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Abstract

Hypoxic-ischemic brain injury is a significant cause of morbidity and mortality in the adult as well 

as in the neonate. Extensive pre-clinical studies have shown promising therapeutic effects of neural 

stem cell-based treatments for hypoxic-ischemic brain injury. There are two major strategies of 

neural stem cell-based therapies: transplanting exogenous neural stem cells and boosting self-

repair of endogenous neural stem cells. Neural stem cell transplantation has been proved to 

improve functional recovery after brain injury through multiple by-stander mechanisms (e.g., 

neuroprotection, immunomodulation), rather than simple cell-replacement. Endogenous neural 

stem cells reside in certain neurogenic niches of the brain and response to brain injury. Many 

molecules (e.g., neurotrophic factors) can stimulate or enhance proliferation and differentiation of 

endogenous neural stem cells after injury. In this review, we first present an overview of neural 

stem cells during normal brain development and the effect of hypoxic-ischemic injury on the 

activation and function of endogenous neural stem cells in the brain. We then summarize and 

discuss the current knowledge of strategies and mechanisms for neural stem cell-based therapies 

on brain hypoxic-ischemic injury, including neonatal hypoxic-ischemic brain injury and adult 

ischemic stroke.

1. Introduction

Neural stem cells (NSCs) are self-renewing and multipotent cells. They hold the potential to 

differentiate into multiple cell lineages, such as the neuron, astrocyte, and oligodendrocyte. 

NSCs distribute throughout the developing brain and reside in two major neurogenic niches 

–subventricular zone (SVZ) and subgranular zone (SGZ) in the adult brain. After brain 

injury, the endogenous quiescent NSCs become active and participate in the process of brain 

repair. However, the self-repair process is usually inadequate and transient. Aiming to 

promote the neurorestorative process, the investigations of neural stem cell therapies on 

either enhancing endogenous neurogenesis or applying exogenous NSCs have remarkably 
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surged during the last decade. In this review, we summarize the current knowledge about the 

neural stem cell therapy on hypoxic-ischemic (HI) brain injury, specifically neonatal HI 

brain injury and adult ischemic stroke.

2. Brief overview of NSCs in the brain development

The journey of neural development starts from the neuroepithelial (NE) cells, a group of 

pseudostratified cells lined the cerebral ventricles of the neural tube. NE cells are 

multipotential NSCs with two end feet, touching both the pial surface and the ventricular 

surface (Figure 1). Initially, NE cells self-renew and symmetrically divide to increase the 

number (Haubensak et al., 2004). This period is critical and affects the final thickness of the 

neocortex (Dehay et al., 2015; Sun and Hevner, 2014). As neurogenesis progresses, NE cells 

transform into radial glial (RG) cells, starting to express glial markers, such as astrocyte-

specific glutamate transporter (GLAST) and glial fibrillary acidic protein (GFAP) (Gotz and 

Huttner, 2005; Kriegstein and Alvarez-Buylla, 2009). RG cells retain within the ventricular 

zone (VZ) and share some similar characteristics with NE cells, like long apical and basal 

processes. However, unlike NE cells, RG cells divide asymmetrically, producing one 

daughter RG cell and one intermediate neural progenitor cell (nIPC), which will differentiate 

into neurons. Some RG cells also become postmitotic neurons directly. Moreover, the 

process of RG cells like a scaffold guides the newly-born neurons to migrate out of the 

ventricular zone. Time-lapse imaging evidence has shown neurons move along the radial 

fiber of RG cells to their final location of the cortical plate (Noctor et al., 2004; Noctor et al., 
2008). Another mitotic feature of RG cells, reserved from NE cells, is interkinetic nuclear 

migration (INM). In the cell cycle, the nuclear changes its position depending on the phase 

of cell cycle. During the G2 phase, nuclei move towards the apical surface, and on the 

opposite, they move basal ward in the period of G1 (Taverna and Huttner, 2010). INM has 

been proven an essential step to avoid overcrowd of RG cells and ensure normal brain 

histogenesis (Okamoto et al., 2013). The regulation of symmetric and asymmetric division 

has been extensively reviewed elsewhere (Homem et al., 2015; Jiang and Nardelli, 2016; Lui 

et al., 2011), and we only briefly discuss it here. The Notch signaling pathway is a critical 

regulator to determine the proliferative or differentiative state of RG cells. Oscillatory 

expression of Notch effector gene Hes1 exhibits in self-renewal RG cells, leading to 

maintenance of the progenitor identity (Shimojo et al., 2008). Conversely, diminish of this 

oscillatory expression by upregulating proneural factors cause neuronal differentiation 

(Imayoshi et al., 2013). Interestingly, intercellular communication between RG cells and 

differentiated daughter cells also participate in the regulation of cell fate, through the Notch 

signaling pathway. RG differentiated daughter cells express Notch ligands, e.g., Delta-like 1 

(Dll1), which bind to Notch receptors of their neighbor RG cells and activate the Notch 

signal to maintain the undifferentiated status of RG cells (Dong et al., 2012; Homem et al., 
2015; Nelson et al., 2013). Other intrinsic factors include β-catenin (Draganova et al., 2015; 

Masuda and Ishitani, 2017), Sox2 (Avilion et al., 2003; Hutton and Pevny, 2011), glycogen 

synthase kinase 3 (GSK-3) (Kim et al., 2009), etc. For example, conditional deletion of 

GSK-3 significantly increases proliferation of mouse neural progenitors, via dysregulation 

of the Notch/β-catenin signaling pathway.
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Epigenetic modifications, including DNA methylation, histone modification, and non-coding 

RNAs are important mechanisms in the regulation of neural development (Yao et al., 2016). 

An important class of non-coding regulatory RNAs, micro RNAs (miRs) dynamically 

express during neurogenesis with various functions. For instance, let-7 family continuously 

express, whereas miR-124 increases starting from the mid or late phase of development 

(Miska et al., 2004; Yao et al., 2012). Moreover, substantial evidence from loss- and gain- of 

function studies indicate that miRs play a critical role in both proliferation and 

differentiation of NSCs during the development. For example, downregulation of miR-145 

decreased the expression of mature neuronal markers, suggesting a crucial role of miR-145 

in neuronal differentiation of NSCs. This effect is mediated by the Sox2-Lin28/Let-7 

pathway (Morgado et al., 2016). Besides intrinsic regulators, the neurogenesis process is 

also modulated by many extrinsic factors, such as Colony Stimulating Factor-1 (CSF-1) 

(Nandi et al., 2012), and fibroblast growth factor (FGF) (Dee et al., 2016). At the end of 

cortical development, most RG cells translocate towards the cortical plate and transform into 

astrocytes. Meanwhile, some RG cells differentiate into intermediate progenitor cells that 

become oligodendrocytes.

In the adult brain, NSCs or neural progenitor cells mainly persist in the SVZ, known as B 

cells. B cells give rise to transient amplifying C cells that then produce immature neuroblasts 

(A cells). Under normal condition, neuroblasts migrate toward the olfactory bulb (OB) 

through the rostral migratory stream (RMS). In the OB, these cells differentiate into mature 

interneurons (Carleton et al., 2003). Of note, B cells hold many properties of RG cells, like 

the process to the ventricular surface and expression of astroglial markers, e.g., GFAP and 

GLAST (Kriegstein and Alvarez-Buylla, 2009). However, different from RG cells, these 

NSCs in adult SVZ remain largely quiescent. Recent studies indicate that metabolic states 

are important cues to regulate adult NSC quiescent (Ito and Suda, 2014), including but not 

limited to hypoxia and glycolysis. For example, mitochondrial kinase mutation induces 

glycolysis and impedes neuronal differentiation of NSCs (Agnihotri et al., 2017). 

Furthermore, abundant extrinsic and intrinsic signals are involved in regulating adult 

neurogenesis (reviewed by Faigle and Song, 2013).

Another major region that NSCs persist in the adult brain is the subgranular zone (SGZ) of 

the dentate gyrus (DG). The radial astrocytes, also referred to type I cells, serve as NSCs 

that generate granule neurons in the SGZ. These type I cells give rise to intermediate 

progenitor cells (type II cells), and then progressively differentiate into mature neurons 

through the neuroblast phase (Feliciano et al., 2015; Kriegstein and Alvarez-Buylla, 2009).

3. Effect of hypoxic-ischemic brain injury on endogenous NSCs

3.1 Neurogenesis after neonatal hypoxic-ischemic brain injury

Hypoxic-ischemic (HI) injury remains one of most common causes of damage to the 

neonate’s brain. Neonatal HI brain injury occurs in 1–4 cases per 1,000 live births in the 

United States and accounts for about one-fourth neonatal deaths worldwide (Kurinczuk et 
al., 2010; Lawn et al., 2010). Of survived newborns, more than one million children develop 

severe and chronic neuropsychological impairments, including cerebral palsy and epilepsy, 

motor and cognitive deficits (Fernandez-Lopez et al., 2014; Gonzales-Portillo et al., 2014). 
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The common reason for perinatal hypoxic brain injury is intrauterine asphyxia due to 

circulatory problems, including placental abruption, placental arterial clotting, and 

inflammatory processes (Fatemi et al., 2009). Moreover, it is worth to note that fetal stress 

that is a common consequence of gestational complications (e.g., hypoxia, diabetes, 

smoking, preeclampsia, infection) significantly increase the vulnerability of neonatal 

hypoxic-ischemic brain injury (Fajersztajn and Veras, 2017; Li et al., 2012).

