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Abstract

Although aneuploidy usually results in severe abnormalities in multicellular eukaryotes, recent data suggest that it could be

beneficial for unicellular eukaryotes, such as yeast and trypanosomatid parasites, providing increased survival under

stressful conditions. Among characterized trypanosomatids, Trypanosoma cruzi, Trypanosoma brucei and species from the

genus Leishmania stand out due to their importance in public health, infecting around 20million people worldwide. The

presence of aneuploidies in T. cruzi and Leishmania was recently confirmed by analysis based on next generation sequencing

(NGS) and fluorescence in situ hybridization, where they have been associated with adaptation during transmission between

their insect vectors and mammalian hosts and in promoting drug resistance. Although chromosomal copy number variations

(CCNVs) are present in the aforementioned species, PFGE and fluorescence cytophotometry analyses suggest that

aneuploidies are absent from T. brucei. A re-evaluation of CCNV in T. b gambiense based on NGS reads confirmed the

absence of aneuploidies in this subspecies. However, the presence of aneuploidies in the other two T. brucei subspecies,

T. b. brucei and T. b. rhodesiense, has not been evaluated using NGS approaches. In the present work, we tested for

aneuploidies in 26 T. brucei isolates, including samples from the three T. brucei subspecies, by both allele frequency and

read depth coverage analyses. These analyses showed that none of the T. brucei subspecies presents aneuploidies, which

could be related to differences in the mechanisms of DNA replication and recombination in these parasites when compared

with Leishmania.

DATA SUMMARY

All read libraries used in this work are listed and character-
ized in Table S1. All were downloaded from NCBI Sequence
Read Archive.

INTRODUCTION

Trypanosoma brucei, a protozoan parasite from the family
Trypanosomatidae, is the causative agent of sleeping sick-
ness, an endemic disease in 36 sub-Saharan African coun-
tries [1]. Other members of this family include parasites of
medical relevance such as Trypanosoma cruzi and Leish-
mania, the aetiological agents of Chagas disease and leish-
maniasis, respectively. T. brucei is subdivided into three

subspecies, T. brucei gambiense, T. brucei rhodesiense and

T. brucei brucei. T. b. gambiense is responsible for ~90% of

reported human cases of infection and is mainly found in

central and western Africa, whereas T. b. rhodesiense is pri-

marily found in eastern and southern Africa [1, 2]. T. b. bru-

cei is usually restricted to non-human animal infections,

although human cases have been reported [3].

As cytogenetic analyses are hampered in trypanosomatids

by the lack of chromosome condensation during mitosis,

karyotype studies in these parasites were initially evaluated

by PFGE and fluorescence cytophotometry [4–8]. The

development of next generation sequencing (NGS) method-

ologies and the availability of chromosomal-level assemblies
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of protozoans from the family Trypanosomatidae [9–12]
have enabled a re-evaluation of chromosomal copy number
variation (CCNV) occurrence based on read depth coverage
(RDC) and allele frequency [13–16]. This new methodology
was able to confirm the presence of mosaic aneuploidy in
Leishmania, explaining the non-stoichiometric staining
intensities of different chromosomal bands observed in
PFGE analysis [4]. CCNV was observed in several species of
the genus Leishmania, where the pattern of aneuploidies
varies among species and even within a population [13, 14,
17–19]. Aneuploidies were shown to greatly impact the phe-
notype of the parasite, altering gene expression levels, pro-
moting drug resistance and influencing host interchange
adaptations [20–22]. Therefore, while aneuploidy is usually
lethal or results in severe abnormalities in multicellular
eukaryotes [23–25], it could provide rapid adaptation to
stressful conditions in unicellular eukaryotes. Chromosomal
gain/loss events were also observed among and within
T. cruzi discrete typing units (DTUs) [15, 26], suggesting
that aneuploidies are a common event in trypanosomatids.

In contrast to what has been observed for the genus Leish-
mania and T. cruzi DTUs, PFGE and fluorescence cytopho-
tometry analyses suggest that T. brucei is mainly diploid [5,
6, 8, 27–29]. Although triploid T. brucei parasites have been
observed following experimental crossing [30, 31], no trip-
loid T. brucei isolates have been previously reported from
the field. From the three subspecies, only T. b. gambiense
ploidy has been evaluated based on whole genome sequenc-
ing and RDC, and no aneuploidies were detected [32]. How-
ever, the occurrence of aneuploidies in T. b. brucei and
T. b. rhodesiense has not been evaluated using NGS
approaches. Therefore, the objective of this work was to esti-
mate CCNV in all three T. brucei subspecies using RDC
analysis, compare this with what has already been reported
for other trypanosomatids and correlate the pattern of aneu-
ploidy with cellular processes associated with genomic
stability.

