by using the Sigfit [11] R package. We

found that mutational signatures in our cohort were comparable with signatures previously

defined in similar cohorts [5] (S2 Fig). For example, Signature 1 exhibits clock-like properties,

and the number of mutations in this signature correlates with age across a majority of cancer

types [5, 12]. Signature 1 was the most common mutational signature that we identified, con-

tributing an average of 6.21% toward all mutational signatures measured across our cohort.

Considering a mutational signature to be present if it contributes > 5% toward the entire

mutational load of a sample, we found signature 1 to be present in 35% of all samples

(n = 2,750). Signatures 2 and 13 were the next most common mutational signatures that we

identified (5.80% and 6.19%, respectively). These signatures are associated with the activity of

activation-induced cytosine deaminase (AID) and apolipoprotein B mRNA editing enzyme

catalytic polypeptide-like (APOBEC) enzymes [5, 13]. We found signature 2 in 26% (n = 2,016

samples) and signature 13 in 30% (n = 2,343 samples) of all samples examined.

By investigating recurrence of mutations in known cancer driver genes (see Methods and S1

Fig), we selected 50 driver mutations for potential association with mutational signatures (S2

Table). These mutations alter 21 different genes, with TP53 (n = 10), KRAS (n = 7), PIK3CA
(n = 4) and PTEN (n = 4) harbouring at total of 50% of all of the driver mutations selected. We

next defined the landscape of somatic driver mutations across the cancer samples in our cohort

(Fig 1). Focusing on the most common driver mutations, we found ten mutations present

in> 10% of samples in at least one cancer type. These mutations include BRAF p.V600E, which

was also the most common driver mutation in our cohort (n = 287). The BRAF p.V600E muta-

tion was most frequent in skin cutaneous melanoma and thyroid carcinoma, affecting 43%
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(n = 193) and 56% (n = 29) of samples respectively. Of the other frequent mutations, four muta-

tions altered KRAS amino acid G12, primarily affecting colorectal, lung and pancreatic adeno-

carcinomas. PIK3CA (p.E545K and p.H1047R) and TP53 (p.R248Q and p.R273C) harboured

two highly frequent mutations each, and IDH1 p.R132H was most frequent in brain lower

grade glioma (57%, n = 116). Taken together, we found these driver mutations to generally rep-

resent known frequencies in other cancer cohorts [3, 14, 15].

Significant associations between mutational signatures and driver

mutations

After quantifying the landscape of driver mutations and mutational signatures amongst the

cancer samples in our cohort, we next sought to investigate whether any driver mutations

were significantly associated with the presence or contribution of any mutational signa-

tures. To exclude potentially spurious associations, we only examined associations in

which � 10 samples in a given cancer type harboured the driver mutation of interest,

and� 10 samples in that same cancer type harboured the signature of interest at a frequency

of � 20%. Subsequently, we tested 411 associations for statistical significance (S3 Table),

examining a total of 15 cancer types and 13 mutational signatures across the 50 driver muta-

tions. We performed a binary univariate logistic regression analysis to test each association

Table 1. Cancer types, abbreviations and cohort sizes for the whole-exome sequenced samples analysed in this study.

Cancer types Abbreviation Number of samples Fraction of cohort (%)

Adrenocortical carcinoma ACC 43 0.55

Bladder urothelial carcinoma BLCA 398 5.09

Breast invasive carcinoma BRCA 805 10.3

Cervical squamous cell carcinoma and endocervical adenocarcinoma CESC 296 3.79

Cholangiocarcinoma CHOL 42 0.54

Colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ) CRC 553 7.08

Lymphoid neoplasm diffuse large B-cell lymphoma DLBC 48 0.61

Esophageal carcinoma ESCA 180 2.3

Glioblastoma multiforme GBM 362 4.63

Head and neck squamous cell carcinoma HNSC 490 6.27

Kidney renal clear cell carcinoma KIRC 290 3.71

Kidney renal papillary cell carcinoma KIRP 243 3.11

Brain lower grade glioma LGG 202 2.58

Liver hepatocellular carcinoma LIHC 355 4.54

Lung adenocarcinoma LUAD 536 6.86

Lung squamous cell carcinoma LUSC 487 6.23

Mesothelioma MESO 46 0.59

Ovarian serous cystadenocarcinoma OV 420 5.37

Pancreatic adenocarcinoma PAAD 117 1.5

Prostate adenocarcinoma PRAD 191 2.44

Sarcoma SARC 212 2.71

Skin cutaneous melanoma SKCM 450 5.76

Stomach adenocarcinoma STAD 418 5.35

Thyroid carcinoma THCA 52 0.67

Uterine corpus endometrial carcinoma UCEC 525 6.72

Uterine carcinosarcoma UCS 54 0.69

https://doi.org/10.1371/journal.pgen.1007779.t001
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and defined significance at P< 0.004 (FDR < 5%; see Methods and S3 Fig). After reciprocal

negative associations were excluded (see Methods), we found 39 significant associations

between driver mutations and mutational signatures (Table 2 and summary in Fig 2).