Upon HI attack, oxygen and glucose supplies to the neonatal brain are transiently depleted, 

which causes an energy failure or energy-inefficient state and is regarded as the primary 

insult. This attack initiates a cascade of deleterious cellular events involving dysfunction of 

transcellular ion pumping and accumulation of excitatory glutamate and oxygen free radicals 

(Perlman, 2006; Yildiz et al., 2017). After transient resuscitation, secondary injuries may 

follow, which include inflammation, mitochondrial dysfunction, and cell death (Johnston et 
al., 2001; Perlman, 2006; Vannucci, 2000). To explore the pathophysiology of neonatal HI 

brain injury, several animal models have been developed during last decade (Yager and 

Ashwal, 2009). Among them, Rice-Vannucci model (Levine, 1960) is the most well-

accepted, including unilateral common carotid artery ligation and subsequent hypoxic (8–

10% O2) treatment. Using these models, studies have revealed several unique features of 

neonatal HI brain injury, which may relate to the immature nervous system. The immature 

brain has a limited activity of antioxidant enzymes (e.g., glutathione peroxidase, copper-zinc 

superoxide dismutase) around birth (Sheldon et al., 2004). Thus, the neonatal brain is more 

susceptible to oxidative damage caused by HI injury (Sheldon et al., 2004). Moreover, a 

“continuum” phenotype of cell death, hybrid features of apoptosis and necrosis, exist in the 

injured neonatal brain (Northington et al., 2007). Next, we will first focus on the response of 

endogenous NSCs to HI injury in the neonatal brain.

In the neonatal rat, severe brain HI insult was initially reported to delete 20% of total cells in 

SVZ within few hours, and the size of SVZ becomes smaller three weeks later (Levison et 
al., 2001). However, following studies have shown that not all the types of cells are affected 

by acute HI injury. Only the cells localized in the lateral area of SVZ suffer apoptosis, while 

cells within the medial SVZ resist HI injury. Calpain and caspase 3 are reported to 

participate in this apoptosis process (Romanko et al., 2007). The increased activity of 

Calpain occurs as early as four hours after HI, following by caspase 3 activation four hours 

later (Romanko et al., 2007). In vitro study indicates that B-cell lymphoma 2 (BCL-2)/

adenovirus E1B 19 kDa interacting protein-3 (BNIP3) is another pathway involved in 

hypoxia-induced NSC/NPC apoptosis and is independent of caspase activity (Walls et al., 
2009). Phenotype study showed that PSA-NCAM positive neuroblasts that locate in the 

lateral area of SVZ are vulnerable to HI; however, nestin-positive neural stem/progenitor 

cells resist to HI and close to the lateral ventricle (Romanko et al., 2004). One of the 

possible reasons for this phenomenon is that medial SVZ NSCs reside in the neurogenic 

niche that is normally an area of physiologic hypoxia. And hypoxia is the factor to keep 

NSC proliferation. So NSCs in this area may adapt the hypoxic environment and are more 

resistant to HI insult.

Different from the previous report, Jennifer Plane et al. demonstrated that HI injury on 

postnatal day 10 (P10) mice obviously enlarged the ipsilateral SVZ and significantly 
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increased the cell proliferation three weeks after HI (Plane et al., 2004). This study further 

indicates that ectopic striatal migration of neuroblasts and neurogenesis in the ipsilateral 

striatum post-HI injury. Similar results in rat neonatal HI model are reported by Takeshi 

Hayashi et al.(Hayashi et al., 2005). Hypoxic-ischemic injury increases cell proliferation in 

both ipsilateral cortex and striatum, and phenotype study indicates these dividing cells are 

not only doublecortin (DCX) positive neuroblasts but also GFAP/Neural/glial antigen 2 

(NG2) positive glial cells (Hayashi et al., 2005). These studies suggest that HI injury-

induced proliferation of SVZ NSCs participate in both neural replacement and gliosis. 

Furthermore, tissues isolated from ipsilateral SVZ suffered a moderate HI injury can 

generate more tripotential neurospheres in vitro, which prefer to differentiate into neurons 

and oligodendrocytes (Felling et al., 2006; Yang and Levison, 2006). A more recent study, 

using novel multimarker flow cytometry, analyzed the population change of SVZ NSCs after 

HI injury in vivo (Buono et al., 2015). Interestingly, multipotential progenitors (MPs) and 

glia-restricted progenitors (GRPs), instead of NSCs, remarkably increase 48 h after HI. This 

finding may partly explain the reason for gliogenesis after neonatal HI injury. However, 

some fundamental questions remain unanswered, such as the relationship between migrated 

neuroblasts and dividing glial progenitors on brain recovery after neonatal HI injury.

At present, it is clear that neuroblasts migrate to the striatum/cortex, and some glial 

progenitor cells surround the HI-affected brain. The next question is whether the migrated 

neuroblasts or newly born neurons survive in the HI-affected area. So far, it is still a 

controversy about the fate of newly born neurons. Jennifer Plane et al. have shown that 

newly generated striatum neurons cannot survive for two weeks (Plane et al., 2004). While, 

others reported that such neurons, with 5-bromo-2′-deoxyuridine (BrdU)+ and 

Rbfox3(NeuN)+, still exist in striatum or cortex five weeks after the injury (Felling et al., 
2006; Yang et al., 2007). However, most of the newly formed neurons (about 85%) induced 

by injury die before maturation, even though some of them could survive for five weeks 

(Yang et al., 2007). Thus, understanding the reasons for the death of newly born neurons will 

be necessary for future studies.

One serious issue that needs to pay attention to in animal HI study or translational clinical 

study is the severity of HI injury. The disparate observations on NSC response to injury and 

cell survival between studies could be due to the differences in the severity of HI injury. For 

example, 45 mins 10% oxygen treatment was used to induce hypoxia in P10 CD-1 mice in 

Jennifer Plane et al. study, while 90 mins 8% oxygen was reported to apply on P6 rats in the 

study of Ryan Felling et al. Therefore, the relationship between the severity of HI and NSC 

response remains to be explored. And how to quantify the severity and to predict the NSC 

response based on the level of severity are the important questions that warrant the further 

investigation.

Beside NSCs in SVZ, NSCs within dentate gyrus subgranular zone (SGZ) also respond to 

neonatal HI injury. Similar to the studies of SVZ, committed type 2b and type 3 (DCX 

positive) neural progenitors in SGZ are vulnerable to HI injury, leading to cell apoptosis at 

24 h after HI (Kwak et al., 2015; Miles and Kernie, 2008). However, nestin-positive type 1 

and type 2a neural stem/progenitors not only resist acute injury but also actively proliferate, 

following by long-term neuronal restore (Miles and Kernie, 2008).
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3.2 Neurogenesis after adult ischemic stroke

Stroke is still the leading cause of adult chronic disability, and the fifth leading cause of 

death in the United States (U.S.), which kills more than 130,000 Americans each year 

(Benjamin et al., 2017). Of the 6 million Americans who are stroke survivors, 71% are 

unable to return to work. About $36.5 billion are spent due to stroke every year (Benjamin et 
al., 2017; Howard and Goff, 2012). Currently, the treatments for stroke are insufficient. 

Tissue plasminogen activator (tPA) is still the only FDA-approved drug for acute ischemic 

stroke. In addition to tPA, emerging evidence has shown that endovascular therapy is 

beneficial and promising (Cougo-Pinto et al., 2015). However, only a small portion of stroke 

patients can benefit from these treatments due to the narrow therapeutic time window and 

the strict therapeutic criteria that are uneasy to fulfill (Cougo-Pinto et al., 2015). Meanwhile, 

most of the survivors cannot fully complete neurological and functional recovery and have to 

face several obstacles to normal life, even after the utility of long-term rehabilitation 

(Qureshi et al., 2013).

Like neonatal HI injury, lack of blood supply triggers a serial of pathophysiological events 

leading to neural cell death after ischemic stroke. The mechanism includes excitotoxicity, 

mitochondrial dysfunction, protein misfolding, oxidative stress and inflammatory response 

(George and Steinberg, 2015). Although these pathways are first recognized as the 

detrimental effects in the development of neural injury, some of the pathways have also been 

proven beneficial for brain recovery, such as neurogenesis (George and Steinberg, 2015; Hao 

et al., 2014). Next, we will discuss the response of endogenous NSCs to ischemic stroke.

From early 2000s, the increasing evidence indicates the existing of post-stroke cell 

proliferation in SVZ (Jin et al., 2001; Parent et al., 2002; Zhang et al., 2001), SGZ(Jin et al., 
2001; Yagita et al., 2001), heavily relied on the technique of 5 -bromo-2′-deoxyuridine 

(BrdU) staining. Moreover, this cell proliferation in SVZ and SGZ starts from 2–5 days after 

stroke and lasts for about 30 days, with a peak on day7–8 post-ischemia (Yagita et al., 2001; 

Zhang et al., 2001). Stroke also causes the changes of NSC dividing pattern from 

asymmetric to symmetric (Zhang et al., 2004). Most of the BrdU-positive proliferating cells 

in SVZ are DCX-positive neuroblasts, none or few of them are mature neurons. 

Interestingly, DCX positive cells are also observed in the ipsilateral striatum (Arvidsson et 
al., 2002; Jin et al., 2003) and cortex (Jin et al., 2003) after stroke. This phenomenon raises a 

new question about the resource of neuroblasts outside the neurogenic area. Do they 

generate locally or migrate from the existing neurogenic niche after stroke? Proof of 

evidence has been demonstrated that the dividing neuroblasts migrate out from SVZ to the 

ipsilateral striatum and peri-infarct area (Arvidsson et al., 2002; Parent et al., 2002, 

Yamashita et al., 2006). More interestingly, the SVZ-derived neuroblasts could further 

differentiate into neurons and form synapses (Yamashita et al., 2006). Taking advantage of 

in vivo tracking and transgenic mouse, we now know that DCX-positive cells can move at an 

incredible speed of 17.98 ± 0.57 μm/h out of SVZ following ischemia (Zhang et al., 2009). 

