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Abstract

Cells have traditionally been characterized using expression levels of a few proteins that are 

thought to specify phenotype. This requires a priori selection of proteins, which can introduce 

descriptor bias, and neglects the wealth of additional molecular information nested within each 

cell in a population, which often makes these sparse descriptors qualitative. Recently, more 

unbiased and quantitative cell characterization has been made possible by new high-throughput, 

information-dense experimental approaches and data-driven computational methods. This review 

discusses such quantitative descriptors in the context of three central concepts of cell identity: 

definition, creation, and stability. Collectively, these concepts are essential for constructing 

quantitative phenotypic landscapes, which will enhance our understanding of cell biology and 

facilitate cell engineering for research and clinical applications.
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Understanding cell identity

All cells in a given organism have the same basic chemical composition and metabolic 

activity necessary for life. What, then, makes one cell type different from another? 

Historically, cells were simply catalogued by their location in the body, such as heart cells or 

liver cells. It was also observed that cells within the same organ could exhibit very different 

morphologies: a star-shaped astrocyte looks different from a neuron with long axons and 

dendrites. Conversely, cells in different organs were found to have similar functions; for 

example, collagen-producing fibroblasts are found in the heart, liver, and other connective 

tissue. Thus, a combination of location, appearance, and functionality was used to define a 

cell. During this same period, the first continuous immortal cell line was derived, isolated, 

and expanded from a single cervical cancer cell taken from Henrietta Lacks [1,2]. The 

advent of such immortal cell lines has played an instrumental role in further refining our 

understanding of cell identity by enabling on-demand expansion and characterization of 

*Correspondence: csarkar@umn.edu (C.A. Sarkar). 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Trends Cell Biol. Author manuscript; available in PMC 2019 December 01.

Published in final edited form as:
Trends Cell Biol. 2018 December ; 28(12): 1030–1048. doi:10.1016/j.tcb.2018.09.002.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



clonal cell populations. Despite tremendous progress over the past few decades, cell identity 

has often been based on a small number of biomarkers and some functionality testing. In the 

last several years, a rapidly expanding toolbox of high-throughput, single-cell experimental 

methods and data-driven modeling (see Glossary) approaches is ushering in a new era of 

quantitative cellular analysis that can be applied to more rigorously define a cell’s 

phenotype, track its creation, and describe its stability. In this review, we describe recent 

efforts to quantify cell identity based upon a cell’s epigenome, transcriptome, proteome, and 

morphology. Our focus is on phenotypic landscapes associated with normal cells, so here we 

do not explicitly consider genetic mutations and corresponding genomic models.

Defining cell identity

To isolate a specific cell type from a heterogeneous population, a small number of 

biomarkers (typically, 2–4) are fluorescently labeled and the desired subpopulation is 

recovered by fluorescence-activated cell sorting, enabling further characterization by bulk 

methods such as reverse transcription/polymerase chain reaction. However, the chosen 

biomarker signature may be insufficient to accurately identify the cells of interest [3–6]. For 

example, the role of CD4+ FOXP3+ T cells in tumors used to be controversial, but can now 

be explained by adding a sub-classification based on FOXP3 expression. CD4+ FOXP3+,high 

cells contribute to tumor progression whereas CD4+ FOXP3+,low cells suppress tumor 

growth [5,6]. This further suggests that a simple binary classification of markers such as 

FOXP3+ and FOXP3− is not sufficient to describe cell identity.

With the rapid advancement of cell engineering and conversion techniques – including 

directed differentiation, reprogramming, and transdifferentiation – it is also important 

to establish more stringent definitional standards to ensure the quality of engineered cells. 

For example, one group found that by knocking down RE1 silencing transcription factor 

(REST), human embryonic stem cells (hESCs) still express all of the traditional pluripotency 

biomarkers OCT4, NANOG, and SOX2, but also exhibit higher survival rates in long-term 

cell culture. However, these REST-knockdown cells are functionally different from hESCs 

as they have an acquired bias toward mesendoderm differentiation and higher genetic 

instability compared to unmodified cells, thus limiting their use as true hESC replacements 

[7].

By increasing the number of relevant biomarkers in the molecular signature of a cell, a 

definition of cell identity with this signature becomes more systematic, unbiased, and 

reliable. Furthermore, resolving the signatures of subpopulations – down to individual cells 

– ensures that any heterogeneities in specific biomarkers are explicitly observed and not 

averaged out in bulk measurements. Of course, making thousands of measurements per cell 

in thousands of single cells generates datasets that are difficult if not impossible to interpret 

by eye; fortunately, data-driven models can be used to not only make sense of the data but to 

also generate more quantitative definitions of cell identity (Table 1). This has been a 

burgeoning field in the past several years, with researchers applying new experimental and 

computational tools to provide unprecedented resolution into a cell’s epigenome, 

transcriptome, and proteome.
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Epigenomic signatures

The epigenome of a cell directs the regulatory gene expression pattern by modulating the 

conformation and accessibility of chromatin. Most research linking the cell’s epigenome to 

its identity is either specific to a certain cell type [8] or a specific form of epigenetic 

modification [9–11]. This is because there are multiple forms of epigeneti6c changes 

including histone modifications, DNA methylation, and RNA-based chromatin modification 

including those controlled by small non-coding microRNAs [12]. Moreover, there are a 

number of technology platforms for examining epigenetic modifications, and epigenomic 

models typically focus on data collected from the same experimental platform to ensure 

comparability. There are some major public epigenome databases compiled from 

experimentally compatible data, including the Roadmap Epigenomics Consortium [13] and 

the ENCODE project [14] that contain cell-specific profiles for histone modification 

patterns, DNA methylation, and DNA accessibility. The FANTOM5 project also published 

several epigenomic studies, including a human atlas for promoters [15] and enhancers [16].

