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SUMMARY

Transcriptome deconvolution in cancer and other heterogeneous tissues remains challenging.
Available methods lack the ability to estimate both component-specific proportions and expression
profiles for individual samples. We present DeMixT, a new tool to deconvolve high-dimensional
data from mixtures of more than two components. DeMixT implements an iterated conditional
mode algorithm and a novel gene-set-based component merging approach to improve accuracy.
In a series of experimental validation studies and application to TCGA data, DeMixT showed high
accuracy. Improved deconvolution is an important step toward linking tumor transcriptomic data
with clinical outcomes. An R package, scripts, and data are available: https://github.com/wwylab/
DeMixTallmaterials.

INTRODUCTION

Heterogeneity of malignant tumor cells adds confounding complexity to cancer treatment. The evalua-
tion of individual components of tumor samples is complicated by the tumor-stroma-immune interaction.
Anatomical studies of the tumor-immune cell contexture have demonstrated that it primarily consists
of a tumor core, lymphocytes, and the tumor microenvironment (Pages et al., 2009; Fridman et al.,
2012). Further research supports the association of infiltrating immune cells with clinical outcomes for in-
dividuals with ovarian cancer, colorectal cancer, and follicular lymphoma (Dave et al., 2004; Galon et al.,
2006; Zhang et al., 2003). The use of experimental approaches such as laser-capture microdissection
(LCM) and cell sorting is limited by the associated expense and time. Therefore, understanding the
heterogeneity of tumor tissue motivates a computational approach to integrate the estimation of
type-specific expression profiles for tumor cells, immune cells, and the tumor microenvironment.
Most commonly available deconvolution methods assume that malignant tumor tissue consists of two
distinct components, epithelium-derived tumor cells and surrounding stromal cells (Ahn et al., 2013;
Gong and Szustakowski, 2013). Other deconvolution methods for more than two compartments require
knowledge of cell-type-specific gene lists (Liebner et al,, 2014), i.e., reference genes, with some of
these methods applied to estimate subtype proportions within immune cells (Li, et al., 2016a, 2016b;
Newman et al., 2015). Therefore, there is still a need for methods that can jointly estimate the
proportions and compartment-specific gene expression for more than two compartments in each tumor
sample.

The existing method, ISOpure (Quon et al., 2013), may address this important problem. However, ISOpure
assumes a linear mixture of raw expression data and represents noncancerous profiles in the mixed tissue
samples by a convex combination of all the available profiles from reference samples. A drawback of this
modeling approach is that the variance for noncancerous profiles is not compartment specific; therefore
(1) the variances that are needed for estimating sample- and compartment-specific expressions cannot be
estimated and (2) not accounting for sample variances can result in large bias in the estimated mixing
proportions and mean expressions. As we aim to address the need for both gene-specific variance param-
eters and two unknown mixing proportions per sample in the three-component scenario, our previous
heuristic search algorithm developed for two components (Ahn et al., 2013) is inadequate for the
computation.
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Figure 1. The Model and Algorithm of DeMixT

(A) DeMixT performs three-component deconvolution to output tissue-specific proportions and isolated expression
matrices of tumor (T-component), stromal (Nj-component), and immune cells (N,-component). Heatmaps of expression
levels correspond to the original admixed samples, the deconvolved tumor component, stromal component, and

immune component.

(B) DeMixT-based parameter estimation is achieved by using the iterated conditional modes (ICM) algorithm and a
gene-set-based component merging (GSCM) approach. The top graph describes the conditional dependence
between the unknown parameters, which can be assigned to two groups: genome-wise parameters (top row, red
superscript) and sample-wise parameters (bottom row, blue superscript). They are connected by edges, which

suggest conditional dependence. The unconnected nodes on the top row are independent of each other when
conditional on those on the bottom row, and vice versa. Because of conditional independence, we implemented
parallel computing to substantially increase computational efficiency. The bottom graph illustrates the GSCM
approach, which first runs a two-component deconvolution on gene set G; (red), where @iy, g =fin,q to estimate 77, and
then runs a three-component deconvolution on gene set G (blue), where fiy,, # fiy,, and mris given by the prior step, to

estimate m and .

We have developed a new computational tool, DeMixT, to accurately and efficiently estimate the desired
high-dimensional parameters in a linear additive model that accounts for variance in the gene expression
levels in each compartment (Figure 1A). The corresponding R package and data for DeMixT is freely avail-

able for downloading at https://github.com/wwylab/DeMixTallmaterials.
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RESULTS
The DeMixT Model and Algorithm

Here, we summarize our convolution model as follows (Figure 1A; see further details in Transparent
Methods). The observed signal Yig is written as Yig = m1,iNy igtm2,iN,ig+(1—m1 j—m2,) Tig for each gene g
and each sample i, where Yjg is the expression for the observed mixed tumor samples and N ig, Ny, ig,
and T4 represent unobserved raw expression values from the constituents. We assume that N g,
Ny,ig, and Ty each follow a log,-normal distribution with compartment-specific means and variances
(Ahn et al., 2013; Léonnstedt and Speed, 2002). The N;-component and the Ny,-component are the first
two components, the distributions of which need to be estimated from available reference samples, and
m,; and m ; are the corresponding proportions for sample i. The last component is the T-component, the
distribution of which is unknown. In practice, the T-component can be any of the following three cell
types: tumor, stromal, or immune cells. For inference, we calculate the full likelihood and search for
parameter values that maximize the likelihood. Our previously developed heuristic search algorithm
(Ahn et al., 2013) for a two-component model is inadequate for a three-component model, which is expo-
nentially more complex: (1) there are two degrees of freedom in the mixing proportions, which is uniden-
tifiable in a large set of genes that are not differentially expressed between any two components, and (2)
in each iteration in the parameter search, we need to perform tedious numerical double integrations to
calculate the full likelihood. The DeMixT algorithm introduce two new elements that help ensure estima-
tion accuracy and efficiency (Figure 1B). We first apply an optimization approach, iterated conditional
modes (ICM) (Besag, 1986), which cyclically maximizes the probability of each set of variables conditional
on the rest, for which we have observed rapid convergence (Besag, 1986) to a local maximum (see the
pseudo-code in Figure S1). The ICM framework further enables parallel computing, which helps compen-
sate for the expensive computing time used in the repeated numerical double integrations. However, this
is not sufficient for accurate parameter estimation. We observed that including genes that are not differ-
entially expressed between the N; and N, components in the three-component deconvolution can
introduce large biases in the estimated m; and m, (Figure S2), whereas the wr estimation is little
affected. We therefore introduce a novel gene-set-based component merging (GSCM) approach (Fig-
ure 1B). Here, we first select gene set 1, where un1g= inzg, and run the two-component model to esti-
mate w7, Then we select gene set 2, where un1g# itn2g, and run the three-component model with fixed
w1 from the above-mentioned equation, to estimate {m ;7 ;}. Our goal is to avoid searching in the rela-
tively flat regions of the full likelihood (model unidentifiable, Figure S3) and focus on regions where the
likelihood tends to be convex. Using this approach, we not only improve the estimation accuracy but also
further reduce the computing time, as only a small part of the entire parameter space needs to be
searched.

Validation Using Data with Known Truth

We validated DeMixT in two datasets with known truth in proportions and mean expressions: a publicly
available microarray dataset (Shen-Orr et al., 2010) generated using mixed RNAs from rat brain, liver,
and lung tissues in varying proportions and an RNA sequencing (RNA-seq) dataset generated using mixed
RNAs from three cell lines, lung adenocarcinoma (H1092), cancer-associated fibroblasts (CAFs), and tumor
infiltrating lymphocytes (TILs).