Such migration mainly follows existed Rostral Migratory Stream (RMS) and is close to 

microvasculature (Thored et al., 2007). And some of the migrating neuroblasts change their 

direction to ipsilateral striatum or cortex, rather than chain migration to the olfactory bulb in 

the normal brain. It is still debated whether such migration to stroke-affected area expenses 

Huang and Zhang Page 6

Prog Neurobiol. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the cells whose original target of movement is OB. Studies have also shown that stromal 

cell-derived factor-1 (SDF-1) is the main regulator for neuroblast migration, through the 

chemokine(C-X-C motif) receptor 4 (CXCR4) (Kokovay et al., 2010; Thored et al., 2006). 

Even though dividing neuroblasts migrate to the stroke-affected area and try to replace the 

lost neurons, most of them die in about two weeks. The reason remains elusive and may be 

due to the un-health post-ischemic environment. Brain ischemia initiates an inflammatory 

cascade, such as microglial activation, immune cells infiltration and the release of toxic 

proinflammatory molecules (Tobin et al., 2014). Inflammation not only leads to neuron 

death but also affects the neurogenesis and survival of newly born neurons. Several lines of 

evidence indicate that microglial activation associated with inflammation disrupts the 

neurogenesis in the hippocampus (Monje et al., 2003), and proinflammatory factor 

interferon-γ (IFN-γ) increases apoptosis of cultured NSCs (Ben-Hur et al., 2003). 

Moreover, a recent study demonstrates that deletion of circulating monocytes after stroke 

improves the short-term survival of newly formed neuroblasts in SVZ (Laterza et al., 2017). 

Besides neuroblast, some studies indicate that many of the migrated neural progenitor cells 

give rise to reactive astrocytes and participate into the astrogliosis after stroke (Li et al., 
2010). It may be a good way to prevent the extension of inflammatory factors from 

infarction in the acute phase of stroke. While, the role of gliosis after stroke, especially its 

long-term effect, is still elusive and needs further investigation.

A clear conclusion about endogenous post-stroke neurogenesis is that although the period of 

SVZ cell proliferation seems short, this process is critical for stroke recovery. Transgenic 

ablation of SVZ neuroblasts increases brain infarction and worsens the stroke-caused 

behavioral deficits (Jin et al., 2010b). In addition, conditional delete of neural progenitor 

cells impedes the cognitive function and reduces synaptic connectivity after stroke (Sun et 
al., 2013a). Furthermore, it should be noted that most of the studies mentioned above used 

young adult animals. However, over 80% of strokes occur in the elderly. Thus, age should be 

an important factor to be considered when studying neurogenesis after stroke. Indeed, aging 

reduces SVZ cell proliferation and migration of neuroblasts after stroke, even though 

neurogenesis is still observed (Moraga et al., 2015).

Post-stroke neurogenesis was also proved in human brains through the study of 

immunostaining on the brain specimens of stroke patients (Jin et al., 2006; Nakayama et al., 
2010). Proliferated neuroblasts or newly-born neurons were found in the ischemic penumbra 

area of cortex, and some of them seem under migration 30 days after stroke (Jin et al., 
2006). In addition, Nakayama et al. (2010) have shown that nestin-positive cells exist in the 

post-stroke cortex from as early as one day after stroke, and disappear after three months. 

Nonetheless, many questions remain to be verified on human post-stroke neurogenesis, due 

to the limitation of patient samples and a shortage of available in vivo technologies. For 

example, the duration and location of post-stroke NSC proliferation remain unclear, as well 

as the resource of newly generated neurons in the cortex.
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4. NSC-based therapy for hypoxic-ischemic brain injury

4.1 Exogenous NSC transplantation

4.1.1 NSC transplantation in neonatal HI brain injury—Although endogenous NSCs 

have the self-repair ability after brain injury, it is usually insufficient and needs time to 

proliferate and migrate to the lesion area. Therefore, transplantation of exogenous NSCs is 

probably a more efficient way to improve the brain restore after injury. Moreover, in vitro 
cultured NSCs have the potential of self-renewal and differentiation to neuronal or glial 

cells. No matter the neural stem cells are derived from embryonic stem cells or isolated from 

fetal brains, substantial pre-clinical evidence has indicated that neural stem cell 

transplantation is efficient and effective for treating neonatal hypoxic-ischemic brain injury 

(Table 1).

4.1.1.1 Effect of NSC transplantation: The first question that all the studies of stem cell 

transplantation is whether stem cell therapy can reduce brain infarction and behavioral 

deficits. Indeed, several studies have shown that NSC transplantation significantly reduces 

HI-induced lesion volume in the acute and subacute phase (Sato et al., 2008) and the brain 

loss in the chronic phase of brain HI injury (Braccioli et al., 2017). However, the change in 

brain lesion volume is not always correlated with the improvement of behavioral functions. 

For example, although there is no significant difference on the change of infarct size after 

NSC treatment, an apparent improvement in sensorimotor functions have been observed in 

the NSC treated group compared to the vehicle group (Daadi et al., 2010). Thus, another 

important factor to evaluate the impact of NSC transplantation is the recovery of behavioral 

functions, such as sensorimotor, cognitive functions. The improvement of sensorimotor 

functions evaluated by cylinder test, beam walking test, and rotorad test has been shown 30 

days after NSC transplantation treatment (Daadi et al., 2010; Shinoyama et al., 2013). 

Similarly, a delayed NSC treatment study has reported that this behavioral improvement can 

even last for about two months after NSC transplantation (Braccioli et al., 2017). Using T-

maze and Morris water maze tests, NSC transplantation has also indicated the better 

recovery in the capability of spatial memory in a neonatal cerebral HI model one month after 

the cell treatment (Ji et al., 2015; Zheng et al., 2012). In addition to the reduction of 

infarction and improvement of behavioral functions, NSC treatment also attenuates 

neuroinflammation after HI injury. The HI-induced activation of microglia (Braccioli et al., 
2017) and upregulation of pro-inflammatory factors (e.g., interleukin-1β (IL-1β) and 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB)) (Ji et al., 2015) are 

reduced after NSC transplantation. Furthermore, engrafted NSCs participate into the 

remodeling of neuroplasticity, as the evidence of axonal growth has been noticed after NSC 

transplantation (Daadi et al., 2010; Shinoyama et al., 2013).

4.1.1.2 Methodologies of NSC transplantation

Source of NSCs: Both human and animal NSCs have been evaluated in pre-clinical studies 

(Daadi et al., 2010; Ji et al., 2015; Lee et al., 2010; Zheng et al., 2012), aimed to test the 

efficacy of NSC therapy for neonatal brain HI injury. Mouse and rat NSCs can be generated 

from fetal brain tissues (E14-16) (Sato et al., 2008) and grow as neurosphere. Another way 

to obtain animal NSCs is to derive them from animal embryonic stem cell (ESC) line with or 
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without genetic modification (Shinoyama et al., 2013). Similarly, human NSCs can be 

derived from human ESC line (Daadi et al., 2010). More importantly, these ESC-derived 

NSCs have been proved safe for transplantation, as they do not form tumors after 

transplanted into normal nude animals (Daadi et al., 2008). Meanwhile, brain tissues of 

human fetal cadaver that involved neurogenic area (like SVZ) are another resource for 

acquiring hNSCs (Ashwal et al., 2014). Although all of these NSCs have been reported the 

neuroprotective role for neonatal HI treatment, there is no direct comparison between the 

efficacies of NSCs generated from different sources yet. Therefore, it is still difficult to 

conclude which type (s) of NSCs are the most efficient for the NSC therapy. For better 

translating NSC therapy to clinical studies, many variables need to be compared with the 

two kinds of human NSCs, like the safety, the immune response in the host environment, the 

accessibility and the operability.

Route of NSC transplantation: Up to now, intracerebroventricular (i.c.v), intracerebral 

(cortex or hippocampus) and intranasal deliveries of NSCs have been reported in the pre-

clinical studies (Ashwal et al., 2014; Ji et al., 2015; Sato et al., 2008; Zheng et al., 2012). 

Engrafted NSCs distribute around the lateral ventricle and are close to the lesion area 7 days 

after i.c.v transplantation (Sato et al., 2008). Although such cell treatment reduces the lesion 

volume, it remains unclear that how many engrafted cells migrate to the lesion and the long-

term effect of this therapy. Four weeks after intracerebral injection of NSCs, engrafted cells 

survive, and about 40% of them differentiate into mature neurons (Daadi et al., 2010). 

Moreover, NSCs successfully distribute to the ipsilateral hemisphere and survive for 42 days 

after being intranasal administrated (Ji et al., 2015). Due to lack of system comparison on 

the efficiency of delivery routes, we still do not know which method(s) is ideal for the 

clinical application. However, intranasal administration is less invasive than intracerebral 

and i.c.v injection. Comparing to the latter ones, if the intranasal treatment has proved the 

similar therapeutic effect, it will be a more acceptable and practical way to perform the cell 

therapy in the clinical study.