These associations arose across 11 cancer types, affecting 9 mutational signatures and 18

driver mutations from 11 different genes (Table 2). We found the highest numbers of sig-

nificant associations in uterine corpus endometrial carcinoma (n = 13) and colorectal ade-

nocarcinoma (n = 6; Table 2). Of the total of 39 significant associations that we observed,

two were significant negative associations (odds ratio < 1; Table 2). These negative associa-

tions arose between signature 1 and IDH1 p.R132H in brain lower grade glioma and glio-

blastoma multiforme (Table 2).

We validated a subset of our findings using an independent whole-exome sequenced cancer

cohort of 619 colorectal cancer samples published in [16]. Using somatic mutations from this

cohort, we examined the statistical relationship between mutational signatures and driver

mutations for each of the six associations that we found to be significant in colorectal cancer in

our existing analysis using TCGA data (Table 2). Validating these colorectal cancer results

from our current study with this independent cohort, we found 5 of the 6 tested associations

to be significant at P = 0.0072 or below (S4 Table).

Fig 1. Heat map depicting the frequency of driver mutations within each cancer type analysed. Mutation frequency

within each cancer type ranges from light red (0%) to dark red (� 10% of samples), with driver genes indicated on the

y-axis. Cancer types are clustered across the x-axis. See Table 1 for the full cancer type name that corresponds to each

of the abbreviations listed on the x-axis.

https://doi.org/10.1371/journal.pgen.1007779.g001
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Table 2. Significant associations between mutational signatures and driver mutations within individual cancer types, alongside proposed aetiology and frequency

of the trinucleotide context in the associated mutational signature.

Mutational

signature

Proposed aetiology of mutational

signature�
Driver mutation Protein

change

Odds ratio

(OR)

Cancer

type#

Mutated samples in

cancer type (%)

Trinucleotide

context

Frequency of

trinucleotide

context in

signature^

Amount

(%)

Rank

Signature 1 Spontaneous deamination of

5-methylcytosine

IDH1
c.395G>A

p.R132H Less than 1 GBM 4.97 A[C>T]G 17.16 High

IDH1
c.395G>A

p.R132H Less than 1 LGG 57.43 A[C>T]G 17.16 High

Signature 2 Activity of the AID/APOBEC family of

cytidine deaminases

PIK3CA
c.1633G>A

p.E545K Greater than

1

LUSC 3.29 T[C>T]A 41.99 High

PIK3CA
c.1633G>A

p.E545K Greater than

1

HNSC 4.9 T[C>T]A 41.99 High

PIK3CA
c.1633G>A

p.E545K Greater than

1

CESC 14.19 T[C>T]A 41.99 High

PIK3CA
c.1633G>A

p.E545K Greater than

1

BRCA 6.34 T[C>T]A 41.99 High

ERBB2
c.929C>T

p.S310F Greater than

1

BLCA 4.77 T[C>T]C 8.2 High

PIK3CA
c.1633G>A

p.E545K Greater than

1

BLCA 7.29 T[C>T]A 41.99 High

PIK3CA
c.1624G>A

p.E542K Greater than

1

LUSC 2.26 T[C>T]A 41.99 High

PIK3CA
c.1624G>A

p.E542K Greater than

1

BRCA 3.85 T[C>T]A 41.99 High

PIK3CA
c.1624G>A

p.E542K Greater than

1

BLCA 4.52 T[C>T]A 41.99 High

Signature 6 Defective DNA mismatch repair PIK3CA
c.3140A>G

p.H1047R Greater than

1

STAD 3.83 A[T>C]G 2.17 Low

KRAS c.38G>A p.G13D Greater than

1

UCEC 2.29 G[C>T]C 7.73 High

KRAS c.38G>A p.G13D Greater than

1

STAD 2.87 G[C>T]C 7.73 High

KRAS c.35G>A p.G12D Greater than

1

UCEC 6.29 A[C>T]C 1.63 Low

BRAF
c.1799T>A

p.V600E Greater than

1

CRC 9.22 G[T>A]G 0.06 Low

PTEN
c.697C>T

p.R233� Greater than

1

UCEC 4.95 A[C>T]G 9.08 High

PIK3CA
c.3140A>G

p.H1047R Greater than

1

CRC 3.44 A[T>C]G 2.17 Low

Signature 7 Ultraviolet light exposure BRAF
c.1798G>A

p.V600M Greater than

1

SKCM 8.44 A[C>T]T 0.43 Low

Signature 10 Altered activity of the error-prone

polymerase POLE
POLE
c.857C>G

p.P286R Greater than

1

UCEC 4 C[C>G]T 0 Low

PIK3CA
c.263G>A

p.R88Q Greater than

1

UCEC 5.9 T[C>T]G 21.41 High

PIK3CA
c.263G>A

p.R88Q Greater than

1

CRC 2.53 T[C>T]G 21.41 High

TP53 c.637C>T p.R213� Greater than

1

CRC 2.17 T[C>T]G 21.41 High

PTEN
c.389G>A

p.R130Q Greater than

1

UCEC 4.76 T[C>T]G 21.41 High

ARID1A
c.5965C>T

p.R1989� Greater than

1

UCEC 3.81 T[C>T]G 21.41 High

(Continued)
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Acquisition of driver mutations associated with signature 10