We used GEO: GSE19830 (Shen-Orr et al., 2010) as our first dataset for benchmarking. This microarray
experiment was designed for the expression profiling of samples from Rattus norvegicus with the Affyme-
trix Rat Genome 230 2.0 Array, including 30 mixed samples of liver, brain, and lung tissues in 10 different
mixing proportions with three replicates (Table S1). To run DeMixT, we used the samples with 100% purity
to generate the respective reference profiles for the Ny-component, Ny-component, and T-component.
We ran the deconvolution for the 30 mixed samples under three scenarios, respectively, assuming the liver,
brain, and lung tissues to be the unknown T-component tissue. To generate the second dataset in RNA-
seq, we performed a mixing experiment, in which we mixed mRNAs from three cell lines, lung adenocar-
cinoma in humans (H1092), CAFs, and TlLs, at different proportions to generate 32 samples, including
9 samples that correspond to three repeats of a pure cell-line sample for the three cell lines (Table S2).
The RNA amount of each tissue in the mixture samples was calculated on the basis of real RNA concentra-
tions tested in the biologist’s laboratory. We assessed our deconvolution approach through a number of
statistics, e.g., concordance correlation coefficients (CCCs) (Lawrence and Lin, 1989), root mean square
errors, and a summary statistic for measuring the reproducibility of the estimated m across scenarios
when a different component is unknown (see Transparent Methods). We showed that DeMixT performed
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Figure 2. Validation Results using Microarray and RNA-seq Data from Tissue and Cell-Line Mixture Experiments
(A) Scatterplot of estimated tissue proportions versus the truth when liver (plus), brain (triangle), or lung (circle) tissue is
assumed to be the unknown tissue in the microarray experiments mixing the three; estimates from ISOpure are also
presented.

(B) Scatterplot of estimated tissue proportions versus the truth when either lung tumor (plus) or fibroblast (circle) cell lines
are assumed to be the unknown tissue in the RNA-seq experiments mixing lung tumor, fibroblast, and lymphocyte cell

lines.
See also Figures S4 and Sé and Tables S3-57.

well and outperformed ISOpure in terms of accuracy and reproducibility (Figures 2A and 2B; see Trans-
parent Methods for further details, Figures S4-S7, Tables S3-S7).

Validation Using LCM Data

We then applied DeMixTto a “gold standard” validation dataset from real tumor tissue that has known pro-
portions, mean expressions, and individual component-specific expressions. This dataset (GEO:
GSE97284) was generated at Dana Farber Cancer Institute through Laser capture microdissection (LCM)
experiments on tumor samples from patients with prostate cancer. It consists of 25 samples of isolated tu-
mor tissues, 25 samples of isolated stromal tissues, and 23 admixture samples (Tyekucheva et al., 2017b).
LCMwas performed on formalin-fixed paraffin embedded (FFPE) tissue samples from 23 patients with pros-
tate cancer, and microarray gene expression data were generated using the derived and the matching
dissected stromal and tumor tissues (GEO: GSE97284 [Tyekucheva et al., 2017a]). Owing to the low quality
of the FFPE samples, we selected a subset of probes (see Transparent Methods) and ran DeMixT under a
two-component mode. DeMixT obtained concordant estimates of the tumor proportions when the propor-
tion of the stromal component was unknown and when the proportion of tumor tissue was unknown (CCC =
0.87) (Figure 3A). DeMixT also tended to provide accurate component-specific mean expression levels (Fig-
ures 3B, 3C, and S8) and yielded standard deviation estimates that are close to those from the dissected
tumor samples (Figure S9). As a result, the DeMixT individually deconvolved expressions achieved high
CCCs (mean = 0.96) for the tumor component (Figures 3D and S10). The expressions for the stromal
component were more variable than those for a common gene expression dataset, hence both DeMixT
and ISOpure gave slightly biased estimates of the means and standard deviations.

Application to the Cancer Genome Atlas Head and Neck Squamous Cell Carcinoma Data

A recent study of head and neck squamous cell carcinoma (HNSCC) showed that the infiltration of immune
cells, both lymphocytes and myelocytes, is positively associated with viral infection in virus-associated tu-
mors (Li, et al., 2016; 2016b). We downloaded HNSCC RNA-seq data from The Cancer Genome Atlas
(TCGA) data portal (Cancer Genome Atlas Network, 2015) and ran DeMixT for deconvolution. We normal-
ized the expression data with the total count method and filtered out genes with zero count in any sample.
There was a total of 44 normal tissue and 269 tumor samples in the HNSCC dataset. We collected the in-
formation of human papillomavirus (HPV) infection status for the HNSCC samples. Samples were classified
as HPV-positive (HPV+) using an empiric definition of the detection of >1,000 mapped RNA-seq reads, pri-
marily aligning to viral genes Eé and E7, which resulted in 36 HPV+ samples (Cancer Genome Atlas
Network, 2015). Since only reference samples for the stromal component are available from TCGA
(i.e., 44 normal samples and 269 tumor samples), we devised an analytic pipeline for DeMixT to run success-
fully on the HNSCC samples (for details, see Transparent Methods and Figure S11). In brief, we first
used data from the HPV+ tumors to derive reference samples for the immune component and then ran
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Figure 3. Analyses of Real Data Using DeMixT through Validation Using LCM Data in Prostate Cancer

(A) Scatterplot of estimated tumor proportions versus 1- estimated stromal proportions; estimates from DeMixT (blue) are
compared with those from ISOpure (black).

(B) Smoothed scatter MA plots between observed and deconvolved mean expression values at the log2 scale from
DeMixT for the tumor component (yellow for low values and orange for high values). The lowest smoothed curves for
DeMixT are shown in blue and those for ISOpure in black. (C) Smoothed scatter MA plots between observed and
deconvolved mean expression values at the Log2 scale from DeMixT for the stromal component.

(D) Scatterplot of concordance correlation coefficient (CCC) between individual deconvolved expression profiles for the
tumor component () and observed values (t°%%) for 23 LCM matching prostate cancer samples. Superscript a: stromal
component is represented by reference samples; b: tumor component is represented by reference samples. Color
gradient and size of each point corresponds to the estimated tumor proportion.

the three-component DeMixT on the entire dataset to estimate the proportions for both HPV-negative
(HPV-) and HPV+ samples. For all tumor samples, we obtained the immune (mean = 0.22, standard devia-
tion = 0.10), the tumor (mean = 0.64, standard deviation = 0.13), and the stromal proportions (mean = 0.14,
standard deviation = 0.07; see Figure 4A). The distribution of stromal proportions seems independent,
whereas the tumor and immune proportions are inversely correlated. As expected, HPV+ tumor samples
had significantly higher immune proportions than those that tested as HPV- (Li, et al., 2016, 2016b; Fakhry
et al., 2008) (p value = 2 x 1078, Figures 4A, 4B, and S12). To further evaluate the performance of our de-
convolved expression levels, we performed differential expression tests for immune versus stromal tissue
and immune versus tumor tissue, respectively, on 63 infiltrating immune cell-related genes (CD and HLA
genes). For example, Figure 4C illustrates that the deconvolved expressions were much higher in the im-
mune component than in the other two components for three important immune marker genes, CD4,
CD14, and HLA-DOB. What we observed with the purified expression levels of these genes is as expected.
Overall, 51 of 63 genes were significantly more highly expressed in the immune component than in the
other two components (adjusted p values are listed in Data S1; also see Figure 4D). In addition, we divided
the patient samples into four groups based on their estimated immune and stromal proportions, using sim-
ply the median values as cutoffs. The corresponding four groups of patient samples are significantly
different in terms of overall survival outcomes. The Cox proportional hazards regression coefficient of
the high-immune-low-stroma group versus the low-immune-high-stroma group is —0.66 with the Wald
test (p value = 0.001). As expected, the high-immune-low-stroma group of patients have the best prognosis
as compared with the other groups. In comparison, we performed the same survival analysis on patients
who are categorized by dichotomizing the immune and stromal scores of ESTIMATE (Yoshihara et al.,
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Figure 4. Analyses of Real Data Using DeMixT through Application to TCGA RNA-seq Data in HNSCC

(A) Atriangle plot of estimated proportions (%) of the tumor component (top), the immune component (bottom left), and
the stromal component (bottom right) in the HNSCC data. Points closer to a component’s vertex suggests higher
proportion for the corresponding component, whose quantity equals the distance between the side opposite the vertex
and a parallel line (illustrated as dashed gray lines for the multiples of 10th percentile) that a point is sitting on. The
“+" and “—" signs correspond to the infectious status of HPVs.