Timing of NSC transplantation: Timing is a critical factor in designing and performing 

stem cell therapy, as HI-induced brain injury is dynamically changed. However, it is never 

straightforward to find the optimized time point for cell transplantation, due to the 

complexity of the pathogenic process of the disease. Most reported pre-clinical studies 

selected 24 hours after HI injury as the time point to transplant NSCs (Daadi et al., 2010; Ji 

et al., 2015; Sato et al., 2008). The possible reason is to avoid the acute excitotoxicity and 

inflammatory reaction after brain injury. However, human NSC transplantation 24 hours 

after HI increased microglial accumulation around the injection site in the previous study 

(Daadi et al., 2010). But it is unclear whether or not these increased microglia cause death of 

engrafts. A recent study indicates that delayed transplantation of NSCs (10 days after HI) 

still improves long-term functional recovery and reduces brain loss (Braccioli et al., 2017). 

This suggests that the therapeutic time window for NSC transplant may be wider than 

previously thought, probably due to the high plasticity of the neonatal brain. Further studies 

are needed to explore the optimized timing for NSC transplantation for neonatal HI brain 

injury.
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Dosage of NSC transplantation: Dosage is another factor that should be considered to 

perform the cell transplantation. A low dose may be not effective to rescue the brain 

damage, whereas a too high dose may cause side effects, such as forming cell clots. 

Unfortunately, there is no study yet to test the dose-dependent effect of NSC transplantation 

on neonatal HI injury. The dosage selected in the reported pre-clinical studies probably 

based on their pilot studies, ranging from a total of 1 ×105 to 3 ×105 cells. Even though these 

dosages have been reported effective for neuroprotection, it is difficult to get an ideal dosage 

based on previous studies. Because various transplantation parameters, e.g., timing, delivery 

route, and animal model, will impact the effective dosage, it is necessary to optimize the 

dosage in certain scenario of cell transplantation.

4.1.2 NSC transplantation in adult ischemic stroke—NSC therapy for the treatment 

of stroke in the adult has been much more widely investigated, compared to NSC therapy in 

neonatal HI injury. More than two hundred publications were published in the past decades. 

NSC transplantation is no doubt beneficial for reducing infarct volume and behavioral 

deficits caused by stroke. Indeed, a recent meta-analysis and systematic review analyzes the 

effect of preclinical NSC transplantation on stroke and indicates favorable outcomes of NSC 

therapy in the stroke treatment (Chen et al., 2016). In the following section, we will discuss 

the methodology and underlying mechanisms of NSC therapy for stroke (Table 2), providing 

a rationale for future translational studies.

4.1.2.1 Transplantation methodologies

Source of NSCs: Four primary sources of NSCs can be used in the treatment of stroke: 1) 

NSCs generated from fetal brains; 2) NSCs derived from ESCs (ESC-NSC); 3) immortalized 

neural precursor cells; 4) induced pluripotent stem cell-derived NSCs (iPSC-NSC). NSCs 

generated from fetal brains, and ESCs are the most widely used for pre-clinical studies. 

These NSCs have the potential for proliferation and neuronal differentiation in vitro. After 

being transplanted, they rapidly migrate to the infarcted area, leading to a reduction of 

neuronal apoptosis and improvement of behavioral function (Huang et al., 2014; Jin et al., 
2010a). About 40 – 60% of engrafted NSCs differentiate into neurons (Takagi et al., 2005). 

Immortalized neural precursor cells, like CTX0E03 (Pollock et al., 2006) and HB2.F3 cells 

(Chang et al., 2013), are neural precursor cells with an incorporated immortalizing 

oncogenes. Preclinical studies have shown the neuroprotective effect by transplanting these 

cells, and they have been used in ongoing type I clinical trial (Irion et al., 2017). Compared 

to other types of NSCs, iPSC-NSCs have their unique advantage. Firstly, iPSC-NSC 

transplantation remarkably reduced behavioral deficits after stroke (Eckert et al., 2015; Oki 

et al., 2012). Moreover, these cells can be generated from stroke patients’ own skin 

fibroblasts, which eliminate the immune rejection and ethical concern. Human iPSC-NSCs 

can differentiate into mature neurons with electrophysiological activity and can survive for 

at least four months in the brain of animal stroke models. In addition, there is no tumor 

formation during this period (Oki et al., 2012). Although iPSC-NSCs are promising, one 

pitfall is that the process of iPSC-NSCs can be time-consuming. However, this could be 

overcome with the rapid technological development of iPSC culture.
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Route of NSC transplantation: Intracerebral, intravascular and intracerebroventricular 

transplantation of NSCs have all been investigated and confirmed the positive functional 

improvement after stroke. However, it remains unclear which one is the optimal route for 

NSC transplantation. It may depend on the situation of stroke, like topology of brain lesion 

and stroke subtype. More NSCs are generally distributed into the infarcted area by 

intracerebral delivery, compared to intravascular injection. This is the reason why most of 

the pre-clinical studies have selected this delivery route. However, caution should be 

observed when translating this to clinical study because intracerebral delivery is invasive and 

raises the risk of several adverse events, e.g., seizure (Savitz et al., 2005). Considering 

intravascular delivery, intra-arterial has been proven more efficient than intravenous 

administration. A systematic comparison of intra-arterial and intravenous delivery has 

demonstrated that most of the NSCs are trapped in the lung after intravenous injection. In 

contrast, about 93% NSCs are distributed into the brain following intra-arterial injection 

(Pendharkar et al., 2010). However, a safety issue of intra-arterial cell delivery is the 

possibility of forming microemboli, which could cause micro-strokes. But this issue could 

be avoided by optimizing injection paradigms, like speed of cell infusion and appropriate 

blood flow. For example, micro-stroke has not been observed with a microneedle injection 

technique without slowing down the anterograde blood flow (Chua et al., 2011).

Timing of NSC transplantation: Selecting a reasonable time point is another essential step 

to design cell therapy. The timing chose in preclinical studies vary widely from 6 hours to 6 

weeks. However, few studies have directly addressed the question of optimal transplantation 

timing with cell survival. Intra-arterial NSC transplantation 72 hours after stroke results in 

highest cell brain distribution and less host immune response, compared to the 

transplantation 7 or 14 days after stroke (Rosenblum et al., 2012). Similarly, NSCs survive 

better with early (48 hours post stroke) intrastriatal transplantation than late (6 weeks) 

transplantation (Darsalia et al., 2011). Thus, it appears that 2–3 days after stroke would be 

optimal for the NSC treatment, which should avoid post-stroke abundance of excitotoxic 

molecules and acute inflammatory response in the host environment. Moreover, timing of 

NSC transplantation has the distinct effects on the fate of engrafted NSCs. NSCs prefer to 

differentiate into glial cells if they are intravenously delivered in the acute phase (less than 

24 hours after stroke); conversely, delayed transplantation enhances the neuronal 

differentiation (Doeppner et al., 2014; Rosenblum et al., 2012).

4.1.2.2 Potential mechanisms of brain repair

Cell replacement: The initial goal of NSC therapy for stroke was to replace the dying 

neurons. Although the engrafted NSCs can differentiate into mature neurons and some of 

them have electrophysiological property (Daadi et al., 2009; Oki et al., 2012), the overall 

number of survived engrafts are far less than the number of lost neurons caused by stroke. 

Mounting evidence indicates that host immune response and inflammation status influence 

the survival of grafts. In vitro studies have shown that exposure of NPC to IFN-γ 
upregulates its expression of major histocompatibility complex (MHC) antigen (Hori et al., 
2003; Kim et al., 2006). In addition, inflammatory cells (e.g., macrophage, microglia) 

cluster around the implantation site of exogenous NSCs in mouse brain (Buhnemann et al., 
2006; Kim et al., 2006), while such cluster is not observed in the brain of 
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immunocompromised nude mouse (Kim et al., 2006). Beside immune response, there are 

probably other mechanisms that cause apoptosis/cell death of grafts, as the application of 

immunosuppression agents could not completely reverse the death of grafts (Buhnemann et 
al., 2006). For example, the abundance of reactive oxygen species after stroke may be 

another threaten, as genetically modifying NSC to overexpress antioxidant enzyme, Cu/Zn-

superoxide dismutase(SOD1), increases graft survival in the ischemic brain (Sakata et al., 
2012a). Another possible reason is the loss of cell-cell connection, as single cells are usually 

prepared for transplantation. A recent study demonstrates that cell-cell contact enhances 

survival and neuronal differentiation of cultured NSCs (Jiao et al., 2017). Such interaction 

increases the expression of gap junction and, more importantly, enhances the support of 

neurotrophic factors from each other (Jiao et al., 2017). However, NSC treatment induced 

beneficial impact of behavioral function lasts for an extended period, even when the 

engrafted NSCs were insufficient to replace cell loss or most of them disappeared 

(Rosenblum et al., 2015). This suggests that cell replacement only takes a small part of the 

therapeutic mechanism of NSC transplantation. Indeed, the previous study by Borlogan et al. 
provided a new notion that neuroprotective effect of stem cell therapy does not require the 

engrafted cells to physically pass the blood-brain-barrier and enter the brain (Borlongan et 
al., 2004). Consistent with this concept, a recent study has shown that only conditioned 

medium from cultured neural progenitor cells is sufficient to reduce the infarct volume and 

improve behavioral recovery after stroke (Doeppner et al., 2017).