To validate our methodology, we first investigated the six significant associations that we

observed between driver mutations and signature 10 across uterine corpus endometrial carci-

noma and colorectal adenocarcinoma (Table 2). Here, existing literature allows us to validate

many of the patterns of causality inferred from our regression results. Signature 10 arises in

cancers which harbour Polymerase Epsilon (POLE) exonuclease domain mutations. In our

study, we found the POLE p.P286R (c.857C>G) mutation to be significantly associated with

signature 10 in uterine corpus endometrial carcinoma (Table 2). The trinucleotide context of

this mutation (C[C>G]T) is not frequently observed in signature 10 (Fig 3A), supporting

existing literature that demonstrates the POLE p.P286R mutation to underlie many instances

of the presence of signature 10 in cancer [5, 17]. The remaining driver mutations that we

found to be significantly associated with signature 10 (PIK3CA p.R88Q, PTEN p.R130Q,

Table 2. (Continued)

Mutational

signature

Proposed aetiology of mutational

signature�
Driver mutation Protein

change

Odds ratio

(OR)

Cancer

type#

Mutated samples in

cancer type (%)

Trinucleotide

context

Frequency of

trinucleotide

context in

signature^

Amount

(%)

Rank

Signature 13

Activity of the AID/APOBEC family of

cytidine deaminases

PPP2R1A
c.536C>G

p.P179R Greater than

1

UCEC 4.38 C[C>G]C 0.09 Low

PIK3CA
c.1633G>A

p.E545K Greater than

1

BLCA 7.29 T[C>T]A 11.38 High

PIK3CA
c.1633G>A

p.E545K Greater than

1

HNSC 4.9 T[C>T]A 11.38 High

PIK3CA
c.1633G>A

p.E545K Greater than

1

BRCA 6.34 T[C>T]A 11.38 High

PIK3CA
c.1624G>A

p.E542K Greater than

1

UCEC 3.24 T[C>T]A 11.38 High

PIK3CA
c.1624G>A

p.E542K Greater than

1

LUSC 2.26 T[C>T]A 11.38 High

ERBB2
c.929C>T

p.S310F Greater than

1

BLCA 4.77 T[C>T]C 1.5 Low

PIK3CA
c.1633G>A

p.E545K Greater than

1

LUSC 3.29 T[C>T]A 11.38 High

Signature 14 Loss of mismatch repair and

polymerase proofreading

PTEN
c.389G>A

p.R130Q Greater than

1

UCEC 4.76 T[C>T]G 0.94 Low

Signature 20 Loss of mismatch repair and

polymerase proofreading

KRAS c.35G>A p.G12D Greater than

1

UCEC 6.29 A[C>T]C 2.22 Low

BCOR
c.4376A>G

p.N1459S Greater than

1

UCEC 5.14 A[T>C]T 0.73 Low

Signature 26 Defective DNA mismatch repair PIK3CA
c.3140A>G

p.H1047R Greater than

1

CRC 3.44 A[T>C]G 5.18 High

BRAF
c.1799T>A

p.V600E Greater than

1

CRC 9.22 G[T>A]G 0.14 Low

TP53 c.817C>T p.R273C Greater than

1

UCEC 2.1 G[C>T]G 2.25 Low

� Proposed aetiology obtained from refs [5] and [9] and ‘Signatures of Mutational Processes in Human Cancer’ curated by the Catalogue of Somatic Mutations in

Cancer (COSMIC) database [6, 7];
# List of abbreviations for each cancer type are given in Table 1;
^ Trinucleotide frequencies for mutational signatures are obtained from ‘Signatures of Mutational Processes in Human Cancer’ curated by the COSMIC database [6, 7].

Amount designates the percentage of all mutations in the signature that occur in the trinucleotide context of the specific driver mutation. The rank designates whether

that mutation in its trinucleotide context is high (amount > 5%) or low (amount� 5%) in the mutational signature.

https://doi.org/10.1371/journal.pgen.1007779.t002
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ARID1A p.R1989� and TP53 p.R213�) all occur in a T[C>T]G context (Table 2). This trinucle-

otide context is frequently mutated in signature 10 (Fig 3A), suggesting that these driver muta-

tions likely arose as a direct result of exposure to the mutagenic processes underlying this

signature. In fact, in colorectal cancer, TP53 p.R213� mutations have been suggested to arise in

response to POLE exonuclease domain mutation, where DNA methylation at this CpG trinu-

cleotide may further enhance the likelihood of mutation occurrence [18]. Endometrial cancers

with POLE exonuclease domain mutations have also been shown to exhibit a high prevalence

of TP53, ARID1A, PTEN and PIK3CA mutations [19]. By analysing the results of our study in

this way, we can demonstrate a likely pathway for oncogenesis via driver mutation accumula-

tion associated with signature 10. This pattern is demonstrated schematically in Fig 3B, and it

serves as an example for the associations that we subsequently explore in this study.