(B) Boxplots of estimated immune proportions for HNSCC samples in the test set display differences between HPV+ (red)
and HPV— (white) samples.

(C) Boxplots of log2-transformed deconvolved expression profiles for three important immune genes (CD4, CD14, HLA-
DOB) in the test set of HNSCC samples. Red: immune component; green: stromal component; blue: tumor component.
P values of differential tests are at the top right corner for each gene: the first p value is for immune versus stromal
component; second p value is for immune versus tumor component.

(D) Scatterplot of negative log-transformed p values for comparing deconvolved expression profiles between immune
component and the other two components of 63 immune cell-related genes. The x axis: immune component versus
stromal component; y axis: immune component versus tumor component. Genes in red are significant in both
comparisons. Green horizontal and vertical lines: cutoff value for statistical significance.

2013), also in four groups. Although the ESTIMATE-defined high-immune-low-stroma group remains on
top of all four survival curves, we did not observe a statistically significant difference between these groups.
Therefore, DeMixT-based immune and stroma proportions is more useful in categorizing patients with
different prognosis outcomes (Figure S13).

DISCUSSION

We present a novel statistical method and software, DeMixT (R package at https://github.com/wwylab/
DeMixTallmaterials), for dissecting a mixture of tumor, stromal, and immune cells based on the gene
expression levels and providing an accurate solution. Our method allows us to simultaneously estimate
both cell-type-specific proportions and reconstitute patient-specific gene expression levels with little prior
information. Distinct from the input data of most other deconvolution methods such as CIBERSORT and
ESTIMATE, our input data consist of gene expression levels from (1) observed mixtures of tumor samples
and (2) a set of reference samples from p-1 compartments (where p is the total number of compartments).
Our different model assumptions and goal for individual-level deconvolved expression levels have brought
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unique analytical challenges that are not relevant for deconvolution methods aforementioned, which use
input from all p compartments and are regression based. Our output data provide the mixing proportions,
the means and variances of expression levels for genes in each compartment, as well as the expression
levels for each gene in each compartment and each sample. The full gene-compartment sample-specific
output allows for the application of all pipelines previously developed for downstream analyses, such as
clustering and feature selection methods in cancer biomarker studies, which are still applicable to the
deconvolved gene expressions. We achieved this output by modeling compartment-specific variance
and addressing the associated inferential challenges. Our model assumes a linear mixture of data before
a log2-transformation (Ahn et al., 2013; Léonnstedt and Speed, 2002), thereby introducing nonlinear asso-
ciations into the log-space of the data. Beyond extending the DeMix model (Ahn et al., 2013) from two-
component to three-component deconvolution, DeMixT also proposes new features as summarized
below, resulting in an overall better performance (Figure S14). DeMixT addresses transcriptome deconvo-
lution in two steps. In the first step, rather than using a heuristic search as before, we now estimate the mix-
ing proportions and the gene-specific distribution parameters for each compartment using an ICM method
(Besag, 1986), which can quickly converge and is guaranteed to find a local maximum. We have further pro-
posed a novel GSCM approach and integrated it with ICM for three-component deconvolution, to substan-
tially improve model identifiability and computational efficiency. In the second step, we reconstitute the
expression profiles for each sample and each gene in each compartment based on the parameter esti-
mates from the first step. The success of the second step relies largely on the success of the first. We
have overcome the otherwise significant computational burden for searching the high-dimensional param-
eter space and numerical double integration, owing to our explicit modeling of variance through parallel
computing and gene-set-based component merging. On a PC with a 3.07-GHz Intel Xeon processor with
20 parallel threads, DeMixT takes 14 min to complete the full three-component deconvolution task of a da-
taset consisting of 50 samples and 500 genes (see Table S8). Our new design makes it possible to first select
a subset of genes for accurate and efficient proportion estimation and then estimate gene expression for
any gene set or for the whole transcriptome. This overcomes the deficiency of most existing deconvolution
tools that enforce using the same set of genes in the estimations of both proportions and gene expression
levels. Our method can be applied to other data types that are generated from mixed materials.

We have used a series of experimental datasets to validate the performance of DeMixT. These datasets
were generated from a mixture of normal tissues, a mixture of human cell lines, and LCM of FFPE tumor
samples. DeMixT succeeded in recapitulating the truth in all datasets. When compared with [SOpure,
DeMixT gave more accurate estimations of proportions in all datasets. DeMixT more explicitly accounts
for sample variances, an assumption that adheres more closely to the real biological samples. Even for
the in vitro dataset of admixed rat tissues, which generated only technical replicates that had very small
variances so that assuming no variance becomes reasonable, we showed that the estimation of gene
expression by DeMixT is still comparable with the estimation by ISOpure. On the dataset of mixed human
cell lines, DeMixT performed as well as CIBERSORT (in estimating the tumor and the fibroblast compo-
nents), a popular method for estimating only the proportions of cell types in complex tissues (Figure S6),
even though DeMixT used reference profiles from one less component than CIBERSORT. We further
demonstrated tumor-stroma-immune deconvolution by DeMixT using TCGA HNSCC data. We were
able to correlate our immune proportion estimates with the available HPV infection status in HNSCC, as
is consistent with previous observations that a high level of immune infiltration appears with viral infection
in cancer (Li, et al., 2016; 2016b). For this dataset, DeMixT is the first to provide a triangular view of tumor-
stroma-immune proportions (Figure 4A), the interesting dynamics of which may shed new light on predict-
ing the prognosis of HNSCC.

Here, we discuss four major factors that would potentially impact the performance of deconvolution,
regardless of the model and method used. (1) The number and diversity of tumor samples and reference
profiles. Some cancer types, such as breast cancer, are more heterogeneous within the tumor component
than others. Some cancer types show more genomic rearrangements and copy number changes, which
impact transcriptomic activities, whereas others, such as prostate cancer, are less often so. There exist large
variations in the availability of the number and type of reference profiles across cancer types. We recently
applied DeMixT to the datasets from the TCGA PanCanAtlas project across 16 cancer types. Among
them, we used RNA-seq data generated from the corresponding normal tissues for 15 cancer types, with
the sample size for normal samples ranging from 10 to 98. With the remaining cancer types in TCGA, there
are <10 normal samples available, for which we have not run DeMixT, except for one cancer type (pancreatic
cancer, PAAD). In PAAD, we used tumor samples that had been determined to have very low tumor content
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as the reference profiles (n = 7). In both scenarios of normal controls, we obtained reasonable results, based
onwhich we performed clustering analysis, pathway analysis, and variable selection for gene sets associated
with survival outcomes. Our analyses suggested that the estimated mixing proportions and individual
expression levels are useful to identify biological signals that were previously diluted in the mixed measures
(unpublished results). Generally, our model assumptions will be mildly violated in most studies (e.g., in the
TCGA datasets) and strongly violated in some studies. Assuming there is a reasonable level of homogeneity
within a component, increasing the sample size will increase the reliability of parameter estimations (i.e.,
ﬁ,\hg, ﬁNZQ; Gng, 3/\129). (2) The platforms used to profile gene expression. We observed good performances
of DeMixT on data generated from real tumor samples using both Affymetrix microarray and Illumina RNA
sequencing platforms. Testing DeMixT on other platforms should involve afirst step of checkingwhether the
linearity combination of the log-normal distributions still holds. (3) The tissues from which the various input
profiles were derived. We found that expression measurements from FFPE samples are much noisier than
those from fresh-frozen samples, and in the analysis of the LCM data, had to devise a more stringent filtering
criteria on the set of genes to be used for deconvolution. (4) The genes selected for the sequential steps of
the DeMixT algorithm. In a two-component setting, we observed that both variances and mean differences
in the expression levels between the two components for each gene can affect how accurately the mixing
proportions are estimated, whereas not all genes are needed for the proportion estimation. We therefore
proposed to select genes that have moderate variances and large differences between the two components
to estimate proportions. In a three-component setting, using the GSCM approach to reduce to a pseudo-
two-component problem allowed us to apply a similar strategy. The GSCM approach is general in sequen-
tially merging components through gene selections and can be extended to deconvolution problems with
more than three components but will incur high computational cost. Currently, our gene selection and
GSCM strategy follow the principle of focusing on a subspace of the high-dimensional parameters for model
identifiability but are heuristic and may need adaptation across datasets. We observed the performance of
GSCM isrobust to the number of genes selected within the range of hundreds. Future work includes system-
atically evaluating the impact of each set of high-dimensional parameters on the full likelihood underlying
our convolution model and search for a unified gene selection method for the deconvolution of datasets that
range over a wide spectrum of biological phenomena. Future work also includes development of a numer-
ical measure of confidence to filter out potentially unreliable expression estimates.