Moreover, the neuronal differentiation rate of engrafted NSC after stroke varies from 10% to 

60% (Buhnemann et al., 2006; Daadi et al., 2009; Sakata et al., 2012a). In addition to 

neurons, grafts are able to differentiate into glial cells, including astrocyte, microglia, 

oligodendrocytes in vivo (Rosenblum et al., 2012; Sakata et al., 2012b). Both cell-intrinsic 

factors and extrinsic factors (e.g., host environment, transplantation strategy, cell-cell 

interaction) could affect the fate of grafts. For example, early transplantation of NSC is 

prone to astrocytic differentiation but later transplantation is prone to neuronal 

differentiation (Rosenblum et al., 2012). Furthermore, evidence shows that astrocytes 

negatively regulate hippocampus neurogenesis in an entorhinal cortex injury model 

(Wilhelmsson et al., 2012). Thus, it is highly possible that the neuronal differentiation of 

grafts is hindered by reactive astrocytes after stroke. However, the underlying mechanism of 

grafted NSC differentiation in ischemic brain and how to precisely guide the differentiation 

are still elusive, which warrant further investigation.

Immunomodulation: We have shown that post-stroke inflammatory response is significantly 

reduced after NSC transplantation, and the activation of microglia is also suppressed by 

engrafted NSCs (Huang et al., 2014). In line with our findings, several studies have 

confirmed the role of NSCs in immunomodulation after stroke, with downregulation of pro-

inflammatory factors and activity of immune cells (Doeppner et al., 2013; Doeppner et al., 
2014).

Bystander effect: The bystander effect is a currently well-accepted concept for explaining 

the neuroprotective effect of stem cell transplantation. It means that engrafted NSCs can 

either release growth and neurotrophic factors by themselves or stimulate host cells 
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upregulating expression of such factors. There is substantial evidence that cultured NSCs 

can secrete multiple trophic factors, such as BDNF, VEGF, and EGF (Hicks et al., 2013). 

Moreover, human iPSC-NSCs increase VEGF expression of host astrocytes and promote 

angiogenesis after being transplanted into striatum of stroke mouse (Oki et al., 2012).

Accelerating endogenous recovery: Although the spontaneous post-stroke neurogenesis is 

inadequate to repair the injured brain, the natural self-repair activity occurs as early as few 

days after stroke. The possibility of enhancing endogenous neurogenesis has been the focus 

of pre-clinical stroke studies. Expectedly, several NSC translational studies observed that 

exogenous cell administration has a consistent impact on the endogenous neurogenesis (Jin 

et al., 2011; Park et al., 2010; Zhang et al., 2011). One possible explanation for the effect of 

stimulating endogenous neurogenesis is the bystander effect of cell treatment. However, it 

seems that the delivery route also has an effect. Intracerebral, instead of intravascular, 

injection of NSCs promote host cell proliferation in the SVZ (Minnerup et al., 2011). Except 

for neurogenesis, NSC transplantation has been proven to secrete angiogenic factors, thereby 

promoting host angiogenesis or vasculogenesis (Hicks et al., 2013; Zhang et al., 2011). 

Meanwhile, stroke mostly occurs in the elderly, so the effect of NSC treatment in aged 

stroke animals may be more clinically relevant. Some studies have shown that NSC 

transplantation greatly enhances the neurogenesis and angiogenesis in both young and aged 

animals (24-month old) (Jin et al., 2011; Tang et al., 2014). Moreover, equal survived 

engrafted cells distribute in the host post-stroke environment, regardless of host’s age (Tang 

et al., 2014). This suggests that the age may not be a concern affecting the therapeutic effect 

of engrafted NSCs.

4.2 Enhancing neurogenic potential of endogenous NSCs

In this section, we will cover most of the main factors that are known to be involved in post-

injury neurogenesis following the neonatal HI injury and adult ischemic stroke. We will not 

undertake a detailed review of factors that regulating neurogenesis in the normal adult brain 

or during central nervous system development, as several comprehensive reviews are 

discussing these topics (Faigle and Song, 2013; Semple et al., 2013). Neurogenesis and 

involved factors within the ipsilateral brain after HI injury are illustrated in Figure 2.

4.2.1 Factors involved in the regulation of neurogenesis after neonatal HI 
brain injury

Erythropoietin (EPO): EPO, a hypoxia-inducible factor, is critical for erythropoiesis 

(Beleslin-Cokic et al., 2004). Interestingly, studies also indicate that EPO can stimulate 

proliferation of NSCs through its specific membrane receptor – EPOR (Chen et al., 2007; 

Shingo et al., 2001). Consistent evidence has shown that EPO treatment not only reduces 

acute brain damage and behavioral deficits (Iwai et al., 2007; Iwai et al., 2010), but also 

increases SVZ neurogenesis and migration of neural progenitors after neonatal HI brain 

injury (Iwai et al., 2007). Moreover, EPO administration attenuates white matter injury (Iwai 

et al., 2010), which is a detrimental pathophysiology of neonatal HI injury and leads to 

dysfunction of the brain. In addition, oligodendrogenesis is significantly improved after a 

delayed EPO treatment (Iwai et al., 2010). However, like every coin has two sides, long-term 

EPO administration could increase the risk of polycythemia and vascular thrombosis 
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(Coleman et al., 2006). Fortunately, a recent study using asialo-EPO (AEPO) that is a non-

erythropoietic derivative of EPO, demonstrates the similar beneficial effect on proliferation 

of oligodendrocyte progenitor cells (OPCs) without side effect of EPO injection (Kako et al., 
2012). Consecutive two weeks AEPO treatment increases mature of OPCs in corpus 

callosum (CC) of HI-insulted neonatal mice and improves myelin formation in the CC area 

two months after HI insult (Kako et al., 2012).

Neurotrophic factors and growth factors: Brain-derived neurotrophic factor (BDNF) is a 

key element to keep neuronal survival. A delayed chronic combination treatment of BDNF 

and epidermal growth factor (EGF) significantly increases cell proliferation in the SVZ and 

ipsilateral striatum after HI insult in mouse (Im et al., 2010), leading to improvement of 

behavioral functions. Meanwhile, the proliferation of newly generated neurons in the 

striatum is increased by the BDNF+EGF treatment (Im et al., 2010). Even though the 

therapeutic effect of BDNF treatment is promising, the delivery of BDNF is a concern for 

clinical study, as BDNF may be difficult to pass the blood-brain-barrier (BBB). Vascular 

endothelial growth factor (VEGF) promotes angiogenesis, which is an important event to 

maintain the neurogenic niche. There are seven members of the VEGF family and the 

function of VEGF isoforms on neurogenesis is different. VEGF-A and VEGF-C at the SVZ 

are transiently induced after neonatal HI injury (Bain et al., 2013). VEGF-A has been shown 

to enhance the differentiation of SVZ glial progenitors to astrocytes, and VEGF-C prefers to 

stimulate proliferation and differentiation of late oligodendrocyte progenitors through its 

receptor – VEFGR-3 (Bain et al., 2013).

Leukemia inhibitory factor (LIF): LIF, a cytokine from the family of interleukin-6 (IL-6), is 

an important factor for maintenance of NSCs (Pitman et al., 2004; Shimazaki et al., 2001). 

HI injury transiently upregulates the mRNA levels of LIF in the SVZ, with a peak at 24 

hours after injury (Buono et al., 2015; Covey and Levison, 2007). In addition, LIF treatment 

increases proliferation of neurosphere generated from the SVZ in vitro (Covey and Levison, 

2007). This effect of LIF is through the Notch signal pathway (Covey and Levison, 2007; 

Felling et al., 2016). In a LIF heterozygotes transgenic mouse, HI-induced expansion of 

neural progenitors in the SVZ is inhibited, suggesting that LIF signal is required for NSCs 

responding to HI injury (Buono et al., 2015). Furthermore, study by Ryan Felling et al. 
shows for the first time that LIF is released by the SVZ astrocytes responding to HI injury 

(Felling et al., 2016). These studies have shed light on the potential of LIF as a treatment 

avenue to boost NSC neurogenesis after neonatal HI injury.

Hyperbaric oxygen (HBO): HBO therapy, using 100% oxygen at 2.4–3.0 absolute 

atmosphere (ATA), has been reported neuroprotective for many neurological diseases (Deng 

et al., 2014). Surprisingly, brief application of HBO during reperfusion of HI injury causes 

cell death of oligodendrocyte glial progenitors in the cortex and leads to deficit of motor 

function 2–4 weeks after injury (Koch et al., 2008). In contrast, consecutive perform HBO 

treatment for one week, starting from 3 hours after HI injury, significantly increases NSC 

proliferation in the SVZ, and improves behavioral recovery (Wang et al., 2008). The 

paradigm of HBO treatment may explain the difference between these two studies. HBO 

cannot be administrated in the hyperacute phase of HI injury, as it could cause more severe 
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ischemic-reperfusion damage. The treatment time window is 3 hours to 24 hours after HI 

injury, based on the previous report (Wang et al., 2008). Daily HBO treatment for one week 

may compensate the adverse aspect of toxic oxygen. Moreover, many other key parameters, 

like the severity of injury and dose of HBO treatment, also need to be considered in 

performing HBO therapy for clinical studies in the future.

Hypothermia: Growing evidence indicates that mild hypothermia (33–35 °C) is an effective 

management for neonatal HI encephalopathy. However, it is still uncertain that hypothermia 

is beneficial for neurogenesis after HI insult. The previous study has shown that a severe 

hypothermia (30 °C for 24 hours) reduces cell proliferation in the SGZ, but not in the SVZ 

(Kanagawa et al., 2006). In contrast, a short period of hypothermia (28.5 °C for 4 hours) 

partially rescues the SGZ cells from apoptosis and increases the proliferation of neural 

progenitors in the SGZ (Kwak et al., 2015). Consistent with this report, hypothermia (32–

33 °C for 24 hours) attenuates HI-induced white matter damage and elevates proliferation of 

early oligodendrocyte progenitors in the hippocampus (Xiong et al., 2013). A possible 

explanation for the controversial reports is the differences in the parameter of hypothermia. 