In a recent study, an algorithm called single-cell combinatorial indexing for methylation 

analysis (sci-MET) has been developed [17] to characterize cell types from single-cell 

methylome data using two epigenome databases as references [13,14]. First, sci-MET 

clusters methylome data using non-negative matrix factorization (NMF) (see Text Box 1) 

followed by t-distributed stochastic neighbor embedding (t-SNE) (see Text Box 1). Then, it 

compares the pattern of each cluster to the public DNA methylation database for the 1,000 

most variable sites in the sample data using Pearson correlation. The algorithm correctly 

identified HEK293 cells, GM128778 cells, and primary human fibroblasts from a cell 

mixture [17].

Another group used the assay for transposase-accessible chromatin using sequencing 

(ATAC-seq) for single-cell analysis [18]. Since accessibility is associated with specific trans-

factors, the group established trans-factor variability patterns for eight different cell types 

based on single-cell ATAC-seq data. The study showed that scATAC-seq can be used for 

identification of subgroups in cell mixtures. For example, regions associated with the 

pluripotent genes Nanog and Sox are most variable in mouse stem cells, so these cells may 

therefore be identified using this approach [18].

Most epigenomic studies examine expression patterns but do not investigate the structure of 

the underlying gene regulatory network that is determined by epigenetic regulation and 

modulates cell identity. This more mechanistic insight requires accurate prior knowledge of 

the cell type of interest. Moreover, epigenomic studies are often compared with parallel 

transcriptomic studies. One reason for this is that epigenomic information is a more indirect 

link to cell functionality compared to proteomic and transcriptomic information. Another 

reason is that databases for epigenomic features are smaller and less standardized than those 

for transcriptomic and proteomic features. Most single-cell transcriptomic studies use 

Illumina sequencing or standardized microarray platforms. However, there are many 

techniques available for global methylation analysis, including bisulfite sequencing, 

luminometric methylation assay (LUMA), and high performance liquid chromatography 

(HPLC) [19], and the data from these different methods cannot be directly compared 

because they have different sensitivities and specificities. Standardization of epigenetic 
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analytical techniques should enable more robust characterization of epigenomic signatures 

and cell identities.

Transcriptomic signatures

In contrast to epigenomic approaches, transcriptome-based methods for cell identity 

modeling are more prevalent and better developed. Various quantitative criteria for cell 

identity have been developed, including regulatory network similarity, transcriptome 

uniformity, and transcriptome stability [20–22]. For example, the CellNet group built an 

algorithm that identifies the similarity in the key gene regulatory networks (GRNs) between 

engineered cells and target cells [20]. They constructed cell-specific and tissue-specific 

GRNs based on correlation significance between transcriptional regulators and target genes. 

They were then able to assign a classification score to the cells based on the expression level 

of the genes in the GRN. The CellNet algorithm was tested and verified using various cell 

type data from human and mouse. Moreover, it provides information on what genes (e.g., 

transcription factors) could be modified to drive engineered cells towards a target cell type 

of interest. Some of these suggestions were experimentally verified, such as 

transdifferentiation of B cells to macrophages, and fibroblasts to hepatocyte-like cells [23]. 

Like sci-MET, CellNet examines the similarity between the test data and data from a known 

cell type. However, the two algorithms differ in their objects of comparison: CellNet 

compares the expression of key interconnected genes within functional regulatory networks 

in established cell lines, whereas sci-MET compares the most variant epigenetic positions in 

the test sample independent of regulatory properties or cell type. CellNet can perform more 

robustly when the unknown sample is very heterogeneous because the top variant genes may 

not always be sufficient to uniquely quantify cell identity. However, both algorithms require 

prior knowledge of the purified cell populations and the technology platform that was used 

to obtain the data [20].

Proteomic signatures

Compared to epigenomic and transcriptomic approaches, proteins are most directly related 

to cellular function, and thus, identity. Many well-established cell conversion protocols are 

based on manipulation of the expression levels of key transcription factors (TFs). However, 

proteomic data are typically sparser and harder to measure compared to transcriptomic data, 

because each protein requires its own antibody for specific detection (and antibody quality 

can vary greatly) whereas all mRNA can be collectively recovered via the common poly-A 

tail and processed in bulk for high-throughput sequencing. Therefore, researchers have made 

efforts to link the transcriptome to the proteome by quantifying the conversion factors 

between mRNA abundance and protein abundance for individual genes [24] or by mapping 

the entire transcriptomic profile to the proteomic profile [22,25]. If high-content proteomic 

data are successfully obtained, it is possible to quantify cell identity in a similar fashion to 

that used with transcriptomic data. One group devised an algorithm that selects core 

regulatory TFs based on high protein expression and specificity from a pool of 503 TFs. For 

a given cell type, they assigned a specificity score to each of the highly expressed TFs and 

selected the top ones as the specificity pools for that particular cell [26]. Similar to CellNet, 

this approach was also able to predict TF profiles for transdifferentiation, which was 

experimentally verified from induced retinal pigment epithelium cells. However, it did not 
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generate a cell identity score; rather, it quantified the expression of these key TFs using an 

entropy-based measure of Jensen-Shannon divergence to determine if the TF is uniquely 

expressed in a certain cell type. Interestingly, the researchers cross-checked their TFs with 

epigenomic and transcriptomic data, and found that the TFs corresponded to sites such as 

super-enhancers and regulatory genes related to the specific cell identity of interest [26].