Reference gene-based deconvolution is popular for estimating immune subtypes within immune cells
(Liebner et al., 2014; Newman et al., 2015). Our method does not require reference genes, which we
consider as difficult to obtain for the tumor component; however, DeMixT can take reference genes
when available. With the reference sample approach, we assume that the first p-1 compartments in the
observed mixture are similar to those in reference samples, whereas the remaining compartment is un-
known and so may end up capturing most of the heterogeneity. The reference samples can be derived
from historical patient data or from the corresponding healthy tissues, such as data from GTEx (Lonsdale
etal., 2013) (e.g., RNA-seq data from sun-exposed skin as reference samples for melanoma, unpublished
results). Furthermore, each of the three components may contain more than one type of cell, in particular,
the immune component. It was reported that, although the immune cell subtypes are heterogeneous, their
relative proportions within the immune component are consistent across patient samples (Gentles et al,,
2015), which supports our approach that models the pooled immune cell population using one distribution.
Estimating low proportions is more prone to biases in methods without reference genes than those with
reference genes, as observed in our cell-line mixed RNA-seq dataset in which the immune cell component
is consistently low. However, it occurred only in this artificially mixed dataset, whereas in real data, such as
the HNSCC dataset, there are samples presenting a high level of immune infiltration, thus improving the
accuracy for all parameter estimations, including those in samples presenting a low level of immune infil-
tration. In future work, we will consider expanding to a hierarchical model for immune subpopulations that
will include dynamic immune components. For optimized performance of DeMixT, the data analysis should
be linked with cancer-specific biological knowledge.

Limitations of the Study

Here we are focused on resolving statistical challenges in a new concept of jointly estimating component-
specific proportions and distributions of gene expression, as well as individual gene expression levels in a
mixture of three components. Our approach has been comprehensively benchmarked using multiple data-
sets. However, DeMixT needs further studies to improve its utility in real cancer data, including (1) a unified
gene selection method that automatically detects, in a high-dimensional likelihood space, the most
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identifiable region for parameter estimation; (2) a numerical measure of confidence to filter out potentially
unreliable expression estimates; (3) extension to a hierarchical model to accommodate multiple immune
cell subtypes; (4) cancer-specific data analyses to further understand and remedy for the potential impact
of available normal tissues as input reference profiles.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Transparent Methods, 15 figures, 9 tables, and 1 data file and can be
found with this article online at https://doi.org/10.1016/].isci.2018.10.028.
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Table S1. Summary of datasets GEO19830 with the mixture proportions
(%) of rat liver, brain and lung tissues, related to Figure 2.

Mixture | Number of | Tissue Liver Brain Lung

Technical Type

Replicates
1 3 Pure 100 0 0
2 3 Pure 0 100 0
3 3 Pure 0 0 100
4 3 Mixed 5 25 70
5 3 Mixed 70 5 25
6 3 Mixed 25 70 5
7 3 Mixed 70 25 5
8 3 Mixed 45 45 10
9 3 Mixed 55 20 25
10 3 Mixed 50 30 20
11 3 Mixed 55 30 15
12 3 Mixed 50 40 10
13 3 Mixed 60 35 5




Table S2. Summary of datasets in the mixed cell line experiment with the
mixture proportions (%) of lung adenocarcinoma in humans (H1092),
cancer-associated fibroblasts (CAFs) and tumor infiltrating lymphocytes
(TIL), related to Figure 2.

Mixture Tissue H1092 CAF TIL
Type
1 Pure 100 0 0
2 Pure 100 0 0
3 Pure 100 0 0
4 Pure 0 100 0
5 Pure 0 100 0
6 Pure 0 100 0
7 Pure 0 0 100
8 Pure 0 0 100
9 Pure 0 0 100
10 Mixed 45.6 50.8 3.6
11 Mixed 45.6 50.8 3.6
12 Mixed 45.6 50.8 3.6
13 Mixed 61.9 35.6 25
14 Mixed 61.9 35.6 25
15 Mixed 61.9 35.6 25
16 Mixed 29.6 68 24
17 Mixed 29.6 68 2.4
18 Mixed 29.6 68 24
19 Mixed 43.2 49.7 71
20 Mixed 43.2 49.7 71
21 Mixed 43.2 49.7 71
22 Mixed 63 36.2 0.9
23 Mixed 63 36.2 0.9
24 Mixed 63 36.2 0.9
25 Mixed 30 69.1 0.8
26 Mixed 30 69.1 0.8
27 Mixed 30 69.1 0.8
28 Mixed 81.9 17.7 0.4
29 Mixed 81.9 17.7 0.4
30 Mixed 81.9 17.7 0.4
31 Mixed 93.6 6 0.4
32 Mixed 93.6 6 0.4




Table S3. Measures of reproducibility for estimated proportions across
different scenarios in the GSE19830 dataset and the mixed cell line RNA-
seq dataset, related to Figure 2.

Estimated Tissue DeMixT ISOpure
Brain 0.03 0.10
Lung 0.03 0.08
Liver 0.03 0.07
H1092 0.05 0.40
CAF 0.06 0.41
TIL 0.02 0.02




Table S4. Concordance correlation coefficients between estimated and
true proportions in the GSE19830 dataset. The 95% confidence interval
is in parentheses, related to Figure 2.

Estimated
Tissue Brain Lung Liver Average
DeMixT 0.88 0.95 0.74 0.86
(Brain Unknown)|(0.80, 0.93)((0.91, 0.97)|(0.61, 0.83) '
DeMixT 0.84 0.97 0.75 0.85
(Lung Unknown)|(0.71, 0.91)((0.95, 0.98)|(0.63, 0.84) '
DeMixT 0.77 0.96 0.74 0.82
(Liver Unknown)|(0.65, 0.86)((0.94, 0.97)|(0.62, 0.83) '
ISOpure 0.69 1 0.72 0.80
(Brain Unknown)|(0.55, 0.79)((1.00, 1.00)|(0.58, 0.81) )
ISOpure 0.97 0.74 0.84 0.85
(Lung Unknown)|(0.94, 0.99)((0.61, 0.83)|(0.75, 0.90) '
ISOpure 0.93 0.98 0.98 0.96
(Liver Unknown)|{(0.88, 0.96)((0.96, 0.99)|(0.96, 0.99) '




Table S5. Root mean squared errors (RMSEs) between estimated and
true proportions in the GSE19830 dataset, related to Figure 2.

Estimated
Tissue Brain Lung Liver Average
(Brai[r?eul\illi(rTown) e 0.06 0.13 0.09
(LungTJI\:I:rTown) 0.1 0.05 0.13 0.09
(Live[r)eul\glli(r;rown) 0.12 0.05 0.13 0.10
(Bra:failli:]eown) el 0.02 0.16 0.12
(LunlgS 3ﬁlli;eown) 0.04 0.14 0.11 0.10
eorre | oo7 | oos | 004 | 005




Table S6. Concordance correlation coefficients between estimated and

true proportions in the mixed cell line RNA-seq dataset. The 95%
confidence interval is given in parentheses. H1092: lung tumor

adenocarcinoma; CAF: cancer-associated fibroblasts; TIL: tumor
infiltrating lymphocytes, related to Figure 2.