It appears that mild hypothermia with short period is neuroprotective and beneficial for 

neurogenesis after neonatal HI injury, while severe hypothermia may be not. To make future 

hypothermia studies more comparable, parameters used for hypothermia should be 

standardized. For instance, rectal temperature should be reported in all the studies, instead of 

only report water bath temperature. Besides, the severity of injury should always be 

considered, as it affects the evaluation of the efficacy of hypothermia therapy.

4.2.2 Factors involved in the regulation of neurogenesis after adult stroke

Growth factors

Epidermal growth factor (EGF): EGF is a critical mitogen to regulate NSC growth and 

maintenance in vivo and in vitro (Kuhn et al., 1997; Reynolds et al., 1992). The receptor of 

EGF, EGFR, is widely expressed on the SVZ NSCs (Seroogy et al., 1995). The expression 

of EGFR in the SVZ area responds to cerebral ischemia (Ninomiya et al., 2006). Elevated 

SVZ EGFR positive staining is observed from 7 days after stroke (Ninomiya et al., 2006), 

which is coincident with the pattern of proliferation of SVZ NSCs. In addition, lateral 

ventricular infusion of Heparin-binding epidermal growth factor (EGF)-like growth factor 

(HB-EGF) increases cell proliferation in the SVZ and DG in normal animals (Jin et al., 
2002). The neurogenesis effect of EGF has also been confirmed by in vitro neurospheres 

study under the normoxic condition, and this effect takes place through EGFR (Jin et al., 
2002). In stroke animals, intraventricular administration of EGF not only stimulates 

proliferation of DCX positive neuroblasts in the SVZ (Ninomiya et al., 2006), but also 

increases neuroblast migration out of the SVZ (Teramoto et al., 2003). Furthermore, EGF 

treatment enhances the neuronal differentiation in the striatum after stroke, and newly 

generated neurons are spiny projection interneurons (parvalbumin+) (Teramoto et al., 2003), 

which is the type of subpopulation affected by stroke. It is worthy of noting that EGF 

treatment can replace the lost neuronal cells caused by stroke, and enhance self-repair ability 

of brain post injury.
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Fibroblast growth factor (FGF) + EGF: Like EGF, FGF-2 also can stimulate proliferation 

of cultured NSCs in vitro. However, the function of FGF-2 is distinct with EGF on the 

proliferation and migration of neural progenitor cells in vivo. FGF-2 increases newly born 

neurons in the olfactory bulb, while EGF increases striatum newly born cells through 

stimulating SVZ cell migration or proliferation of local neural progenitor cells (Kuhn et al., 
1997). In addition, expression of FGF-2 in the cortex is upregulated after stroke (Kumon et 
al., 1993; Lin et al., 1997). Endogenous FGF-2 is an essential regulator of cell proliferation 

after brain injury, as dividing cells in DG after stroke are significantly reduced in FGF-2 

knockout mice compared to wild-type mice (Yoshimura et al., 2001). In order to maximize 

the effect of growth factors on neurogenesis, many studies combine EGF with FGF-2 

(Baldauf and Reymann, 2005; Oya et al., 2008; Tureyen et al., 2005). Three days infusion of 

EGF + FGF-2 increases cell proliferation in the SVZ and DG 7 days after stroke and 

improves the survival of newly born neurons at 21 days (Tureyen et al., 2005). Also, the mix 

of EGF with FGF-2 has been reported the most efficient way of growth factor combination 

for boosting neurogenesis after stroke (Oya et al., 2008). However, study by Baldauf et al. 
reemphasizes the importance of time frame for such combination therapy. A two weeks 

treatment with EGF + bFGF unexpectedly enlarges the size of stroke-induced brain injury, 

even though cell proliferation is increased in the SVZ two weeks after stroke (Baldauf and 

Reymann, 2005). It seems that long-term application of growth factor combination therapy 

may have detrimental effects on neuronal death.

Vascular endothelial growth factor (VEGF): In addition to the angiogenetic function, 

VEGF has been demonstrated a powerful neurogenic effect after stroke (Greenberg and Jin, 

2013), including both VEGF-A and VEGF-B. A short period of VEGF-A 

intracerebroventricular administration increases cell proliferation in the SVZ and DG 28 

days after stroke (Sun et al., 2003). This neurogenesis effect is also accompanied with 

angiogenesis and acute neuroprotection (Sun et al., 2003). Furthermore, SVZ neurogenesis 

is markedly enhanced in VEGF-overexpress transgenic mice after cerebral ischemia, as well 

as migration of neuroblasts and generation of newly born neurons in the cortex (Wang et al., 
2007). Similarly, VEGF-B knockout reduces the spontaneous post-stroke cell proliferation in 

the SVZ and DG (Sun et al., 2006). Moreover, exogenous administration of VEGF-B 

successfully restores such proliferation (Sun et al., 2006). This suggests that the VEGF 

treatment has therapeutic implications for stroke recovery by increasing angiogenesis and 

neurogenesis. However, the dosage should be considered carefully when applying VEGF 

therapy for the neurological disease. A study has shown that a high dose (500 ng/ml) and a 

low dose (50 ng/ml) of VEGF have distinct effects on proliferation and differentiation of 

neural progenitors in the SVZ (Meng et al., 2006). The high dose significantly inhibits the 

proliferation and enhances neuronal differentiation, whereas the low dose does not have 

these effects (Meng et al., 2006). A recent study indicates that the neurogenesis effect of 

VEGF after stroke is partly due to reactive astrocyte transdifferentiation into newly 

generated neurons (Shen et al., 2016).

Neurotrophic factors: Neurotrophic factors, brain-derived neurotrophic factor (BDNF) and 

nerve growth factor (NGF), are crucial for maintaining neural stem cell/neuronal survival 

and promoting neuronal differentiation during brain development or after injury (Barde, 
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1989). Ischemic stroke elevates mRNA levels of both BDNF and NGF in stroke-affected 

cortex area (Dmitrieva et al., 2016). The brain appears to initiate endogenous 

neuroprotective mechanisms against the brain injury after stroke. However, intranasal 

administration of NGF does not further increase SVZ cell proliferation after stroke (Zhu et 
al., 2011). Instead, it improves the survival of newly born neurons in the striatum (Zhu et al., 
2011). Different from NGF, intravenous BDNF injection for five days increases 

neurogenesis and neural progenitor cell migration from the SVZ, leading to long-term 

improvement of sensorimotor functional recovery after stroke (Schabitz et al., 2007). 

Interestingly, it has been reported that upregulation of BDNF via recombinant adeno-

associated virus (rAAV) inhibits the formation of newborn dentate granule cells in a global 

ischemia rat model (Larsson et al., 2002). The reason may lay on the methodology, as the 

rAAV-transducted cells may not release or secrete BDNF into the surrounding environment.

Erythropoietin (EPO): In addition to regulating hematopoiesis, EPO has been reported 

various other essential functions, including angiogenesis and neuroprotection (Ribatti et al., 
1999; Wang et al., 2004). EPO is also critical for neural development. EPO and EPO 

receptor (EPOR) express in the developing neural tube of embryo, and Epo or EpoR 

knockout mice cannot survive due to incomplete neural tube closure (Tsai et al., 2006). 

Intraperitoneal administration of EPO increases SVZ cell proliferation and angiogenesis 

around ischemic lesion after stroke (Wang et al., 2004). In line with this, the SVZ size and 

cell proliferation in the SVZ are reduced in EpoR conditional knockdown mice (Tsai et al., 
2006). In addition, post-stroke neurogenesis is hindered in these transgenic mice (Tsai et al., 
2006). Furthermore, EPO, administrated daily for seven days, augments the proliferation of 

oligodendrocyte progenitor cells and improves white matter remodeling after embolic 

cerebral ischemia (Zhang et al., 2010). Meanwhile, gene-expression profile study has shown 

that EPO treatment significantly upregulates neuronal plasticity-related genes (Egr1 and 

Egr2) after stroke (Mengozzi et al., 2012). Despite a possible adverse effect of increasing 

hematocrit and thrombosis, EPO has a high potential for further investigation of clinical 

application as a stroke management strategy.

Transcriptional factors

Notch pathway: The Notch signaling pathway is a conserved and fundamental pathway 

critical for maintaining NSC proliferation and differentiation during neural development. 

Function as a receptor, Notch is a transmembrane protein, including extracellular domain, 

transmembrane domain and internal cellular domain (NICD). Notch has many ligands, like 

jagged 1 (JAG1), JAG2 and delta-like (Dll) protein (Ables et al., 2011). Except for the 

developing brain, components of the notch signaling are cell-based throughout the adult 

brain, especially neurogenic area (Givogri et al., 2006; Mizutani et al., 2007; Stump et al., 
2002). DCX positive neuroblasts in the SVZ highly express Notch and cerebral ischemia 

increases the expression of the Notch pathway components (NICD, and Notch downstream 

target-Hes1 and Sonic Hedgehog) in SVZ cells (Wang et al., 2009b). Importantly, SVZ cell 

proliferation is increased with Notch activation, whereas blocking the Notch signal with 

soluble Jagged1-Fc reduces the proliferation (Wang et al., 2009b). Moreover, knocking 

down Notch by RNAi reverses post-stroke proliferation of neural progenitor cells isolated 

from the SVZ of stroke rats (Wang et al., 2009a). Recent study also confirms the same 
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phenomena in aged animals. Post-stroke neurogenesis in the SVZ is enhanced by Notch 

activation and reduced by blocking the Notch signal in aged (20–24 months old) rats (Sun et 
al., 2013b).