AID/APOBEC-associated mutagenesis associated with signatures 2 and 13

We found that a striking 36% (n = 14) of the associations that we identified arose between

driver mutations in PIK3CA and signatures 2 or 13 across six different cancer types. (Table 2).

Signatures 2 and 13 are attributed to the action of the AID/APOBEC family of cytidine deami-

nases [5, 13]. APOBEC activity has been implicated in the generation of specific PIK3CA
mutations at p.E542K (c.1624G>A) and p.E545K (c.1633G>A) [20], and we identified

Fig 2. Significant associations between driver mutations and mutational signatures within cancer types. Bars are coloured

according to cancer type. Negative associations (odds ratio< 1) are indicated with a hash (#). See Table 1 for the full cancer type

name that corresponds to each of the abbreviations listed in the legend.

https://doi.org/10.1371/journal.pgen.1007779.g002
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associations with both mutations in our study. Both mutations occur in the T[C>T]A context

that is frequently mutated in signatures 2 and 13 (Table 2 and Fig 3A). In fact, both of these

mutations match the extended context of the [T/C]TC[A/G] motif which has been established

for APOBEC3A binding in single-stranded DNA (ssDNA) [21]. In addition to the PIK3CA
mutations, we found signatures 2 and 13 to be associated with ERBB2 p.S310F (c.929C>T)

mutation in bladder cancer, and signature 13 to be associated with PPP2R1A p.P179R

(c.536C>G) mutation in uterine corpus endometrial carcinoma (Table 2). The broader con-

texts of these mutations, T[C>T]C and C[C>G]C respectively, do not match well with the

typical APOBEC3A/B mutational context. However, APOBEC enzyme mutagenesis has also

been shown to preferentially accumulate on ssDNA associated with lagging strand replication,

and with transcription bubbles [22–24]. In addition, biophysical studies have shown that APO-

BEC enzymes also preferentially bind cytosines that are within ssDNA stem-loops [21, 25].

Using ssDNA folding predictions (see Methods), we find that both of the cytosines mutated in

the ERBB2 and PPP2R1A drivers are predicted to be located at stem-loops, and that these

Fig 3. Trinucleotide context of driver mutations that are significantly associated with mutational signatures, and schematic depicting proposed mutation

accumulation associated with signature 10. (A) The trinucleotide contexts of significantly associated driver mutation are indicated by numbering on each signature plot.

Mutational signature images were generated using the Sigfit [11] R package. Negative associations (odds ratio< 1) are indicated with a hash (#). (B) Schematic diagram

depicting the proposed mechanism of driver mutation accumulation in Polymerase Epsilon (POLE) exonuclease domain mutated cancers harbouring signature 10.

https://doi.org/10.1371/journal.pgen.1007779.g003
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loops are greater than three bases in size (S4 Fig). Loops with a size greater than three bases

have been shown to aid APOBEC enzyme binding [25], with the APOBEC3A binding site

requiring bent ssDNA [21]. Confirmation of whether and how APOBEC3A/B binds and

mutates these DNA sequences will need to be experimentally validated. However, the associa-

tion with ssDNA and potential stem loop formation provides one possible explanation that

may account for the association of signatures 2 and 13 with these mutations.

Acquisition of driver mutations associated with signatures for mismatch

repair deficiency

We found 13 significant associations arising between driver mutations and mutational signa-

tures implicated in mismatch repair deficiency (signatures 6, 14, 20 and 26 [5, 9]; Table 2).

These associations arise in stomach and colorectal adenocarcinoma and uterine corpus endo-

metrial carcinoma, and they involve eight different driver mutations (Table 2). Interestingly,

only three of these eight mutations occur in trinucleotide contexts that frequently appear in

any of the mismatch repair deficiency signatures (Table 2). Among the remaining five muta-

tions is BRAF p.V600E, which is significantly associated with signatures 6 and 26 in colorectal

adenocarcinoma (Table 2). Signatures 6 and 26 are the only mutational signatures with signifi-

cant associations that represent mismatch repair deficiency alone [5, 9]. The mechanism

underlying the association between BRAF p.V600E and mismatch repair deficiency has not yet

been established to our knowledge. It is possible that this association arises because acquisition

of a BRAF p.V600E mutation predisposes otherwise normal cells to developing mismatch

repair deficiency, though this hypothesis requires further investigation. In support of this

hypothesis, BRAF p.V600E mutations do occur much less commonly in hereditary nonpolypo-

sis colorectal cancers [26]–cancers which frequently arise due to germline mismatch repair

defects. Our results suggest that many driver mutations in cancers with mismatch repair defi-

ciencies may arise independently from, or prior to, loss of mismatch repair. However, we note

that our analyses cannot eliminate the possibility that we have observed certain significant

associations because loss of mismatch repair increases the overall mutation rate in a given can-

cer genome, regardless of trinucleotide mutation context. Therefore, despite these mutations

less frequently arising as a result of mismatch repair defects due to their specific trinucleotide

contexts, they may become significantly associated either due to an altered rate of mutation

accumulation in mismatch repair deficient cancers or because they confer an overwhelming

selective advantage whenever they do occur.