Lung
Tumor Fibroblast Immune
Estimated Tissue (H1092) (CAF) (TIL) Average
DeMixT 0.99 0.91 0.14 0.68
(H1092 Unknown) [(0.99, 1.00)| (0.84, 0.95) |(0.05, 0.22) )
DeMixT 0.91 0.98 0.08 0.66
(CAF Unknown) [(0.84, 0.95)| (0.97, 0.99 |(0.02, 0.14) '
ISOpure 0.51 0.54 0.26 0.44
(H1092 Unknown) [(0.31, 0.66)| (0.35, 0.69) |(0.13, 0.38) '
ISOpure 0.51 0.45 -0.01 0.32
(CAF Unknown) [(0.33, 0.65)| (0.28, 0.60) |(-0.03, 0.01) )




Table S7. Root mean squared errors between estimated proportions and
true proportions in RNA-seq data from mixed cell line experiment,
related to Figure 2.

Lung
Tumor | Fibroblast | Immune
Estimated Tissue (H1092) (CAF) (TIL) Average
DeMixT
(H1092 Unknown) g 0.08 0.09 0.06
DeMixT
(CAF Unknown) 0.09 Lo 0.08 0.07
ISOpure
(H1092 Unknown) 0.27 0.25 0.03 0.18
ISOpure
(CAF Unknown) 0.34 0.36 0.03 0.24

H1092, lung tumor adenocarcinoma; CAF, cancer-associated fibroblasts; TIL, tumor infiltrating
lymphocytes



Table S8. Computing time for DeMixT. DeMixT was run on a simulated
dataset consisting of 50 samples and 500 genes using 2 or 20 threads.
Of all genes, 400 belong to gene set 1 (G,;) and the remaining 100 belong
to gene set 2 (G,), as defined in our gene-set-based component merging
approach, related to Figure 1b.

w/o CM w/CM
Total Two-component step: G1  Three-component: G2 Total
2 threads 16.1 h 37 min 48 min 85 min
20 threads 2.5h 6 min 8 min 14 min




Table S9. Number of probes/genes with different relationships between
different component tissues, related to Figure 1.

GEO19830, mixed tissue microarray data:

Unknown Tissue Number of Probes | Percentage of Probes
Piiver = Bprain = Bung 10928/31099 35.1%
Liiver # Bprain = Riung 4321/31099 13.9%
ﬂliver ~ /:zbrain i ﬁlung 2978/31099 9.6%
Riiver # Bprain # Riung 4671/31099 15.0%

Mixed cell line RNA-seq data:

Unknown Tissue | Number of Genes | Percentage of Genes
Ar1092 = Acar = Ariy 490/5715 8.6%
Ar1092 # fAcar = Arry 752/5715 13.2%
Ar1092 = Acar # Ariy 958/5715 16.8%
L1092 # fear # QAriL 2373/5715 41.5%

Microarray data from laser capture microdissected FFPE prostate cancer
patient samples:

Number of Genes
31149/32321
1172/32321

Unknown Tissue Percentage of Genes
96.4%

3.6%

Hrumor = MNormal

HUTumor i UNormal

* Here we define the relationship g, = [, as 0.95 < ?—1 < 1.05 in the table,

Uz

where p denotes the sample mean of log2-transformed expression data.



Algorithm 1 Performing ICM for two-component Algorithm 2 Performing ICM for three-component

1: Parameter: 1: Parameter:
Sample-wise {my ;};: Sample-wise {my 5, My };: 2% §
Gene-wise {urg, 074}y : 2% G Gene-wise {iry, 07}, : 2% G
2: Initialize: 2: Initialize:
{p'TgxaTg}gczl = o, 00 {bg, tTTg}gG=1 = Ho, 0o
3: for iterationt = 1,--+, T do, 3: for iteration t = 1,-+-, T do,
& a update {m )5, & a update {mym)d
5. for each sample i =1,---, S do parallel 5 for each samplei=1,---,S do parallel
G G
b wdatery) =argnas [ gl 4501 o updte ()} =orgmas [l oo G oM
¢= ¢=
7. end for 7. end for
& b. update {uTg,aTg}le 8 b. update {pTg,ng}f:l
9. for each gene g=1,--+,G do parallel 9. foreachgene g=1,--+,G do parallel
s s
et g o7} =argmas [ g () (orgon)) e o7y} =argmas [ g {5 Ko imgom}
= =]
1:  end for 11:  end for
12: end for 12: end for

Figure S1. Outline of the ICM implementation in DeMixT, related to Figure

1.
The h() represents the full likelihood based on a single integral for a two-
component model; and g() represents the full likelihood based on a double

integral for a three-component model.
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Figure S2. Dot plots of root mean square errors (RMSEs) between true
and estimated proportions, using DeMixT with (w/) and without (w/0)

component merging (CM), related to Figure 1.
We simulated 500 samples for 475 genes with uy, ~ uy, and 25 genes with

Un, #* Uy,, and repeated 25 times. Blue dots: deconvolution results without

CM:; red dots: those with CM; red dashed lines: median values.
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Figure S3. Log-Likelihood surface for m; and m,, related to Figure 1.

The left panel shows that for 100 genes where uy, ~ uy,, m; and m, are

not identifiable. The right panel shows for 100 genes where uy, # uy,, m

and m, are identifiable. The panels are generated from the same dataset,
same sample, but on different sets of genes.
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Figure S4. Scatter plots of estimated tissue proportions against true
tissue proportions for the GSE19830 dataset, related to Figure 2.

All proportion estimates from running DeMixT are shown when either the liver,
brain, or lung tissue is assumed to be the tissue with unknown expression
profiles. Plus symbols: liver tissue is unknown; circles: lung tissue is unknown;
triangles: brain tissue is unknown; blue: DeMixT; black: ISOpure.
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Figure S5: Smoothed scatter MA plots of mean estimated tissue-specific
expression (at the log2 scale) from DeMixT and ISOpure in the
GSE19830 dataset, related to Figure 2.
The MA plots compare the mean values of log2-transformed deconvolved
expression levels across genes for DeMixT vs. ISOpure, DeMixT vs. observed
samples, and ISOpure vs. observed samples, when either liver, lung or brain
tissue was the unknown component. M: the difference in the two values; A:

the average of the two values.
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Figure S6. Scatter plots of estimated versus true proportions for the
mixed cell line RNA-seq dataset, related to Figure 2.

All estimated proportions from DeMixT and ISOpure are shown when either
lung tumor or fibroblast was the unknown component. Plus symbols:
reference profiles of the lung cancer cell line are unknown; circles: reference
profiles of the fibroblast cell line are unknown; triangle: the reference profiles
of all the cell lines are known (only for CIBERSORT). Blue: DeMixT; black:
ISOpure; red: CIBERSORT. Since CIBERSORT does not allow for any
unknown component, the estimated proportions of CIBERSORT are based on
the known reference genes from each component. DeMixT yielded proportion
estimates with similar RMSE as CIBERSORT and much lower than ISOpure
when compared to the truth.
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Figure S7. Smoothed scatter MA plots of mean estimated tissue-specific
expression levels (at the log2 scale) from DeMixT and ISOpure in the
mixed cell line RNA-seq dataset, related to Figure 2.

The MA plots compare mean values of log2-transformed deconvolved
expression across genes for DeMixT vs. ISOpure, DeMixT vs. observed
samples, and ISOpure vs. observed samples, when either lung cancer or
fibroblast cell line was the unknown component. M: difference in the two
values; A: average of the two values.
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Figure S8: Smoothed scatter MA plots of mean estimated tissue-specific
expression (at the log2 scale) between DeMixT and ISOpure in the LCM
FFPE prostate cancer microarray dataset, related to Figure 3.