The algorithm Mogrify is also a TF-based network tool focused on predicting the key factors 

responsible for transdifferentiation. However, Mogrify starts with the transcriptomic profile 

and maps gene expression to TF abundance. Mogrify also adds an additional standard for TF 

selection, known as the regulatory influence. The regulatory influence of each TF in a given 

cell type is determined by the specificity of the TF to the target cell and the directness of 

regulation [25]. Compared to the core TF identification method described above, Mogrify is 

more comprehensive since it uses the entire transcriptomic profile instead of a pre-selected 

pool of TFs.

In addition to TFs, secreted factors, or the secretome, are important indicators of cell 

identity. In one study on macrophages, the single-cell secretion levels of 42 proteins under 

untreated and lipopolysaccharide (LPS)-treated conditions were examined using 

microchambers [27]. To characterize cell populations, they used a method called viSNE, 

which is a practical and fast implementation of the t-SNE algorithm for large datasets. It 

expands the computational limit of t-SNE through random sampling of the dataset and each 

cell is then positioned on a two-dimensional plot based on high-dimensional data [28]. The 

researchers were able to identify multiple subpopulations of macrophages with different 

levels of LPS activation and a distinct macrophage inhibitory factor (MIF)-positive 

subpopulation that consistently potentiates the activation of LPS-induced cytokine function.

Physical signatures

A complementary approach to the development of quantitative chemical descriptors of cell 

identity is the advancement of quantitative physical descriptors. An early example of such 

software is CellProfiler, which determines and standardizes the shape of cells from original 

images. It then measures features for each identified cell or subcellular compartment, 

including area, shape, intensity, and texture/smoothness [29]. Another group developed a 

method that uses pattern recognition and classification to quantify the cellular localization 

patterns of four proteins [30]. In an organismal context, a method was developed to convert 

confocal images of Caenorhabditis elegans into a data table with quantified expression of 

fluorescence reporters with single-cell resolution. Using knowledge of cell number, 

morphology of cell nuclei, and relative cellular positions, they were able to obtain the 

expression profiles of 93 genes in 363 specific cells [31]. More advanced software, such as 

CellProfiler Analyst 2.0 [32], can handle high-throughput, high-content imaging data and 

utilizes multiple machine learning algorithms to quantify cell phenotypes. A notable recent 

paper developed a method known as iterative indirect immunofluorescence imaging (4i) to 

achieve high-throughput imaging of more than 40 protein features across length scales 

spanning millimeters to nanometers [33]. This multi-scale imaging approach not only 

identified protein localization within subcellular compartments, but also contextualized these 
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observations within complex multicellular environments, enabling spatial identification of 

cell phenotypes within a tissue architecture.

Creating cell identity

The process of cell conversion – the transformation of a cell from one phenotype to another 

– involves time-dependent changes in the biochemical signature of the cell along the 

transformation pathway. Quantifying this trajectory provides a more accurate and 

comprehensive understanding of the creation of cell identity. To do this, models can be 

constructed that capture the dynamical changes in the molecular components that underlie 

cellular decision making. Depending on the a priori knowledge of the cell conversion 

process and the goal of the study, the form of the model can differ, as can the manner in 

which it describes cell trajectories.

Mechanistic models

When the network of key regulatory proteins (e.g., transcription factors) that drives a 

conversion process is already well characterized, mechanistic modeling – generally using 

ordinary differential equations (ODEs) – can be employed to study network dynamics and 

examine the trajectories of individual species in the network (Figure 1A). For example, one 

group used mutual inhibition between GATA1 and PU.1 to simulate bifurcations in the 

lineage commitment of bipotent progenitor cells [34]. Another group recently identified a 

similar mutual inhibition/self-activation model for Th1 and Th2 to generate multistability 
for hybrid T helper cells [35]. An additional group used mechanistic modeling of the 

erythropoietin receptor (EpoR)/GATA1 network topology, which demonstrates robust 

bistability [36,37], to explain their experimental observations that expression levels of EpoR 

and GATA1 modulate the velocity along the erythrocyte commitment trajectory (Figure 1B–

D) [38,39]. In these examples, only two key lineage-specifying proteins are explicitly 

modeled, but the network interactions are nonlinear, so the resulting trajectories exhibit rich, 

often multistable, dynamics. Similar mathematical models focus on other complex 

regulatory relationships, such as the asymmetric cell fate models used for T cell 

differentiation that suggest memory T cells and effector T cells can arise from the same 

precursor cell upon antigen activation [40], connected positive and negative regulation of 

pluripotency genes in inner cell mass [41], and extrinsic cross-antagonism autoregulation 

[42]. Such minimal models can be visualized using a phase portrait, in which the x- and y-

axes typically represent two key regulatory genes, and velocity vectors on this phase plane 

describe the trajectories or ‘flow’ in the system.

When there are many elements in the system, the ODEs used in mechanistic models can 

require significant computing power. One way to reduce this computational cost is to bin the 

expression of each gene into a small number of discrete states so that, in contrast to allowing 

a continuous spectrum of gene expression levels, far fewer calculations have to be performed 

[43,44]. In a stem cell model that takes into consideration nine gene nodes, the gene 

expression profile was reduced to a binary on-or-off system to deduce the reprogramming 

path from somatic cells to stem cells. This simulation of binary gene expression states 
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necessitated some loss of information but still provided useful insights into the interaction 

effects of key regulatory genes [43].