METHODS

Read libraries and processing

A total of 27 T. brucei whole genome read libraries were
downloaded from the NCBI Sequence Read Archive (SRA).
These included four samples from T. b. brucei, two from
T. b. gambiense and 21 from T. b. rhodesiense (Table S1,
available in the online version of this article). The reads
from each library were submitted to a quality check using
the FASTQc tool (http://www.bioinformatics.babraham.ac.
uk/projects/fastqc/). Read libraries were filtered using Trim-
momatic [33], with a minimum threshold of phred quality
20 and a minimal length of 40 nucleotides.

Read mapping

The 27 quality trimmed read libraries were mapped on the
11 chromosomal-size T. b. brucei 927 version 28 scaffolds
(TritrypDB, http://tritrypdb.org/tritrypdb/), using the
BWA-mem software [34, 35]. The mapped reads were

trimmed based on a mapping quality of 30 using SAMtools
v1.1 [36]. The percentage of mapped reads was estimated
with SAMtools flagstat, where only libraries in which more
than 70% of the reads mapped were used (Table S1).

Chromosomal copy number variation estimations

Two methodologies were used to evaluate the occurrence of
CCNV in T. brucei: allele frequency of heterozygous posi-
tions and RDC analysis.

To evaluate CCNV based on allele frequency, we performed
SNP calling using GATK v3.3 [37, 38] in each read library
mapped to the T. b. brucei 927 reference genome. Initially,
duplicated reads were marked using Picard v1.119 (https://
github.com/broadinstitute/picard). Illumina reads were
then re-aligned with GATK RealignerTargetCreator and
SNP records were obtained with GATK HaplotypeCaller,
with minimal confidence threshold for calling of 30 (Phred
scale) and minimum threshold confidence for emission of
10 (Phred scale). Next, GATK SelectVariants was used to
report only SNPs, excluding insertion/deletions, and
VCFfilter was used to select SNP positions with read depth
of at least 10 and quality higher than 10. Next, the heterozy-
gous SNP positions in all genes, excluding variant surface
glycoproteins (VSGs) and expression site associated genes
(ESAGs), were retrieved using in-house Perl scripts, where
only SNPs with a support of at least five reads in each vari-
ant allele were reported. For each chromosome, the propor-
tion of read depth in alleles in each variant of a predicted
heterozygous site was obtained and rounded to the second

IMPACT STATEMENT

Aneuploidy, the gain or loss of copies of chromosomes, is

usually detrimental. For instance, in humans, an extra

copy of chromosome 21 results in Down syndrome, a

number of conditions arise from imbalanced numbers of

sexual chromosomes, and aneuploidies are associated

with many types of tumours. On the other hand, some

single-celled microbes, such as yeast and trypanosoma-

tid parasites, the latter an important group of pathogens

that infect around 20million people worldwide, appear to

rely on aneuploidy as a mechanism to allow adaptation

to changing environments, such as different hosts and

drug exposure. Surprisingly, among characterized trypa-

nosomatid parasites, some species present aneuploidies,

while others do not. Therefore, comparing the presence

of aneuploidy in members of the trypanosomatid family

with processes associated with genomic stability could

reveal cellular mechanisms that lead to aneuploidy and

allow it to be tolerated. Understanding the variations in

ploidy in these organisms could provide insights into

important processes that affect the infectivity of para-

sites (and other pathogens) and contribute to better

knowledge of the cellular processes that dictate the sta-

bility and propagation of genomes in all cells.
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decimal place, ranging from 0.01 to 1.00, and an approxi-
mate distribution of base frequencies for each chromosome
was obtained based on Perl scripts and plotted in R (www.r-
project.org, R Development 2010). To estimate the overall
ploidy of each genome, the same methodology was applied,
but the heterozygous positions of all coding sequences
(CDS) from all chromosomes were computed simulta-
neously. Disomic chromosomes are expected to have a peak
of 0.50, while trisomic chromosomes are expected to have
peaks of 0.33 and 0.66, and tetrasomic chromosomes a com-
bination of 0.25, 0.50 and 0.75 peaks.

The estimation of ploidy variation based on RDC assumes
that if the median RDC of a chromosome is higher or lower
than the median RDC of the whole genome, this could repre-
sent chromosomal gains or losses, respectively. To that end,
the chromosomal copy numbers were estimated by the
median of dc/dg in a chromosome using in-house Perl scripts
and BEDtools, where dc represents the median RDC of all
genes in a given chromosome, excluding the multigene VSG
and ESAG families, and dg corresponds to the median
genome coverage. Initially, the median RDC of all genes,
excluding VSGs and ESAGs, for each chromosome was
obtained. Next, genes with a coverage lower than 50% of the
gene length were excluded. Then, genes with outlier coverage

for each chromosome were excluded, based on an iterative
Grubb’s test, with P<0.05. Finally, the median and quantile
coverages of each chromosome were plotted in boxplots
using R. Median values close to 1 confirm that the chromo-
somal somy is close to the genome ploidy. This methodology
is similar to the one used by Downing et al. [14] for Leish-
mania, Reis-Cunha et al. [15] for T. cruzi and Tihon et al. for
Trypanosoma congolense [39]. Genome coverage was esti-
mated based on the median RDC of all genes in the genome,
excluding VSGs and ESAGs, using Perl scripts.