The MA plots compare mean values of log2-transformed deconvolved
expression across genes for DeMixT vs. ISOpure, DeMixT vs. observed
samples, and ISOpure vs. observed samples, when either tumor or stromal
tissue was the unknown component. Shown are results from a pre-selected
list of probesets (80 probesets) with the most differential expression between

tumor and stromal tissues.
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Figure S9. Density plot comparing sample standard deviations between
deconvolved expression profiles of subset probes for DeMixT and
ISOpure in the LCM FFPE prostate cancer microarray dataset when
tumor tissue was assumed to be the unknown component; with
measured expression profiles of isolated tumor tissues, related to
Figure 3.
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Figure S10. Scatter plots of concordance correlation coefficient (CCC)
between individual deconvolved expressions and observed values for
the tumor component in 23 LCM prostate samples, related to Figure 3.
Each point corresponds to a sample. We compared results from ISOpure with
those from DeMixT. Left panel shows the results when the expression data
from stromal samples were taken as the input. Right panel shows the results
when the expression data from tumor samples were taken as the input. The
color gradient and size in each point corresponds to the estimated tumor

proportions from DeMixT.
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Figure S11. Workflow for analysis of immune infiltration in the HNSCC

dataset, related to Figure 4.
We obtained immune scores and stromal scores for all samples using the

ESTIMATE method.
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Figure S12. Density plot of estimated immune proportions for tumor
samples with HPV test results, related to Figure 4.
Red curve: for those with HPV+ status; blue curve: for those with HPV-.
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Figure S13. Association of immune-stroma-proportions from DeMixT
with overall survival compared with association of immune-stroma-
scores from ESTIMATE with overall survival in HNSCC, related to Figure
4.

Upper-left panel: a scatter plot of estimated immune- and stroma- proportions.
Each point represents an HNSCC sample. Grey lines represent cutoffs that
are used to divide patient samples into four groups. Upper-right panel:
Kaplan-Meier curves of overall survival for HNSCC by those four patient
groups given by the upper-left figure. The p-value of Cox regression model is
calculated based on the Wald test. Bottom-left panel: a scatter plot of
estimated immune- and stroma- scores from ESTIMATE. Grey lines represent
cutoffs to divide patient samples into another four groups. Bottom-right panel:
Kaplan-Meier curves of overall survival for HNSCC by those four patient
groups given by the bottom-left figure.
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Figure S14. Comparison of proportion estimation between DeMixT and
DeMix, related to Figure 1 and 2.

Left panel shows the scatter plot of estimated tumor proportions versus 1-
estimated stromal proportions for the validation using LCM data in prostate
cancer; estimates from DeMixT (blue) are compared with those from DeMix
(black). Right panel shows the estimation of proportions, between DeMixT
(blue) and DeMix (red), of the unknown component tissues from two available
data sources that are given in the DeMix paper: MAQC1: MAQC site 1,
MAQC3: MAQC site 3.
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Figure S15. Scatter plots of v,, - T, — m,;(N,, — T,) versus N,,—T, for

ny;and Y,, - T, —my;(Ny,—T,) Versus N,,—T, for m,; using the raw
measured data from GSE19830 in two mixture scenarios, related to
Figure 2.

Dark grey dashed line: fitted regression coefficient for all probes by least
squares; blue dashed line: true mixing proportion; light grey dots: probesets
removed with the criterion that the mean expression after log2-transformation
is less than 7 in either N; or N; black dots: remaining probes. If the linearity
assumption holds, the fitted line should lie approximately on the truth.



Transparent Methods

Model
Let Y;, be the observed expression levels of the raw measured data from clinically derived
malignant tumor samples for gene g, g = 1,--- ,G and sample ¢, = 1,--- ,.S. G denotes the

total number of probes/genes and S denotes the number of samples. The observed expres-
sion levels for solid tumors can be modeled as a linear combination of raw expression levels
from three components:

Yig = m1,iN1,ig + m2,iNoig + (1 — m1; — 7o) T; (1)

Here N4, N2i, and T;, are the unobserved raw expression levels from each of the three
components. We call the two components for which we require reference samples the N;-
component and the N,-component. We call the unknown component the T-component. We
let 7, denote the proportion of the N;-component, m,,; denote the proportion of the N,-
component, and 1 — m; ; — w2 ; denote the proportion of the T-component. We assume that the
mixing proportions of one specific sample remain the same across all genes. Our model al-
lows for one component to be unknown, and therefore does not require reference profiles from
all components. A set of samples for N, ;, and N, ;,, respectively, needs to be provided as
input data. This three-component deconvolution model is applicable to the linear combination
of any three components in any type of material. It can also be simplified to a two-component
model, assuming there is just one N-component. For application in this paper, we consider
tumor (7), stromal (/V;) and immune components (/NV;) in an admixed sample (Y'). Following
the convention that log,-transformed microarray gene expression data follow a normal distribu-
tion, we assume that the raw measures Ny iy ~ LN (iin,g, 0%, 4)» Nasig ~ LN (finng, 03,,) @nd
Tig ~ LN(prg,0%,), where LN denotes a log,-normal distribution and 0%, ,.0%,,.07, reflect
the variations under log,-transformed data (Ahn et al., 2013; Lénnstedt and Speed, 2002).
Consequently, our model can be expressed as the convolution of the density function for three
log,-normal distributions. Because there is no closed form of this convolution, we use numeri-
cal integration to evaluate the complete likelihood function.



Our model expressed as the convolution of the density function for three
log2-normal distributions.
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The DeMixT algorithm for deconvolution

DeMixT estimates all distribution parameters and cellular proportions and reconstitutes the
expression profiles for all three components for each gene and each sample, as shown in
equation (1). The estimation procedure (summarized in Figure 1b) has two main steps as
follows.

1. Obtain a set of parameters {m;, m;}5,, {pr, or}S., to maximize the complete likeli-
hood function, for which {uy, ,, 0N, ,, tiN, ., TN, , o=1 Were already estimated from the
available unmatched samples of the N; and N, component tissues. This step is de-
scribed in further details below in parameter estimation and the GSCM approach.

2. Reconstitute the expression profiles by searching each set of {n 4, n2,,} that maxi-
mizes the joint density of Ny ;,, N2, and T;,

Yig — ﬁl,inug - 7?‘-2,1'”2,2’9 N N
arg ma (- jin,. o1,)
n1,igN2,ig —T14 — T2, (3)

X ¢(n1,z‘g ‘,&ngy &ng )¢(n2,z‘g ‘ﬂN2g7 5N2g)

where ¢( |11, 0?) is a log2-normal distribution density with location parameter ;. and scale
parameter o.

In step 2, we combined the golden section search method with successive parabolic interpo-
lations to find the maximum of the joint density function with respect to n, ;, and ns ;, that are
positively bounded and constrained by 7 ;11 ;4 + 72,2, < Yig. 1he value of ¢;, is solved as
Yig — T1,iM1ig — T2,:M2,ig-



Parameter estimation using iterated conditional modes (ICM)

In step 1, the unknown parameters to be estimated can be divided into two groups: gene-wise
parameters, {pr, UT}le, and sample-wise parameters, {m,m}7_ ;. These two groups of pa-
rameters are conditionally independent (Figure 1b). For each pair of gene-wise parameters,
we have

{1, mo Yo L {my, mo};|{pr, o0}y, for all i # j € {1,---, S}, and similarly for each pair of
sample-wise parameters, we have {ir, o7 }i L { i, o7 };|{m, m}o_ . foralli # j € {1,---,G}.
These relationships allow us to implement an optimization method, ICM, to iteratively derive
the conditional modes of each pair of gene-wise or sample-wise parameters, conditional on the
others (Besag, 1986). Here, 7, m, are constrained between 0 and 1, and ur, o7 are positively
bounded. We combined a golden section search and successive parabolic interpolations to
find a good local maximum (Brent, 1973) in each step. As shown by Besag (Besag, 1986),
for ICM, the complete likelihood never decreases at any iteration and the convergence to the
local maximum is guaranteed. Our ICM implementation is described in Figure S1.