Significant negative associations and inference to causality

Our analyses identified two significant negative associations (odds ratio < 1) where we found

no reciprocal positive associations (see Methods). These negative associations arose between

the IDH1 p.R132H driver mutation and signature 1, occurring in brain lower grade glioma

and in glioblastoma multiforme (Table 2). Demonstrating this negative association, we

observed a significantly lower proportion of signature 1 mutations in IDH1 p.R132H mutant

rather than wild-type brain lower grade glioma (P< 0.0001) and glioblastoma multiforme

(P< 0.001; Fig 4A) by two-sided Mann Whitney U-Test. Signature 1 is ubiquitous amongst all

cancer types and results from a common mutational process associated with increasing age [5,

12]. Consistent with our observed association, we found that patients with IDH1 p.R132H

mutated tumours in our cohort were generally younger than patients with IDH1 p.R132H

wild-type tumours. This association was significant in glioblastoma multiforme (P< 0.0001)

and was approaching significance in brain lower grade glioma (P = 0.052 by unpaired t-test;

Fig 4B). IDH1 mutations have been found to less commonly occur in older people with
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Fig 4. Associations of IDH1 p.R132H driver mutation with mutational signature 1 and with age at diagnosis of people with brain cancers. (A)

Proportion of mutations attributable to signature 1 and (B) age at diagnosis of people with tumours that are wild-type and mutant for IDH1 p.R132H in

brain lower grade glioma (LGG; left) and glioblastoma multiforme (GBM; right). Box plots show median and quartiles, with significance by two-sided

Mann Whitney U-Test in (A) and unpaired t-test in (B). ���� denotes P< 0.0001 and ��� denotes P< 0.001.

https://doi.org/10.1371/journal.pgen.1007779.g004
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glioblastoma [27, 28], and the results of our mutational signature analyses provide molecular

support for this finding in glioblastoma multiforme and brain lower grade glioma. While age

would increase the likelihood of any mutation arising by chance alone, our results suggest that

age might disproportionately favour the occurrence of mutations other than IDH1 p.R132H in

these brain cancers, or that this mutation confers a greater selective advantage in younger peo-

ple. In older people, brain cancers may develop via a pathway that is activated by other muta-

tional events that are age- or replication-associated.

In our analysis, we noted a negative association between signature 4 and KRAS p.G12D

(c.35G>A) in lung adenocarcinoma where P = 0.0075 (S3 Table), which is just above our

threshold for defining significance (P< 0.004). KRAS p.G12D transition mutations are the

most common KRAS somatic mutation arising in the lung adenocarcinomas of people who

have never smoked [29]. Further, people who have never smoked are more likely to have

KRAS p.G12D mutations in their lung cancers than are people who have smoked [30]. Signa-

ture 4 is associated with exposure to the mutagens in cigarette smoke [5], and for these reasons

we examined this observed association in more detail. We found that the association we

observed by regression was significant at P< 0.05 by two-sided Mann Whitney U-Test (Fig

5A). Interestingly, in lung adenocarcinomas from people with a recorded history of smoking,

we observed no significant difference between the number of pack years smoked by those with

and without KRAS p.G12D mutations (P = 0.831 by unpaired t-test; Fig 5B). Our results sug-

gest that increasing proportions of signature 4 mutations do not significantly impact on the

likelihood of a lung adenocarcinoma acquiring specifically a KRAS p.G12D mutation.

Fig 5. Association of KRAS p.G12D driver mutation with mutational signature 4 and with pack years smoked by people with lung adenocarcinoma. (A)

Proportion of mutations attributable to signature 4 in lung adenocarcinoma (LUAD) tumours that are wild-type and mutant for KRAS p.G12D. (B) Number of

pack years smoked by people with LUAD who have a previous history of smoking, in tumours that are wild-type and mutant for KRAS p.G12D. Box plots show

median and quartiles, with significance by two-sided Mann Whitney U-Test in (A) and unpaired t-test in (B). � denotes P< 0.05.

https://doi.org/10.1371/journal.pgen.1007779.g005
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Discussion