Data-driven models

To analyze the dynamics of cell conversion using high-content data such as whole 

transcriptomes, data-driven models offer ways to condense the input data in a quantitative 

manner (Figure 1E). Unlike mechanistic models, the biological relationships among 

elements are either not explicitly taken into consideration or are highly simplified (Figure 

1F). Algorithms such as Monocle [45] and StemID [46] do not identify explicit mechanistic 

interactions between individual genes or proteins, but rather examine overall patterns of 

gene expression in each cell. CellRouter [47] and SLICE [48] do consider the network of 

signaling and regulatory elements, but do not incorporate mechanistic mathematical 

relationships to describe network interactions. Most algorithms select key elements based on 

abundance, variance, or regulatory significance before data processing. An example of a 

data-driven trajectory model, application of the algorithm Slingshot to myoblast 

differentiation, is depicted in Figure 1G,H [49,50]. A more comprehensive listing and 

description of trajectory models is given in Table 2.

Most trajectory models use gene expression data from scRNA-seq or protein expression data 

from single-cell mass cytometry (CyTOF). Some algorithms, such as Monocle 2, include a 

normalization option in the software package. In other algorithms, pre-processing of datasets 

is required; for example, in TSCAN, raw scRNA-seq data must be normalized to fragments 

per kilobase million (FPKM) or transcripts per kilobase million (TPM).

For large datasets, the dimensions of these datasets need to be reduced to enable graph 

building and more compact visualization (Figure 1E). Linear dimension reduction 
techniques, such as principal component analysis (PCA), independent component analysis 

(ICA), and multidimensional scaling (MDS) (see Text Box 1), perform a linear 

transformation on the expression data matrix, so that the first two dimensions of the resultant 

matrix often capture many of the features of the whole dataset. Non-linear dimension 

reduction methods, such as t-SNE and diffusion maps (see Text Box 1), normally calculate 

the distances between data points and plot the trajectory in high-dimensional space, and 

then project the geometry to low-dimensional space, thus preserving more of the high-

dimensional structure of the dataset.

Another recent approach, called potential of heat-diffusion for affinity-based transition 

embedding (PHATE), was specifically developed for dimension reduction of high-content 

biological datasets [51]. The algorithm transforms each input cell into a probability 

distribution of affinities based on similarity to its neighbors. These local affinities are then 

propagated through the data by diffusion, which provides global, denoised structural 

information. The resultant diffusion-based informational distances are embedded in MDS 

for visualization and further analysis. PHATE has been used in several applications, 

including identification of distinct groupings of skin, oral, and fecal samples in human 

microbiome data.
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In complex systems that consider thousands of factors, it is common for trajectory models to 

use time or pseudo-time to represent the cell conversion path [45,52–54]. Assuming cell 

conversion is a continuous and unsynchronized process, Monocle is an algorithm that plots 

this trajectory by arranging individual cells by transcriptional similarity rather than 

collection time. First, it employs independent component analysis (ICA) to reduce the data 

to two dimensions; then it uses the minimum spanning tree (MST) approach to find the 

longest distance between cells, assigning cells that are not on the longest trajectory to 

branches of the main trajectory [45]. Using single-cell RNA-seq data of differentiating 

human myoblasts at several time points, Monocle was able to reconstruct bifurcating cell 

fate trajectories within the population by assigning a pseudo-time to each cell on the plot.

Although Monocle is a pioneering approach in the reconstruction of pseudo-time 

trajectories, it has some limitations, such as the ability to identify alternative cell conversion 

paths in some applications. This issue was improved in the algorithm StemID, in which cells 

were first grouped using k-medoids clustering (see Text Box 1) to determine the number of 

cell types, and then considered possible links between the different cell clusters to deduce 

that the most enriched and densely covered link was the conversion trajectory of interest. 

Using this method, the researchers were able to find transdifferentiation paths in intestinal 

cells that were not identified in Monocle [46].

Compared to StemID, another cell atlas model uses a similar but more complex approach 

[55]. This method first employs KNN clustering and pseudo-temporal ordering of 

transcriptome data using a newly developed algorithm called partition-based graph 

abstraction (PAGA) [56], and then determines a pluripotency score for each cell cluster. The 

approach also uses an RNA velocity algorithm called velocyto [57] to consolidate the 

directionality of cell development. The velocyto algorithm can extrapolate the gene 

expression profile from the rate of change of mRNA expression (i.e., mRNA velocity), 

which is calculated from the balance between production (of spliced mRNA from unspliced 

mRNA) and degradation. Combining PAGA, velocyto, and marker gene expression analysis 

for cell type identification, the researchers mapped out the cell atlas and complete lineage 

tree of a whole organism, the planarian Schmidtea mediterranea.

Lineage construction is widely used in developmental biology. However, in contrast to 

applications in planarians, which are regenerative and contain both adult cells and neoblasts, 

single-cell sequencing of most animal tissues only provides a snapshot of a certain 

developmental stage. Recently, a group used CRISPR/Cas9-induced genetic scars together 

with a computational method known as lineage tracing by nuclease-activated editing of 

ubiquitous sequences (LINNAEUS), to plot lineage trees for zebrafish larvae and adults 

[58]. The experimental design was based on the knowledge that when there is no template 

for homologous repair, Cas9 produces random mutations, or scars, at the target sites. The 

researchers introduced random scars on a large number of cells at the early stage of 

development such that the scars were propagated in daughter cells via recombination [58]. 

At later time points, they obtained single-cell transcriptome data and reconstructed the 

lineage tree based on scar analysis [58]. They first clustered cells using t-SNE and identified 

cell types by biomarkers. In their scar network analysis, two scars are considered connected 

nodes if they are both seen in the same cell; across all of the cells, this results in a scar 
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network, with each scar having different levels of connectivity. The scar with the highest 

degree of connectivity is from the common ancestor of all analyzed cells and therefore the 

earliest progenitor along the developmental trajectory. The second earliest scar is identified 

using the same algorithm but with the first scar removed, enabling identification of the next 

set of cells in the developmental hierarchy. Repeating this process results in reconstruction 

of the full developmental lineage.