Sonic hedgehog (Shh): Shh is another well-studied morphogen, and the Shh pathway is 

crucial for dorso-ventral patterning process of developing CNS (Marti and Bovolenta, 2002). 

Moreover, it has an important role in the adult brain for stem cell maintenance (Ahn and 

Joyner, 2005; Palma et al., 2005). Under the hypoxic condition, cultured neurons and neural 

progenitor cells increase Shh expression (Sims et al., 2009). In vivo studies also demonstrate 

that cerebral ischemia upregulates the expression of Shh signal in the ipsilateral 

hippocampus (Sims et al., 2009), cortex and striatum (Jin et al., 2015) after injury. These 

findings suggest that the Shh pathway plays an important role in the neuronal cell response 

to hypoxia. The further study has shown that inhibition of Shh pathway abolishes the post-

stroke cell proliferation in the hippocampus (Sims et al., 2009). Shh-induced cell 

proliferation is vital for post-stroke behavioral recovery, as conditional knockout Shh gene in 

NSCs (Nestin positive) worsens the neurological function. Conversely, treatment with Shh 

signaling agonist (SAG) improves behavioral recovery after stroke (Jin et al., 2015). 

Consistently, intrathecal administration of Shh protein in stroke animals also has the 

beneficial effect of SVZ neurogenesis and functional improvement (Bambakidis et al., 
2012).

Wingless-type MMTV integration site family (Wnt): The Wnt pathway is a conserved 

signaling pathway, regulating multiple cellular processes during the development of CNS, 

including neuronal migration and synaptic differentiation (Fradkin et al., 2005). 

Accumulating evidence indicates that Wnt protein also participates in the adult neurogenesis 

under normal and pathophysiologic conditions (Hirota et al., 2016). One major Wnt 

signaling pathway is the β-caternin-dependent canonical pathway. In the absence of Wnt, β-

caternin degrades under basal situation. On the opposite, this pathway is initiated, and 

transcription factor β-caternin is preserved when Wnt binds to its receptor (Hirota et al., 
2016). Upregulation of Wnt via lentivirus intrastriatal injection increases the number of 

BrdU-positive cells in the striatum after endothelin-1-induced focal ischemic injury 

(Shruster et al., 2012). In addition, stroke increases symmetric division of SVZ NSCs 

accompanying with upregulated Wnt signal in the same area (Piccin and Morshead, 2011). 

Similarly, declining expression of β-caternin, a downstream transcriptional factor of Wnt, 

decreases SVZ expansion and striatal neurogenesis after stroke (Lei et al., 2008).

Epigenetic regulators

MicroRNAs: MicroRNAs (miRs) are a class of non-coding RNAs, participating in post-

transcriptional gene regulation (Boyd, 2008). Mature miRs are single-stranded with ~21–22 

nucleotides in length and can bind to 3′-untranslated region (3′UTR) of target mRNAs, 

which leads to translation repression and mRNA degradation (Boyd, 2008). MiRs have been 

shown to involve in the regulation of neural development and pathophysiology of various 

neurological disease including stroke. Studies about miRs and post-stroke neurogenesis are 

emerging. Four miRs related to neurogenesis have been widely investigated.
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MiR-9: The expression of miR-9 starts during early neurosphere formation and promotes 

NSC proliferation (Delaloy et al., 2010). Moreover, miR-9 participates in the migration of 

NSCs under brain injury. For example, miR-9 inhibits the migration of engrafted NSCs after 

being transplanted into ipsilateral striatum of stroke mice (Delaloy et al., 2010). In addition, 

overexpression of miR-9 and miR-200 suppress the differentiation of oligodendrocyte 

precursor cells through downregulating the expression of serum response factor (SRF) 

(Buller et al., 2012).

MiR-124: MiR-124 is specifically expressed in DCX-positive neuroblasts in adult SVZ 

(Cheng et al., 2009). Knockdown of miR-124 enhances the division of SVZ neuroblasts. In 

contrast, overexpression of miR-124 increases the neuronal differentiation of SVZ cells in 
vivo, and this effect takes place through one of miR-124 direct target, Sox9 (Cheng et al., 
2009). In line with these findings, focal cerebral ischemia substantially reduces the 

expression of miR-124a in SVZ cells (Liu et al., 2011), which may explain the post-stroke 

proliferation of SVZ cells. In addition, miR-124a transfection in neural progenitors promotes 

their differentiation to neurons. Furthermore, Jagged-1, a ligand of the Notch signal, has 

been demonstrated as a direct target of miR-124a (Liu et al., 2011). Thus, stroke 

downregulates miR-124a with an increase of JAG1, thereby enhances the activity of Notch 

signal and improves neurogenesis. However, the upstream mechanisms in regulating 

miR-124 after stroke remain to be explored. More excitingly, a recent study has shown that 

administration of synthesized exosomes carrying miR-124 promotes neuronal differentiation 

of cortical NSCs after stroke (Yang et al., 2017a). This suggests that miRs can be carried 

within exosomes and used as a therapeutic drug to treat neural diseases.

MiR-17-92 cluster: The miR-17-92 cluster includes six miRs (miR-17, miR-18a, miR-19a, 

miR-20a, miR19b, and miR-92) on human chromosome 13q31.3 (Xiao et al., 2008; Yang et 
al., 2017b). Stroke upregulates expression of miR-17-92 cluster in SVZ cells, especially 

miR-18a, miR-19a and miR-19b (Liu et al., 2013). Moreover, miR-18 and miR-19a mimics 

significantly increase the SCZ cell proliferation after stroke. A study has also shown that the 

phosphatase and tensin homolog (PTEN) is a direct target of miR-17-92 cluster, and a 

decrease in PTEN protein levels elevate cell proliferation (Liu et al., 2013). Furthermore, 

intravenous infusion of miR17-92 cluster-enriched exosomes enhances neurogenesis and 

oligodendrogenesis after stroke, as well as improvement of neurological behaviors (Xin et 
al., 2017).

MiR-210: MiR-210 is so far the only miR that has been reported robustly induced by 

hypoxia in all cell types studied (Chan and Loscalzo, 2010). Brain miR-210 levels increase 

24 hours after ischemic stroke. However, the role of miR-210 in post-stroke neurogenesis is 

still elusive. Using lentiviral vector to overexpress miR-210 in normal mice brain for 28 

days, Zeng et al. reported that cell proliferation in the SVZ was significantly increased (Zeng 

et al., 2014). A recent study by Voloboueva et al. found that reducing cellular miR-210 

dramatically attenuated proliferation of cultured neural progenitor cells under inflammatory 

condition (Voloboueva et al., 2017). Currently, there is no solid evidence yet to show that 

miR-210 promotes post-stroke neurogenesis, thus whether it could be a potential neurogenic 

candidate remains to be determined.
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DNA methylation and histone modification: Although little is known about the relationship 

between these two types of epigenetic regulation with post-stroke neurogenesis, DNA 

methylation and histone modifications are indeed involved in stroke development and 

neurogenesis under normal condition. For example, levels of DNA methylation are elevated 

in ischemic striatum and cortex 24 hours after cerebral ischemia (Endres et al., 2000), and 

the activity of DNA methyltransferase (DNMT) is negatively correlated with the stroke 

outcome. Inhibition of DNMT reduces ischemia-induced lesion volume (Endres et al., 
2000). Furthermore, neuronal differentiation of NSCs is decreased after genetic deleting of 

Methyl-CpG binding protein 1 (MBD1), a protein participating in DNA methylation-

mediated gene repression (Zhao et al., 2003). Recently, the epigenetic mechanisms on 

neuroplasticity after stroke has been reviewed (Felling and Song, 2015), providing further 

detailed discussion on this topic.

4.3 Direct neuronal reprogramming in vivo

Beside enhancing endogenous NSC to neurogenesis after injury, another emerging strategy 

is in vivo direct neuronal reprogramming. Although this technology is still in its infancy, it 

has already shed light and shown the promise on the brain repair after injury. The concept of 

direct reprogramming is partially inspired by the breakthrough of induced pluripotent stem 

cells technique, which demonstrates that pluripotent stem cells can be induced from skin 

fibroblast cells by only four transcription factors (Oct4, Sox2, Klf4, and c-Myc) (Takahashi 

and Yamanaka, 2006). Moreover, the induced pluripotent stem cells (iPSCs) are able to 

differentiate into various cell types, including neurons (Hu et al., 2010; Kim et al., 2011). 

The direct reprogramming could be regarded as a shortcut to directly acquire terminally 

differentiated cells from fibroblasts or other cell types bypassing the stage of PSC. Indeed, 

several pioneering studies have provided proof of evidence that cultured fibroblast and glial 

cells can be converted into neurons under neurogenetic transcription factors, like Achaete-

scute complex homolog 1 (Ascl1) (Vierbuchen et al., 2010), paired box gene 6 (Pax6) (Heins 

et al., 2002), and neurogenin2 (Neurog2) (Berninger et al., 2007; Heinrich et al., 2010). 

Remarkably, the induced neuron not only is neural markers (e.g., MAP-2, Tuj-1) positive but 

also has the electrophysiological function (Berninger et al., 2007; Vierbuchen et al., 2010), 

as well as the synaptic connection with other cultured neurons (Vierbuchen et al., 2010).