The GSCM approach to improve model identifiability

Due to the high dimension of the parameter search space, and often flat likelihood surfaces
in certain regions of the true parameters (e.g., 11 ~ u») that will be encountered by ICM
(Figure S3), we have developed a GSCM approach (illustrated in Figure 1b) to focus on the
hilly part of the likelihood space. This reduces the parameter search space and improves the
accuracy and computational efficiency. Here, we describe our general strategy. As there are
large variations in the number of genes that are differentially expressed across datasets, the
actual cutoffs may be adjusted for a given dataset.

Stage 1 We first combine the N; and N, components and assume a two-component mixture
instead of three. This allows us to quickly estimate 7.

a: We select a gene set containing genes with small standard deviations (< 0.1 or 0.5) for both
the N, and N, components. Among these genes, we further select genes with ng ~ mgg
(mean difference < 0.25 or 0.5), where the LN is the sample mean for the log2-transformed
data. Within this set, we further select genes with the largest sample standard deviations of
Y, (top 250), suggesting differential expression between 7" and V.

b: We run DeMixT in the two-component setting to estimate p, a%g and 7.

Stage 2 We then fix the values of {m}; as derived from Stage 1, and further estimate {m };
and {2 }; in the three-component setting.

a: We select genes with the greatest difference in the mean expression levels between the N,
and N, components as well as those with the largest sample standard deviations of Y, (top
250).

b: We run DeMixT in the three-component setting over the selected genes to estimate 7; and
o given mr.

c: We estimate the gene-wise parameters for all genes given the fixed n’s. Finally, given all
parameters, per gene per sample expression level, n; ;4, n2;, and t;, are reconstituted.



Simulation study for the GSCM approach

To demonstrate the utility of GSCM for parameter estimation, we simulated a dataset with ex-
pression levels from 500 genes and 90 samples, 20 of pure N;-type, 20 of pure N,-type and
50 mixed samples. For the 50 mixed samples, we generated their proportions for all three
components (my, o, 1) ~ Dir(1,1,1), where Dir is a Dirichlet distribution. For each mixed
sample, we simulated expression levels of 500 genes for the N; and T-component from a log,-
normal distribution with zn,, and pr, from Ny 4o)(7, 1.5%), and with equal variance. For the
N,-component, we generated /i, from iy, +dg, where dg ~ Ni_g.1,0.1)(0, 1.5?) for 475 genes
(iinig & finag ) @nd dy ~ Nig1,3(0,1.5%) U Ni_3 _o.1)(0, 1.5%) for 25 genes (fin1y # finzg)- Then
we mixed the Ny, N, and T-component expression levels linearly at the generated proportions
according to our convolution model. We created a full matrix consisting of 20 N;-type refer-
ence samples (generated separately from the NV, distribution), 20 N,-type reference samples
(generated separately from the N, distribution) and 50 mixed samples at each simulation and
repeated the simulation 100 times for each of the three variance values o € {0.1,0.3,0.5} to
finally obtain 300 simulation repeats. We first ran DeMixT with GSCM, where we used 475
genes with simulated [in14 = fin24 10 run the two-component deconvolution (/V versus 7') and
used the remaining 25 genes to run the three-component deconvolution with estimated 7.
We also ran DeMixT without GSCM using all 500 genes.

Data analysis

All analyses were performed using the open-source environment R (http://cran.r-project.org).
Documentation (knitr-html) of all scripts is provided at the GitHub repository.

Mixed tissue microarray dataset

We downloaded dataset GSE19830 (Shen-Orr et al., 2010a) from the GEO browser. We used
the R package {affy} to summarize the raw probe intensities with quantile normalization but
without background correction as recommended in previous studies (Liebner, K. Huang, and
Parvin, 2014). We evaluated the performance of DeMixT with regard to tissue proportions and
deconvolved expression levels on the set of genes that were selected based on the GSCM
approach. Specifically, we selected genes with sample standard deviation < 0.1 in N; and
N, components, among which we used those with LN, — LN,, < 0.25 for running the 2-
compoment model, and used the top 250 genes with largest LN, — LN, and largest sample
standard deviation in Y for running the 3-component model. Then we ran ISOpure for the
purpose of comparison.

Analysis of microarray data from mixed RNA from rat tissues: brain, liver and lung
(Table S1).

Checking for the linearity assumption. Our DeMixT model relies on the assumption that the
tissue-specific expression levels are combined linearly to create the observed Y. In the mixed
tissue data, we can check for the validity of this assumption when T;,’s and N;,'s are known.
Based on the linear equation, we have




T = Yig—Tig—m2,i(N2,ig—Tig)
_ L N1,ig—Tig
Yig = m1ilN1ig + mo,iNaig + (1 — w1 — m2,) Tig < _ Yig—Tig—71i(N1,ig—Tig) (4)
M2i = Na ig—T;

Thus, we generated scatter plots with a regression line to compare Y;, — T, — m2,;(Noy — T})
with Ny, — T, and Yy, — T, — m1:(Ny , —T,) with Ny, — T, where the sample mean for N, ,(e.g.
Liver), N, (e.g. Brain) and T,(e.g. Lung) were used instead of each N, ;;, No;, and Tj,. In
this dataset, the repeats were technical and presented little variation across samples, which
allowed us to simply use sample means as surrogates for the expressions from individual sam-
ples.

As illustrated in Figure S15 with 2 mixture scenarios (liver: brain: lung at 55:20:25 and
50:40:10), the linearity assumption holds reasonably within most samples; however, there
was always a small set of probes that deviated from the linear line and formed a vertical line
at 0 on the x-axis: N;-T or N,-T. We found that a criterion on probesets with mean expression
(log2-transformed) < 7 in either N, or N, can accurately identify this set and therefore remove
them, suggesting a potential cause of such behavior is the expression levels below the reliable
detection range of microarrays, with noise overtaking the signal in the N-components in these
probesets.

Deconvolution results. DeMixT showed high concordance correlations and small root mean
squared errors (RMSEs) between the estimates and the true proportions of all three tissues
in deconvolution, irrespective of which tissue was assumed as the unknown component that
was without available knowledge for expression profiles. DeMixT gave accurate estimates
for the proportions of the unknown component. ISOpure also performed well in estimating
the proportions of the unknown tissues Supplementary Tables 4-5). A stable deconvolution
algorithm should provide similar estimates of tissue-specific proportions no matter which com-
ponent is assumed to be unknown. We assessed this through a reproducibility statistic and
found that DeMixT was more stable than ISOpure (Table S3, Figure 2a and Figure S4). Both
DeMixT and ISOpure yielded accurate estimates of the mean expression levels for each tissue
component (Figure S5).

Mixed cell line RNA-seq dataset

This dataset was generated in house by mixing RNAs from three cell lines at fixed proportions.
We mapped raw reads generated from paired-end lllumina sequencing to the human reference
genome build 37.2 from NCBI through TopHat (default parameters and supplying the -G option
with the GTF annotation file downloaded from the NCBI genome browser). The mapped reads
obtained from the TopHat output were cleaned by SAMtools to remove improperly mapped
and duplicated reads. We then used Picard tools to sort the cleaned SAM files according to
their reference sequence names and create an index for the reads. The gene-level expression
was quantified by applying the R packages GenomicFeatures and GenomicRanges. We gen-
erated a reference table from the human reference genome hg19 and then used the function
findOverlaps to count the number of reads mapped to each exon for all the samples. This
count dataset was pre-processed by total count normalization, and genes that contained zero
counts were removed. The pre-processed count data were used as input for DeMixT and
ISOpure. We performed the same GSCM step as in the analysis of mixed tissue microarray



data.

Analysis of RNA-seq data from RNA from mixed cell lines: H1092, CAF and TIL (Table
S2).