Many driver mutations arise from accelerated replication-associated errors

in cancer

It has been suggested that approximately two-thirds of mutations in cancer arise from DNA

replication errors [10]. The results of our study suggest that the altered trinucleotide muta-

tion preferences conferred by replication-associated mutational signatures can skew the

odds in favour of the acquisition of certain driver mutations (see Fig 3B). 36 of the 37 signif-

icant positive associations (odds ratio > 1) that we found in our study are between driver

mutations and mutational signatures 2 and 13 (deamination by APOBEC enzymes, which

can occur during replication), 6 and 26 (deficient mismatch repair during replication), 10

(proofreading deficiency by POLE during replication) and 14 and 20 (deficient mismatch

repair and proofreading by POLE). 24 of the 36 associations (66%) arising across cancer

types occur in cases where the trinucleotide context of the driver mutation frequently arises

in the associated signature, implying a possibly direct causal relationship between defective

DNA replication and occurrence of that driver mutation. In order for these mutational sig-

natures to become apparent in a genome however, normal replication must have become

disrupted, such that the process has accelerated within cancer cells to generate that muta-

tional signature. Some of the mutational signatures that we analyse in this study can arise

due to existing germline defects (for example, germline mutations in mismatch repair genes

or replicative polymerases) [31]. Similarly, it is possible that somatic events that are causal

in generating a replication-associated mutational signature arise as a result of exogenous

environmental mutagens (for example, APOBEC enzyme activity could be altered following

viral infection [20]). In these circumstances, it could be argued that the hereditary or envi-

ronmental defect was ultimately responsible for the generation of the specific driver muta-

tions that arose due to the defective DNA replication. Thus, the acquisition of many

common driver mutations may be the result of a complex pathogenic history originally aris-

ing from non-replication associated effects.

Associations between BRAF mutations and mutational signatures in cancer

Ultraviolet (UV) radiation has long been epidemiologically associated with the development of

melanoma. Mutagenesis associated with signature 7 is directly related to exposure of cells to

UV light [5]. We observed a significant association in our study between BRAF p.V600M

(c.1798G>A) and signature 7 in skin cutaneous melanoma (Table 2). While the A[C>T]T tri-

nucleotide context of the BRAF p.V600M mutation is infrequent (0.4%) within signature 7,

C>T transition mutations within a pyrimidine dimer context do generally characterise this

signature [5]. Of note, BRAF p.V600E mutations more commonly arise than p.V600M muta-

tions in melanomas [32]. The BRAF p.V600E (c.1799T>A) mutation is not a characteristic

C>T transition and various models have been proposed for how such mutations may result

from exposure to UV radiation [33, 34]. Interestingly, we did not find a significant association

between signature 7 and BRAF p.V600E in our study (P = 0.7086, S3 Table). Melanomas aris-

ing on skin without chronic sun-induced damage often harbour BRAF p.V600E mutations,

while those arising on skin with chronic sun-induced damage typically harbour other BRAF
mutations [35]. Additionally, BRAF p.V600E mutations are commonly found in tumours from

non-sun-exposed tissues such as thyroid and colorectal cancers, demonstrating that this muta-

tion can arise following mutagenic processes other than UV radiation exposure. In some mela-

nomas, and particularly those with a low contribution from signature 7, we suggest that BRAF
p.V600E mutations may also arise independently from UV radiation-associated mutagenesis.
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We note the possibility though, that some BRAF p.V600E mutations do arise as a result of

mutagenesis following UV radiation exposure, and that this mutation could then confer a par-

ticularly strong selective advantage over other pyrimidine dimer-associated mutations,

accounting for its observed recurrence in melanoma.

Relationship to recent published study

During the preparation of our manuscript we became aware of the publication of a similar

analysis [36]. In this study, Temko et al made use of TCGA exome sequencing data, together

with data from the International Cancer Genome Consortium (ICGC) for cancer driver and

mutational signature analysis. The authors used one-sided Mann Whitney U-Tests to examine

a selection of potentially correlated driver mutations and mutational signatures, discovering a

total of 56 unique significant associations across two analysis approaches. Our study applied

different filtering criteria to those of Temko et al when selecting which samples and driver

mutations to examine. Hence, in our study only 19 of those 56 associations were tested, of

which we found 16 of these 19 tested associations to be significant in our cohort. Conversely,

23 of the 39 significant associations in our study were not identified by Temko et al. Further

examination of their analysis reveals that they did not identify these associations due to the

association not being tested (8 associations), Temko et al specifically searching for positive

associations (2 associations) and different samples and signatures being used when testing for

an association (13 associations). Of the latter 13 associations, 11 remained significant at

P< 0.05 and 5 remained significant at P< 0.004 when we conducted a one-sided Mann Whit-

ney U-Test using our cohort (results of one-sided Mann Whitney U-Test shown for all associa-

tions in S3 Table). Thus, the major differences in the two studies can be accounted for by the

different statistical and biological assumptions that we incorporated into our analyses, as well

as by considering different sample set and mutational signature identification approaches.