The great success of in vitro direct neuronal reprogramming encourages the transfer of this 

technique to in vivo studies, as the in vivo direct reprogramming has several unique 

advantages for brain repair. Firstly, this method avoids the ethical and immune-rejection 

problem associated with exogenous cell transplantation. Secondly, endogenous glial cells 

provide abundant cells to target, unlike cell graft that are limited by the cell resource and 

inadequacy of available cell numbers. However, the transfer of in vitro reprogramming to in 

vivo application is not straightforward. The efficacy of same transcriptional factors for direct 

reprogramming is quite different in vitro and in vivo. For example, Pax6 sufficiently 

converts astrocytes into neurons in vitro (Heins et al., 2002), while very few induced neurons 

are observed after Pax6 is transduced into glial cells in mouse cortex and striatum (Grande et 
al., 2013). Moreover, the brain region is another factor to affect the reprogramming efficacy. 

Striatum and neocortex resident cells show distinct responses for the combination of growth 

factors (GFs) and Neurog2 transfection; more NeuN positive neurons are induced in the 
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striatum after infection (Grande et al., 2013). Furthermore, the environment of the brain is 

also critical. It has been reported that the brain with ischemic injury promotes the generation 

of induced neurons, as compared to the normal brain under the same treatment with GFs and 

Neurog2 (Grande et al., 2013). Meanwhile, another big concern is the virus vector used for 

direct reprogramming. Currently, most of the studies, including both in vitro and in vivo 

experiments, rely on the virus vectors to express the neurogenic transcriptional factors. This 

may increase safety concerns when translating the technique into the clinical study. An 

alternate method is using small molecular compounds, which could avoid cerebral injection 

of the virus and easily offer widespread reprogramming in the injured brain. Substantial 

evidence indicates that sequentially applying a cocktail of chemical compounds, including 

nine small molecules (LDN193189, SB431542, TTNPB, Tzv, CHIR99021, VPA, DAPT, 

SAG, and Purmo), are able to reprogram the cultured astrocytes into neurons with fully 

electrophysiological function (Zhang et al., 2015). However, the combination of multiple 

molecules may increase the complexity of this technique and affect the feasibility to transfer 

it to the clinical application. Thus, several obstacles still need to overcome for using 

molecules to reprogram glia in vivo, like how to optimize the combination of chemical 

compounds, and how to efficiently deliver these molecules to the target brain area. Even 

though many technical questions still need to be answered, in vivo direct reprogramming 

glial cells into neurons open a novel and attractive avenue for brain repair, as emerging 

studies demonstrate that in vivo induced neurons functionally mature and form synaptic 

connection to other existing neurons (Pereira et al., 2017; Zhang et al., 2015).

Although applying in vivo glia-neuron reprogramming to repair brain damage after stroke is 

still in the early stage, other brain injury studies using the brain stab wound model have 

already demonstrated the feasibility of direct neuronal reprogramming for brain repair 

(Grande et al., 2013). Although direct neuronal reprogramming has made a significant 

progress in the last decade, some major challenges still lay ahead, in order to make this 

approach more efficient and practical for the future. Firstly, the average neuronal converting 

and survival rate is low under previously reported protocols. Surprisingly, less than 25% 

resident cortex cells have been reprogramed to neurons in the stab wound brain injury model 

7 days after infection, and the estimated neuronal replacement rate is only 3.2% one month 

later (Grande et al., 2013). Recent studies provide the evidence that these challenges could 

be overcome by combining neurotrophic factors or anti-apoptotic factors with transfection of 

the neurogenic transcriptional factor. For example, co-expression of Bcl-2 facilitates the 

astrocyte-neuron conversation and increases the number of final survived neurons (Gascon et 
al., 2016). To mend the injured brain, we still need to figure out the approach that guides the 

endogenous glial cells to reprogram into specific neuron subtypes and to form functional 

neuronal circuits between different subtypes of neurons. This is especially important for the 

neurological disease like stroke, which affects a wide range of the brain and damages 

multiple kinds of neurons. Last but not least, the functional recovery is the final goal of 

neuronal replacement/regeneration therapy, including in vivo direct reprogramming. Without 

evidence of functional improvement, it will be difficult to translate this therapy to the 

clinical application.
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5. Conclusion remarks

Considering the limited treatment option for both neonatal HI brain injury and stroke in the 

adult, there is an urgent need to explore new effective treatment strategies to protect the 

brain and promote the neurological recovery after injury. Although we have witnessed the 

failure in development of thousands neuroprotective drugs, we cannot simply conclude that 

neuroprotection is unattainable in stroke patients. The reality may suggest that regulating 

single treatment target could be insufficient to achieve clinical relevant neuroprotection. In 

contrast, the NSC therapy is multi-targeting, and NSCs have several unique beneficial 

characteristics, including migration to the brain lesion and secretion of angiogenic and 

neurotrophic factors. All of these cannot be achieved at the same time by traditional single 

drug administration. Furthermore, solid evidence from pre-clinical studies has proven that 

the NSC therapy holds the positive therapeutic potential, with both strategies - enhancing 

endogenous neurogenesis and transplanting NSCs. However, several basic questions remain 

to be elucidated, in order to better understand the NSC therapy. For example, it is unclear at 

present that why post-injury neurogenesis is a transient process. What are the factor(s) or 

mechanism(s) that inhibit the survival of most engrafted NSCs? How do we promote 

engrafted NSCs integrating into the host neural network? In addition, there are many other 

questions related to cell transplantation methodologies. The optimal route/dosage/timing 

merits further investigations in order to better translate the promising cell therapy to the 

clinical setting. Of importance, as the personalized treatment becomes the direction of 

modern medicine, understanding the strategy how to set up specific NSC therapy for 

individual stroke patient will be necessary for the future investigation.
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Abbreviations

NSCs neural stem cells

HI hypoxic-ischemic

SVZ subventricular zone

SGZ subgranular zone

NE neuroepithelial

RG radial glial

GLAST glutamate transporter

GFAP glial fibrillary acidic protein

VZ ventricular zone

nIPC intermediate neural progenitor cell
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INM interkinetic nuclear migration

GSK-3 glycogen synthase kinase 3

miRs micro RNAs

CSF-1 Colony Stimulating Factor-1

FGF fibroblast growth factor

OB olfactory bulb

RMS rostral migratory stream

BNIP3 bcl-2/adenovirus E1B 19 kDa interacting protein-3

MP2s multipotential progenitors

GRPs glia-restricted progenitors

tPA tissue plasminogen activator

SDF-1 stromal cell-derived factor-1

ESC embryonic stem cell

iPSC-NSC induced pluripotent stem cell-derived NSC

HBO hyperbaric oxygen

EPO erythropoietin

AEPO asialo-EPO

OPCs oligodendrocyte progenitor cells

CC corpus callosum

BDNF brain-derived neurotrophic factor

EGF epidermal growth factor

BBB blood-brain-barrier

VEGF vascular endothelial growth factor

NGF nerve growth factor

rAAV recombinant adeno-associated virus

JAG1 jagged 1

Dll delta-like

Shh Sonic hedgehog

SAG Shh signaling agonist
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Wnt Wingless-type

SRF serum response factor

PTEN phosphatase and tensin homolog

DNMT DNA methyltransferase

MBD1 Methyl-CpG binding protein 1
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Highlights

• This review provides a comprehensive overview of neural stem cell therapy 

for both neonatal and adult hypoxic-ischemic brain injury.

• Endogenous neural stem cells rapidly react to the injury and initiate a limited 

self-repair process.

• The strategies and mechanisms of exogenous neural stem cell transplantation 

for neonatal and adult hypoxic-ischemic brain are discussed.

• The modulators that facilitate or enhance the endogenous repair process are 

summarized.

• Direct in vivo neuronal reprogramming is promising for brain repair after 

ischemic stroke.
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Figure 1. Neural stem cells in the neural development
During early development, Neuroepithelial (NE) cells divide symmetrically to expand the 

number of NE cells. This is followed by transform of NE cells into radial glial (RG) cells, 

which divide asymmetrically producing one daughter RG cell and one intermediate neural 

progenitor cell (nIPC). nIPCs differentiate into neurons, which then migrate along the radial 

processes of RG cells to the cortical plate. Some RG cells also directly generate neurons. 

Around birth, large parts of RG cells change its morphology, detach from the VZ, and finally 

convert to astrocyte. RG-derived oIPCs generate oligodendrocytes to participate in 

oligogenesis. In the adult brain, NSCs reside in SVZ, known as Type B cells. These cells 

generate intermediate progenitor cells (Type C cells) and then become neuroblasts (Type A 

cells). MZ, marginal zone; MA, mantle; SVZ, subventricular zone; VZ, ventricular zone; 

oIPC, oligodendrocytic progenitor cell
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Figure 2. Endogenous neurogenesis after stroke and regulating factors
Neurogenesis in the SVZ is stimulated after stroke, leading to NSCs proliferation and 

migration of dividing neuroblasts. Neuroblasts move to the infarcted area following chain 

migration and along the vasculature. A small part of neuroblasts survive and become mature 

neurons to replace dying neurons. Many factors (Morphogens, Growth factors, Neurotrophic 

factors, EPO, MicroRNAs) regulate the process of neurogenesis, including proliferation, 

migration, and differentiation. Red dots indicate the stroke-affected area. BDNF, brain-

derived neurotrophic factor; CC, corpus callosum; EGF, epidermal growth factor; EPO, 

erythropoietin; LV, lateral ventricle; miR, microRNA; Shh, Sonic hedgehog; Wnt, Wingless-

type MMTV integration site family; VEGF, vascular endothelial growth factor.
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