DeMixT yielded proportion estimates with higher CCC and smaller errors (average RMSE =
0.06, 0.07) than ISOpure (average RMSE = 0.18 and 0.24) when compared to the truth (Figure
2b, Supplementary Tables 6-7). Proportion estimates were consistent when different com-
ponents were treated as unknown in our experiments (Table S3 and Figure S6). Both DeMixT
and ISOpure overestimated the immune proportions when lymphocytes were unknown, which
had low proportions (0.4-7.1%) in all mixed samples, but the degree of overestimation from
DeMixT was smaller. In the two scenarios in which DeMixT was able to identify the lym-
phocyte component, we estimated tissue-specific expressions for all the genes with non-zero
counts, and found high concordance (> 0.98) between the deconvolved expression estimates
and mean expression levels. Again, we observed smaller differences in mean expression
levels across genes when using DeMixT compared to ISOpure (Figure S7).

Laser-capture microdissection (LCM) prostate cancer FFPE microarray dataset

This dataset was generated at the Dana Farber Cancer Institute (GSE97284 (Tyekucheva et
al., 2017a)). Radical prostatectomy specimens were annotated in detail by pathologists, and
regions of interest were identified that corresponded to benign epithelium, prostatic intraep-
ithelial neoplasia (abnormal tissue that is possibly precancerous), and tumor, each with its
surrounding stroma. These regions were laser-capture microdissected using the ArcturusXT
system (Life Technologies). Additional areas of admixed tumor and adjacent stromal tissue
were taken. FFPE samples are known to generate overall lower quality expression data than
those from fresh frozen samples. We observed a small proportion of probesets that pre-
sented large differences in mean expression levels between the dissected tissues: tumor (7')
and stroma () in this dataset (Table S9). Only 53 probesets presented a mean difference
(IT — NJ) > 1, as compared to 10,397 probesets in GSE19830. We therefore chose the top
80 genes with the largest mean differences and ran both DeMixT and ISOpure under two
settings: tumor unknown and stroma unknown.

TCGA HNSCC data

We downloaded RNA-seq data for HNSCC from TCGA data portal (https://portal.gdc.cancer.gov/).
There was a total of 44 normal and 269 tumors samples for HNSCC. We collected the infor-
mation of HPV infection for the HNSCC samples. Samples were classified as HPV+ using
an empiric definition of detection of > 1000 mapped RNA-seq reads, primarily aligning to vi-
ral genes E6 and E7, which resulted in 36 HPV+ samples (Cancer Genome Atlas Network,
2015). We then devised a workflow to estimate the immune cell proportions (Figure S11). Our
workflow included three steps. The downloaded normal samples provided reference profiles
for the stromal component in each step. We first downloaded stromal and immune scores
from single-sample gene set enrichment analysis for all of our tumor samples (Yoshihara et
al., 2013) and selected 9 tumor samples with low immune scores (< —2) and high stromal



scores (> 0), which suggested that these samples were likely low in immune infiltration. We
then ran DeMixT under the two-component mode on these samples, generating the decon-
volved expression profiles for the tumor and stromal components. We used these profiles as
reference samples for running DeMixT under the three-component mode in the 36 HPV
samples, generating deconvolved expression profiles for the immune component. In these
two steps, we used deconvolved profiles that have smaller estimated standard variations as
the reference profiles for the next step. We then ran DeMixT under the three-component
mode on all 269 samples with reference profiles from normal samples and the deconvolved
immune component. We calculated p-values (Benjamini-Hochberg corrected (Benjamini and
Hochberg, 1995)) for the differential test of deconvolved expressions for the immune compo-
nent versus the stromal component, and for the immune component versus the tumor compo-
nent, respectively, on a set of 63 immune marker genes. We performed gene selection in the
GSCM approach (as described above), with a slightly larger threshold to account for the large
sample size: sample standard deviation < 0.6 and the top 500 genes for three-component
deconvolution to estimate the 7’s.

Summary statistics for performance evaluation.

Concordance correlation coefficient (CCC). To evaluate the performance of our method, we
use the CCC and RMSE. The CCC p,, is a measure of agreement between two variables x
and y and is defined as p,, = % where i and o are the corresponding mean and
variance for each variable, and p is the correlation coefficient between the two variables. We
calculate the CCC to compare the estimated and true proportions to evaluate the proportion
estimation. We also calculate the CCC to compare the deconvolved and observed expression
values (logo-transformed).

Measure of reproducibility. To assess the reproducibility of the estimated 7 across scenar-
ios when the different components are unknown (i.e., three scenarios for a three-component
model with one unknown component), we define a statistic R = + 37 (325 Sor (e — 4 S5 e)?)3,
where € = ¥ —;, 7¥ is the estimated value for the k-th scenario and T; is the truth for sample

1. S denotes the sample size and K is the number of scenarios. This measures the variations

in the estimation errors across different scenarios. We consider a method with a smaller R as

more reproducible and therefore more desirable.

Data and software availability

The public data used in this study are GSE19830 (Shen-Orr et al., 2010b) and GSE97284
(Tyekucheva et al., 2017b) from GEO browser, and RNA-seqV2 count data from the Genomic
Data Commons Data Portal (Genomic Data Commons Data Portal: TCGA Head and Neck
Squamous Carcinoman.d.). The RNA-seq count data used for validation were generated from
our lab and can be downloaded from https://github.com/wwylab/DeMixTallmaterials.
The accession number for the FASTQ files of the RNA-seq count data reported in this paper
is GEO: GSE121127. The DeMixT source code and the entire analytic pipeline are available
at https://github.com/wwylab/DeMixTallmaterials.



References

Ahn, J. et al., 2013. DeMix: Deconvolution for Mixed Cancer Transcriptomes Using Raw Mea-
sured Data. Bioinformatics, 29(15), pp. 1865—1871.

Lénnstedt, I. and Speed, T., 2002. Replicated microarray data. Statistica sinica, 12(1), pp. 31—
46.

Besag, J., 1986. On the statistical analysis of dirty pictures. Journal of the Royal Statistical
Society. Series B (Methodological), pp. 259-302.

Brent, R. P., 1973. Algorithms for minimization without derivatives. Courier Corporation.

Shen-Orr, S. S. et al., 2010a. Cell type-specific gene expression differences in complex tissues.
Nat Meth, 7(4), pp. 287—289.

Liebner, D. A., Huang, K., and Parvin, J. D., 2014. MMAD: microarray microdissection with
analysis of differences is a computational tool for deconvoluting cell type-specific contribu-
tions from tissue samples. Bioinformatics, 30(5), pp. 682—689.

Tyekucheva, S. et al., 2017a. Stromal and epithelial transcriptional map of initiation progression
and metastatic potential of human prostate cancer. Nature Communications, 8(1), p. 420.

Cancer Genome Atlas Network, 2015. Comprehensive genomic characterization of head and
neck squamous cell carcinomas. Nature, 517(7536), p. 576.

Yoshihara, K. et al., 2013. Inferring tumour purity and stromal and immune cell admixture from
expression data. Nature communications, 4.

Benjamini, Y. and Hochberg, Y., 1995. Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing. Journal of the royal statistical society. Series B (Method-
ological), pp. 289-300.

Shen-Orr, S. S. et al., 2010b. Data accessible at NCBI GEO database; Accession GSE19830.
URL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19830.

Tyekucheva, S. et al., 2017b. Data accessible at NCBI GEO database; Accession GSE97284.
URL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97284.

Genomic Data Commons Data Portal: TCGA Head and Neck Squamous Carcinoma. URL:
https://portal.gdc.cancer.gov/projects/TCGA-HNSC.



	Transcriptome Deconvolution of Heterogeneous Tumor Samples with Immune Infiltration
	Introduction
	Results
	The DeMixT Model and Algorithm
	Validation Using Data with Known Truth
	Validation Using LCM Data
	Application to the Cancer Genome Atlas Head and Neck Squamous Cell Carcinoma Data

	Discussion
	Limitations of the Study

	Methods
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References