Despite this, the similarities in the results attained by both studies provides validation for our

collective findings. The differing criteria applied in selection of samples, driver mutations, bio-

logical and statistical assumptions ultimately leads to complementary results which collectively

provide a more complete list of true significant associations.

Conclusion

In summary, we performed binary univariate logistic regression analyses to establish a statisti-

cal relationship between driver mutations and mutational signatures in 7,815 cancer samples

across 26 cancer types. Our analysis led to the identification of 39 significant associations

between driver mutations and mutational signatures (P< 0.004, FDR < 5%). Our study pro-

vides statistical foundations for hypothesised links between otherwise independent biological

processes and explores relationships arising between driver mutations and mutagenic pro-

cesses during cancer formation. These associations provide new insights into how some can-

cers acquire advantageous mutations and can provide direction to guide further mechanistic

studies into mutational processes and cancer development.

Methods

Ethics statement

This study was approved by the University of New South Wales (UNSW) Human Research

Ethics Advisory Panel (approval no. HC17187). This study analysed data generated by TCGA,

which were collected from patients with written informed consent (https://cancergenome.nih.

gov/abouttcga/policies/informedconsent).
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Data sources

Somatic mutations from whole exome sequencing data (generated by MuTect [37] and aligned

to the GRCh38 reference genome) were downloaded from TCGA via the Genomic Data Com-

mons (GDC) data portal [38] for 10,539 cancer samples. These mutations were used to define

mutational signatures and to determine which driver mutations to incorporate into regression

analyses. S1 Fig presents a flow chart that accompanies this methods description.

Age at diagnosis [“age_at_initial_pathologic_diagnosis”] and number of pack years smoked

[“number_pack_years_smoked”] were obtained for relevant cancer types from the UCSC

Xena Browser [39]. Samples with no data recorded in these fields were excluded from plots at

Figs 4 and 5.

Detection of mutational signatures

To select which samples to include in regression analyses, we excluded any mutations that were

annotated by MuTect [37] as present in a ‘panel of normals’, and then kept only cancer samples

that harboured� 30 single nucleotide somatic variants in cancer types with� 40 samples.

Next, where multiple samples existed for a single patient, we randomly selected only one sample

per patient to retain, and we merged TCGA-COAD and TCGA-READ into a single colorectal

adenocarcinoma (CRC) cancer type. Our final sample list contained 7,815 samples from 26 can-

cer types (Tables 1 and S1). We then applied Sigfit (version 1.2.0) [11] R package to determine

the proportion of mutations attributable to each of the 30 mutational signatures from the COS-

MIC [6, 7] ‘Signatures of Mutational Processes in Human Cancer’ database. Sigfit was run in

the ‘fit_signatures’ mode using exome-normalised COSMIC signatures and default parameters.

To validate the accuracy of our signature generation by Sigfit, we also generated mutational sig-

natures using the DeconstructSigs [40] R package. DeconstructSigs was run using COSMIC sig-

natures, with normalisation via ‘exome2genome’ and a maximum of five signatures allowed per

sample. We compared mutational signature proportions for each sample, as generated by both

Sigfit and DeconstructSigs, for the nine signatures for which we identified significant associa-

tions with driver mutations (S5 Fig). We determined the Pearson’s correlation for each signa-

ture, finding an average Pearson’s correlation of 0.84 across the nine mutational signatures.

Selection of driver mutations

To ensure that we did not erroneously exclude any true driver mutations, we used MuTect

[37] mutation calls without the ‘panel of normals’ filter when selecting driver mutations.

We first selected only missense and stop-gain variants that were present in > 3.5% of sam-

ples in at least one cancer type (where TCGA-COAD and TCGA-READ were considered

collectively as CRC). Next, we retained only mutations that altered genes listed in the

COSMIC ‘Cancer Gene Census’ (Tier 1; retrieved 24 November 2017) [6, 7, 41]. Using

only the 7,815 samples described above, we then selected mutations that were present

in > 10 samples in at least one cancer type, resulting in a list of 34 driver mutations. We

next obtained additional driver mutations from the ‘Catalog of driver mutations’ curated

by Integrative Onco Genomics (IntOGen) [42] (retrieved 24 November 2017). We

excluded any insertions and deletions as these cannot be directly associated with standard

trinucleotide mutational contexts, and any splice site variants as these may not be uni-

formly captured by exome sequencing. We then selected only mutations present in � 5

samples within the IntOGen database, and > 10 samples from at least one cancer type

from our TCGA cohort. This analysis resulted in a list of 47 driver mutations. We merged

these two lists of mutations and analysed each using the Cancer Genome Interpreter [43].

We removed any mutations that were not designated as being a tumour driver by the
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Cancer Genome Interpreter [43]. Our analysis produced a final list of 50 unique driver

mutations affecting 21 different genes (S2 Table). The trinucleotide contexts of each

driver mutation were obtained using BEDTools [44].

Regression analyses

We applied a binary univariate logistic regression model using the glm package in R to evalu-

ate associations between mutational signatures and driver mutations within each cancer type.