For a given application, different trajectory plotting models can each offer unique 

advantages, which arise from the sequence of how the different steps are performed. For 

example, models such as diffusion pseudo-time (DPT) do not perform dimension reduction 

before lineage construction, better conserving the high-dimensional data structure. The DPT 

model showed better robustness across multiple datasets compared to Monocle [45] and 

Wishbone, which is another trajectory plotting algorithm that uses diffusion maps and KNN 

graphs (see Text Box 1) [53]. On the other hand, for algorithms that perform clustering 

before plotting lineage trees such as StemID, they show good ability to identify rare sub-

populations because there is less data loss in sub-population identification [46]. For 

trajectories generated in computational methods such as Waterfall, TSCAN, and Slingshot, 

adding a clustering step before trajectory plotting greatly improved the computational speed 

without losing accuracy [59]. Slingshot, which was shown to work well among all types of 

trajectories [59], first uses cluster-based MST to identify the global structure of the 

trajectory and then fits smooth curves to the general structure, with a pseudo-time assigned 

to each cell [50]. The sequence of the model-building steps for a number of algorithms is 

provided in Table 2.

Trajectory plotting models may have other algorithm-specific advantages. For example, 

single-cell topological data analysis (scTDA) can be used to study time-dependent 

transcriptome profiles [54]. It first clusters the data in high-dimensional space; then, it 

assigns a node to each cluster, with clusters that share cells connected by an edge. Nodes 

that are connected in the low-dimensional representation lie near each other in the original 

high-dimensional expression space. Using temporal input information, this algorithm is able 

to identify the most pluripotent state without prior knowledge of the least differentiated 

state. Compared with parallel analyses of the same data using principal component analysis 

(PCA), t-SNE, or Monocle, scTDA had superior ability to identify the continuous 

chronological structure of motor neuron differentiation using simulated data [54]. Another 

method for trajectory plotting is CellRouter, which employs unique techniques in clustering 

(KNN graph) and lineage determination (graph theory) to reinforce the connections among 

cells that show phenotypic likeness and to identify the data structure in high-dimensional 

space. The algorithm does not make any assumptions about branching and it provides 

information on transient states during cell conversion [47].

The available computational tools are also rapidly evolving. For example, the researchers 

who developed Monocle recently published Monocle 2, which no longer assumes previous 

knowledge of cell-fate branches. Instead, Monocle 2 uses a machine learning technique 

called reversed graph embedding (RGE) to produce the geometry of high-dimensional data 

in a low-dimensional space without making any assumptions about branch number [60]. 

Another improvement is in the accessibility of complex algorithms to non-specialists; for 
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example, TSCAN offers a graphical user interface to facilitate pseudo-time reconstruction 

[61]. These models typically take the gene expression data of multiple single cells as input, 

and they output the pseudo-time of each cell, assigning each cell to a defined position along 

the cell conversion trajectory.

Another type of algorithm that uses single-cell network entropy to construct differentiation 

trajectories models is known as single cell lineage inference using cell expression similarity 

and entropy (SLICE) [48]. In SLICE, the algorithm first calculates single-cell entropy based 

on expression of functional gene clusters and then it groups cells based on similarity of these 

entropy scores. It next identifies stable states by finding cells with local minima in entropy. 

The cell differentiation paths are reconstructed by following decreasing entropy towards the 

stable cell states [48]. For example, using a cross-sectional single-cell dataset from mouse 

lung at a single time point (E16.5), SLICE identified different cell clusters, found the stable 

states of each cluster, and reconstructed a two-branch cell pathway. The algorithm identified 

the types of cells in the dataset using known information about mouse lung cells and then 

determined the position of these cell types along the differentiation trajectory.

Characterizing stability of cell identity

Compared to the two-dimensional trajectory models (as described above), three-dimensional 

landscape models present a more holistic view of cell phenotype because they additionally 

include information about cell stability. The most famous qualitative representation of this 

information in developmental biology is Waddington’s epigenetic landscape [62]. This 

landscape depicts a marble as a progenitor cell rolling down a slope, with bifurcating ridges 

representing lineage commitments and the lowest positions on the slope representing final 

cell states. More recent quantitative landscape models (Table 3) are based on the 

combination of one-dimensional cell stability (or potential) quantification and two-

dimensional trajectory models, with the z-axis representing cell stability, and the x-y plane a 

representation of the trajectory model (Figure 2). Cell stability/potential is related to the 

capability of a cell to become other cell types; cells with low stability have a high potential 

(high z-value) and thus more easily ‘roll down’ the landscape to more stable/lower potential 

cell states.

Probabilistic landscapes

Probabilistic landscape models, which are based purely on statistics and do not make any 

assumptions about biological mechanism, are widely used for descriptions of cell 

development. The cell potential is calculated from the probabilities of appearance of certain 

states; differentiated, stable cells are seen as attractor states that have lower z-values [63]. To 

calculate this potential value, significant genes are selected based on their expression levels 

and extent of change during the process. These significant genes are reduced to two 

dimensions using algorithms such as PCA and the cell potential is calculated as a function of 

the probability of appearance. Although different networks or dimension-reduction methods 

may be applied, the landscapes in these models are compiled based on the probability of the 

cell state, with the cell potential represented by the negative natural logarithm of the 

probability [64–66]. For example, one group constructed a stem cell regulatory network, 
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comprised of 52 genes, to generate a landscape plot that has two local minima, with the 

higher local minimum representing the pluripotent cell state and the lower local minimum 

representing the differentiated cell state [65].