The regression model used the following formula, where x represents the proportion of muta-

tions attributed to a given mutational signature in a sample, p xð Þ represents the probability

that a given driver mutation is present or absent in that sample and β values denote estimates

from logistic regression:

pðxÞ ¼
1

1þ e� ðb0þb1xÞ

The odds ratio was calculated by exponentiating the β1 coefficient estimated from the

logistic regression model. To limit false discoveries and spurious significant associations

arising from limited sample size, we did not test any associations between mutational signa-

tures and driver mutations in cancer types with < 10 samples harbouring either the relevant

driver mutation or < 10 samples harbouring � 20% of mutations attributable to that muta-

tional signature. To determine the P-value required for FDR < 5%, we performed a rando-

misation test by randomising driver mutations across samples. For each association for

which we tested significance, we randomly shuffled the presence of the driver mutation

across samples within that cancer type and then conducted our regression modelling again.

We repeated this process across 1,000 iterations, and calculated the mean number of signifi-

cant associations that we identified (S3A Fig). We note that the P-values obtained from our

regression analyses differ from those obtained following randomisation, with the former

including a number of associations that satisfy the alternative hypothesis (S3B Fig). At

P< 0.004, we found that the FDR from these randomised iterations was < 5%. We observed

that a significant positive association (odds ratio > 1) between a driver mutation and muta-

tional signature was often accompanied by reciprocal negative associations (odds ratio < 1)

between the driver mutation and other mutational signatures tested in that cancer type.

Many of these associations are likely to arise due to positively associated signatures neces-

sarily reducing the percentage contribution of all other mutational signatures present in

affected samples. For this reason, we excluded any reciprocal negative associations when

counting significant associations arising in our regression modelling using actual data, and

in our randomisation analysis when establishing FDR.

For validation of a subset of our findings, we obtained single nucleotide somatic mutations

for an independent cohort of 619 whole-exome sequenced colorectal cancers from a previously

published study [16]. We detected mutational signatures using Sigfit and identified significant

associations by logistic regression as described for the TCGA cohort.

Prediction of ssDNA secondary structure

DNA sequences ± 20 bp of the mutation site in ERBB2 p.S310F and PPP2R1A p.P179R were

obtained from the UCSC genome browser. This choice of sequence length was based on an

approximation of the size of the remaining single stranded lagging strand template prior to the

completion of an Okazaki fragment [45]. To estimate the ssDNA secondary structure, the

mFold tool (version 3.6) [46] was used with default parameters.
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Supporting information

S1 Table. Cancer samples analysed in this study, along with cancer type and designation of

use in regression analysis.

(XLSX)

S2 Table. Driver mutations analysed in this study, curated as described in Methods and S1

Fig.

(XLSX)

S3 Table. Associations that were tested for significance, together with results from binary

univariate logistic regression and one-sided Mann Whitney U-Test.

(XLSX)

S4 Table. Results of regression analysis using an independent cohort of 619 whole-exome

sequenced colorectal cancers.

(XLSX)

S1 Fig. Flow chart depicting the methodology applied to identify significant associations

between mutational signatures and cancer driver mutations in this study. See Methods for

further details.

(TIF)

S2 Fig. Heat map depicting the proportion of each mutational signature arising within

cancers analysed. The proportion of mutations attributable to each mutational signature

within individual samples for each cancer type, ranging from light red (0%) to dark red

(� 30% of mutations attributable to mutational signature). Mutational signatures are clustered

across the y-axis. Cancer types are named and coloured along the x-axis. See Table 1 for the

full cancer type name corresponding to each of the abbreviations.

(TIF)

S3 Fig. Randomisation analysis for false discovery rate and significance evaluation. (A)

Proportion of significant results at P< 0.004 obtained from 1,000 iterations of randomly shuf-

fled driver mutations within each cancer type. Bars indicate the proportion from 1,000 itera-

tions that each count of significant associations was observed (see Methods), with the number

found using actual data indicated by a dotted line. (B) Frequency at which P-values were

observed from binary univariate logistic regression of 411 associations using actual (red) and

one instance of randomly shuffled mutations (blue).

(TIF)

S4 Fig. Predicted single stranded DNA (ssDNA) secondary structure for selected driver

mutations. Predicted ssDNA secondary structure shown for (A) PPP2R1A p.P179R and (B)

ERBB2 p.S310F mutations. The mutated base is denoted by the mutation label. Predictions

were made using the mFold prediction tool [46] with default parameters.

(TIF)

S5 Fig. Mutational signatures generated by Sigfit and DeconstructSigs. The proportion of

mutations attributed to each mutational signature is shown for Sigfit (y-axis) and Deconstruct-

Sigs (x-axis), where dots indicate individual samples. The Pearson’s correlation (r) is indicated

for each signature on individual plots.

(TIF)
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S1 Data. The data underlying the generation of all figures in the manuscript is available as

a supplementary file.
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