Entropic/energetic landscapes

There are also entropy- or energy-based models for constructing landscapes. In the entropy 

models, the z-axis is often informational entropy which is not a direct measure of cell 

stability but rather a representation of pluripotency potential (i.e., the ability of the cell to 

differentiate to other cell identities). In contrast to probability models, these models are 

usually based on biological properties or assumptions that are specific to stem cells.

Entropy can also be a measure of pathway promiscuity [21]. In this context, it is assumed 

that pluripotent cells have access to more signaling pathways than differentiated cells, which 

express only a restricted set of functional pathways. The transcriptome data maps genes to 

proteins, and then protein-protein interaction networks are used to calculate the possible 

pathways for each individual signaling protein. Using this method, pluripotent stem cells and 

cancer cells were observed to have higher entropies compared to those from a set of 

miscellaneous differentiated cells [21].

The SLICE model mentioned earlier is also based on a similar assumption of functional 

activation promiscuity in pluripotent cells, which are postulated to have more evenly 

distributed activation across functional classes of genes [48]. Unlike the network entropy 

model, SLICE eliminates mapping of the transcriptome to the proteome to analyze the 

functional pathways. Instead, it clusters genes according to their functional similarity using 

Gene Ontology annotation. It then analyzes the associations between gene clusters and gene 

expression profiles based on cell-specific posterior probability distributions. This probability 

is equivalent to the single-cell entropy. Using SLICE with scRNA-seq data, the group 

successfully predicted the entropic states of differentiating human skeletal muscle 

myoblasts, enabling reconstruction of an entropic landscape for this process.

In StemID, entropy is defined with respect to the uniformity of gene expression in the 

transcriptome. The method assumes that stem cells have more noisy expression of mRNA, 

which should lead to more branches on the lineage tree. The entropy of the cell is calculated 

as the sum of the normalized entropy of each protein. Cell potential is calculated as the 

number of possible lineage trajectory branches multiplied by this transcriptome entropy. 

This model was validated in several biological contexts, including hematopoietic cells and 

pancreas cells [46].

An energy-based landscape model computes its x-y plane in a manner similar to such 

entropy models, but differs in its calculation of the z-axis. This axis, an energy, is computed 

based on the idea that a GRN is less interconnected in differentiated cells, so there is a 

higher co-variation of gene expression, resulting in a lower energy state [44]. A neural 

network model known as a Hopfield network is used to calculate the energy of each cell 

state [44]. In this approach, each gene becomes a node in the network and has a starting 

value determined by normalized expression data. The link between two nodes is assigned a 

weight, calculated as a Pearson correlation. The expression value of each node is discretized 
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to the values −1, 0, or 1. The sign of each expression value is then constantly updated, based 

on the expression of all neighboring nodes and the correlations with each neighbor. Energies 

are calculated based on the extent of agreement or disagreement between nodes, and the 

corresponding landscape is generated using the first two principal components in PCA as the 

x- and y-axes. The use of such discretized models, in general, showed robustness towards 

noise and perturbations [67]. The Hopfield network has been applied to study the 

differentiation of hESCs into mature cells and the differentiation of THP1 monocytes into 

macrophages using microarray expression data. The transient states along the differentiation 

pathways were found to have higher energies, enabling identification of upregulated or 

downregulated genes in these specific higher-energy states.

Concluding remarks

The development of advanced cell conversion techniques, including directed differentiation, 

reprogramming, and transdifferentiation, necessitate more quantitative descriptions and 

understanding of cell identity: what identity means, how it is created, and how stable it is. 

Additionally, the ability to now study many cell conversion processes with single-cell 

resolution has resulted in large and rich experimental datasets. The convergence of these 

experimental advances has resulted in complementary computational methods that can take 

these high-content, high-resolution datasets as inputs and produce quantitative outputs that 

enhance our descriptions of cell identity, cell trajectories, and cell stability.

We can see several trends in the development of these computational techniques. First, 

dimension reduction is no longer restricted to linear methods; nonlinear methods such as t-

SNE and diffusion maps have seen considerable success in more recent models. These 

nonlinear methods normally supersede linear methods in retention of high-dimensional data 

structure. Among the nonlinear methods, the main differences lie in how distances between 

data points are calculated and mapped to a lower-dimensional space.

Second, there are fewer restrictions on the input data. Datasets can now have unknown 

subpopulations, unknown starting and ending points, and little-to-no temporal information. 

There are also algorithms that split up the tasks for lineage determination and landscape 

construction, allowing researchers to choose the dimension reduction methods or 

visualizations that are best for a particular application. For example, Netland allows users to 

choose between deterministic (ODE-based), stochastic, and probabilistic landscapes based 

on the complexity of the input data [68].

Third, there is less loss of information in more recent models. There are two steps at which 

loss of information can occur: the selection of key regulatory networks and dimension 

reduction of the dataset. Deterministic ODE-based models typically incorporate GRNs that 

are selected based on prior knowledge, variation, correlation, and/or abundance; however, 

supervised selection of regulatory genes can introduce bias and it is not realistic to 

experimentally obtain all of the parameters required for simulation. By contrast, 

probabilistic, entropy, and energy models can circumvent these bias and parameter 

problems, as they can agnostically select key regulatory elements and generate simplified 

interaction networks among them. More recent data-driven models have also begun to 

Ye and Sarkar Page 12

Trends Cell Biol. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



address the loss of information associated with dimension reduction; for example, scTDA 

and DPT determine the lineage structure or landscape topology in high-dimensional space 

and then apply dimension reduction at a later step for distance calculation and data 

visualization.

Looking forward, this nascent field could benefit from standardization of computational 

methods. Although efforts have been made to make these algorithms accessible to the 

broader cell biology community, it is sometimes difficult to determine what information is 

required and what assumptions are implicit, thus confounding interpretation of the results. 

Additionally, while several methods make efforts to demonstrate robustness of their 

approach, the nature of this robustness can be highly varied (e.g., differences in sample size, 

parameter variation, or missing data).

Additionally, the development of new models (and parallel experimental approaches) will 

continue to push the field rapidly forward. For example, the quantification of cell identity 

based on epigenomic signature is in its early stages and can be improved by considering the 

interconnectivity among epigenetic sites. There are currently models that relate epigenetic 

profiles to transcriptomic data, map transcriptomic data to proteomic data, and link 

morphological properties to transcriptomic data; however, there are currently no methods 

that integrate all of the quantitative descriptors of cell identity into a holistic computational 

framework. Advances towards this goal will allow more robust cross-validation of a cell’s 

chemical and physical properties, which should further enhance our quantitative 

understanding of cell identity (see ‘Outstanding Questions’).
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Glossary

Data-driven modeling
Mathematical approaches to quantitatively characterize a system (e.g., a cell) by changes in 

the structure of measured system variables, rather than by prior mechanistic knowledge 

about these variables.

Directed differentiation
The process of guiding pluripotent cells towards a specific differentiated state.

Dimension reduction
The process of condensing high-dimensional data into a smaller number of components. 

This is often applied to cellular transcriptomes or proteomes to enable visualization of cell 

identities, trajectories, or landscapes in two or three dimensions.

High-dimensional space
A description of state in which each variable (e.g., gene) represents a single dimension. Such 

descriptors are not readily intuited, so they are often compacted into a smaller number of 

high-content dimensions that can be easily visualized (see Dimension reduction).
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Mechanistic modeling
Mathematical approaches to quantitatively characterize a system (e.g., a cell) using prior 

knowledge of the system variables, their interactions, and their modes of action.

Multistability
The potential for a system (e.g., a cell) to adopt more than one stable state for a given set of 

conditions (bistability corresponds to two stable states, tristability to three, etc.). The specific 

stable state that is actually attained is dictated by the history of the system.

Phase portrait
A commonly used graphical method to analyze dynamics of mechanistic models formulated 

with differential equations. The time derivatives of species in the model represent their 

velocities, which can be used to visualize their trajectories in the phase plane.

Reprogramming (or dedifferentiation)
The process of reverting a differentiated cell to a pluripotent state.

Stability
A measure of how likely a system (e.g., a cell) will remain in its current state. This quantity 

is often the z-axis in cell phenotypic landscapes.

Transdifferentiation
The process of converting one mature cell type directly into another, without backtracking to 

a progenitor state.

Waddington’s epigenetic landscape
A commonly used metaphor in developmental biology, depicted as a slope with valleys and 

ridges that dictate what paths a progenitor cell traverses in reaching mature cell fates.
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Highlights

• High-throughput, single-cell experimental methods enable high-content 

epigenomic, transcriptomic, and proteomic signatures of cell identity

• Data-driven modeling approaches facilitate analysis of high-content datasets 

and more quantitative descriptors of cell identity

• Integration of experimental and modeling approaches further enables tracking 

trajectories for creating a cell identity and assessing its stability

• Model-guided understanding of cell identity, conversion trajectories, and 

stability facilitates construction of quantitative phenotypic landscapes
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Outstanding questions

To what extent are quantitative single-cell epigenomic, transcriptomic, and proteomic 

analyses distinct or redundant? Can these methods be used to cross-validate 

measurements of gene expression?

Can methods be developed to reduce technical bias against low-expressing but potentially 

important genes?

Can model standards be developed to enhance clarity of required inputs, underlying 

assumptions, and cross-platform comparisons?

Can single-cell molecular measurements be integrated with single-cell imaging data to 

link chemical and physical signatures of cell identity?
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Commonly used dimension reduction and grouping methods

Diffusion maps (nonlinear dimension reduction)

Diffusion maps reorganize data based on its underlying structure, creating a low-

dimensional space in which the Euclidean distance between points is similar to the 

diffusion distance in the high-dimensional space. The algorithm first determines a kernel 

function (usually the normal distribution function) and a kernel matrix. It then normalizes 

the rows of the kernel matrix to obtain a diffusion matrix. The dimension reduction is 

achieved by only considering the orthogonal eigenvectors of the diffusion space. It then 

calculates the eigenvector of the diffusion matrix and maps to the low-dimensional 

diffusion space using 2 or 3 dominant eigenvectors. Diffusion maps have performed well 

in reproducing the structure of cluster relationships and relative spatial locations, but are 

not suitable for the identification of rare subpopulation of cells [69,70].

Independent component analysis (ICA; linear dimension reduction)

ICA is a linear transformation that aims to identify maximally independent sources that 

can reconstitute variables of the original system. This method works best when it is 

known that the dataset is composed of information from separate sources that do not 

interfere with each other, but is less commonly used in applications of cell identity.

k-means clustering (clustering)

k-means clustering is an unsupervised clustering algorithm. The algorithm first 

determines the number of groups and randomly selects center points. Then, the distances 

between each data point and the center points are calculated, and each data point is 

assigned to the closest center point. Based on the newly formed groups, the algorithm 

recalculates the mean of all the points in the group. These steps are repeated until the 

group centers do not change significantly between iterations.

k-medoids clustering (clustering)

The k-medoids algorithm is an unsupervised clustering algorithm that is similar to k-

means clustering. The main difference between the two methods is that k-medoids 

clustering chooses data points as centers. This algorithm is more robust to noise and 

outliers because it aims to minimize the sum of general pairwise dissimilarities between 

data points instead of a sum of squared Euclidean distances.

k-nearest neighbors (KNN; classification)

The KNN algorithm is a supervised classification algorithm. KNN stores all available 

data points and classifies new data points based on a similarity measure, which is usually 

a distance function in cell identity applications. One data point is classified by a majority 

vote of its neighbors, i.e. the data point is assigned to the class most common among its 

k-nearest neighbors.

Linear discriminant analysis (LDA; linear dimension reduction)

LDA aims to maximize the separability among groups. Its primary latent variable 

accounts for the most variation among categories. This method requires a priori 

Ye and Sarkar Page 21

Trends Cell Biol. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



knowledge of the number of groups, and it can then determine which factors most 

contributed to the separation of the groups.

Multidimensional scaling (MDS; linear dimension reduction)

MDS measures the pairwise distances among all data points and then clusters them based 

on minimizing the linear distances. This method is similar to principal component 

analysis (see below), but MDS is more flexible in determining the distances, which can 

be computed using Euclidean distances, log fold changes, or other methods.

Non-negative matrix factorization (NMF; linear dimension reduction)

Non-negative matrix factorization is an unsupervised data decomposition technique that 

shows good performance in multivariate data. A high-dimensional matrix is decomposed 

into two lower dimensional matrices, with the constraint that all three matrices have no 

negative elements. This non-negativity and lower dimensionality makes the resulting two 

output matrices easier to inspect [71].

Principal component analysis (PCA; linear dimension reduction)

PCA is a dimension reduction method based on correlation among samples. The dataset 

is projected to a low-dimensional space with latent variables that capture the maximal 

variance. In the high-dimensional space, the latent variable that explains the most 

variation is defined as the first principal component (PC), the one that explains the 

second-most is the second PC, and so on. The advantage of PCA is that the key genes 

that contribute to a given PC are directly identifiable. However, this method may perform 

poorly for nonlinear datasets. For example, for high-dimensional transcriptome datasets, 

the first two or three PCs may not capture most of the variance, so PCA does not present 

an accurate picture of the data structure in low-dimensional space in this case.

t-distributed stochastic neighbor embedding (t-SNE; nonlinear dimension 
reduction)

In t-SNE, data points that are close in their original high-dimensional space preserve their 

proximity in the reduced two- or three-dimensional space. The algorithm first constructs 

a matrix based on normalized distance for an element and its neighboring elements. Then 

it randomly projects all data points into a low-dimensional space and calculates a new 

distance matrix. It moves data points around until the new distance matrix converges to 

the original distance matrix in the high-dimensional space. Thus, this method is good for 

conservation of high-dimensional data structure. However, t-SNE does not provide 

explicit information about the contribution of each component and the visualization in 

low-dimensional space changes every time the algorithm is applied.
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Figure 1. Construction of temporal cell trajectories using mechanistic and data-driven models
(A) Flowchart for construction of mechanistic models of a cellular process.

(B) Example of erythroid lineage-commitment model with two non-cooperative positive 

feedback loops from active transcription factor GATA1*, creating more of its inactive self 

(GATA1) and more erythropoietin receptor (EpoR). The solid arrows represent binding/

activation steps and the dashed arrows represent upregulation via protein synthesis. This 

network creates bistability with respect to erythropoietin (Epo) concentration, enabling 

robust binary decision making.
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(C) A phase plane showing the trajectories of nine cells, each with different initial 

concentrations of GATA1 and EpoR. Cells with sufficiently high concentrations of GATA1 

and/or EpoR can differentiate along the shown trajectories to a committed state in the top 

right corner; by contrast, cells with sub-threshold levels of these critical factors peter out and 

are unable to commit.

(D) The specific application of part A to the erythroid lineage-commitment model in parts B 

and C.

(E) Flowchart for construction of data-driven models of a cellular process. The pre-

processing step is sometimes incorporated in the algorithm; if not, the data should be 

normalized and filtered as appropriate for the specific data and application. During graphing, 

clustering is an optional step. Some models perform dimension reduction before trajectory 

plotting, while others perform these two steps simultaneously. The sub-steps listed under 

each category are not necessarily in sequential order; the actual order is determined by the 

specific algorithm (see Table 2).

(F) A data-driven model typically uses a large dataset to construct an interaction network 

that is implicated in cell conversion, but the linkages and network structure are generally 

based on correlation, not biological mechanism.

(G) A trajectory of differentiating human skeletal muscle myoblasts generated using 

Slingshot. The dimension reduction method used is principal component analysis (PCA) and 

the axis are the primary principal component (PC1) and secondary principal component 

(PC2).

(H) The specific application of part E to myoblast differentiation using Slingshot. The data 

are visualized in two dimensions using k-means clustering and PCA, and the trajectory is 

overlaid on these data (light blue line in part G) using a minimum spanning tree (MST).
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Figure 2. Steps for generating a landscape model.
(A) The selection of key elements is an optional step that is commonly used to save 

computational power and reduce noise. The z-axis, which is the cell stability or potential, is 

the key calculation that distinguishes different models (see Table 3). For dimension 

reduction, principal component analysis (PCA), independent component analysis (ICA) and 

multidimensional scaling (MDS) are commonly used linear methods while t-distributed 

stochastic neighbor embedding (t-SNE) and diffusion maps are popular non-linear methods.

(B) In this depiction of a cell phenotype landscape, the z-axis represents cell stability or 

potential (see Table 3). A lower z-value corresponds to greater stability, with local minima 

representing stable (or metastable) states. The x-y plane represents cell identity, as quantified 

by algorithms based on epigenomic, transcriptomic, and/or proteomic profiles (see Table 1), 

and changes in position along the landscape are quantified by trajectory models (see Table 

2).
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