Principal component analysis (PCA) and maximum-
likelihood phylogeny of the T. brucei SNPs

To estimate the distance among the 26 T. brucei samples
based on whole genome differential SNPs, a consensus
nuclear genomic sequence was generated for each sample,
using GATK FastaAlternateReferenceMaker (https://software.
broadinstitute.org/gatk/documentation/tooldocs/current/org_
broadinstitute_gatk_tools_walkers_fasta_FastaAlternateRefer-
enceMaker.php). This genomic sequence was used as input to
generate PCA plots and maximum-likelihood phylogeny
estimations.

To generate the PCA plot, a distance matrix based on differ-
ential SNPs was generated and loaded in the R caret package

Fig. 1. T. brucei subspecies whole genome allele frequency ratio. In each image, the x-axis denotes the allele frequency ratio of het-

erozygous positions from 0 (0%) to 1 (100%), while the y-axis denotes the occurrence of that allele frequency in the genome. An allele

frequency ratio peak of 0.5 denotes that the majority of heterozygous positions in the genome had a similar depth of coverage for both

alleles, suggesting diploidy. Peaks of 0.33 and/or 0.66 suggest triploidy, and peaks of 0.25, 0.5 and 0.75 suggest tetraploidy. T. b. brucei

samples are in red, T. b. gambiense in green and T. b. rhodesiense in blue.
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(http://topepo.github.io/caret/index.html). To evaluate the
maximum-likelihood phylogeny, the best-fitting nucleotide
substitution model for the phylogenetic analysis was deter-
mined using Jmodeltest [40]. The maximum-likelihood
phylogenetic tree was built using PhyML [41], with the
Generalized Time Reversible model with 1000 bootstrap
replicates, proportion of invariable sites of 0.96 and gamma
distribution of 0.56. The final phylogenetic tree images were
built using FigTree v.1.4.2 software (http://tree.bio.ed.ac.uk/
software/figtree/).

RESULTS AND DISCUSSION

Chromosomal copy number evaluations

From the 27 T. brucei read libraries evaluated in this work,
26 presented with more than 70% of the trimmed reads
mapping to the 11 T. b. brucei 927 chromosomal-size scaf-
folds and were used in the parasite ploidy estimations
(Table S1). Initially, the overall genome ploidy of each
T. brucei strain/isolate was estimated based on the allele
frequency of heterozygous positions in all non-VSG and
non-ESAG genes, comprising 9295 genes (Fig. 1, Table S2).
Based on this analysis, 25 samples presented a single mode
of 0.5, suggesting that they are mainly diploid, while T. b.

rhodesiense isolate D11 had modes of ~0.33, ~0.5 and
~0.66, suggesting mixed disomic/trisomic chromosomes, or
that isolate D11 corresponds to a mixed infection, with
more than one parasite population in the same isolate
(Fig. 1). This isolate clustered together with other T. b. rho-
desiense isolates in a PCA based on SNP data (Fig. S1).
Although mainly diploid, T. brucei isolate D1 also pre-
sented discrete peaks of ~0.33 and ~0.66, suggesting that a
part of its population could also be triploid. The absence of
any strong evidence for triploidy in D1 could be due to the
lower genome coverage when compared to D11 (Table S1
and Fig. S2).

An evaluation of the somy of each chromosome from each

isolate by RDC revealed that the chromosomal somy is in

accordance with the whole genome ploidy, where the

median RDC of each chromosome was similar to the

median genome coverage, even for isolate D11 (Fig. 2, and

Table S3). Similar results were obtained based on chromo-

somal somy estimations by allele frequency (Fig. S3). The

only exceptions were for chromosome 2 from isolates D16,

I5 and I7, which showed a major skewed allele frequency

ratio, and isolates STIB348TBABB, STIB704C, STIB900 and

STIB920, which presented a minor skewed allele frequency

Fig. 2. T. brucei subspecies chromosome somy estimated based on dc/dg. In each image, the y-axis corresponds to a boxplot of the

median coverage of all genes in a chromosome normalized by genome coverage, where the median value corresponds to the chromo-

some-predicted somy. Each bar on the x-axis represents a T. brucei chromosome, numbered from 1 to 11. A median dc/dg value of ~1

means that the chromosomally estimated copy number was similar to the genome ploidy.
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ratio (Fig. 3a). The evaluation of the RDC variations along-
side each chromosome (Fig. S4) revealed a large segmental
duplication in chromosome 2 from isolates D16, I5 and I7,
which was not observed in the other T. brucei isolates
(Fig. 3b). Interestingly, I5 and I7 are T. b. gambiense isolates,
while D16 was previously classified as a T. b. rhodesiense
isolate [42]. In our PCA evaluations (Fig. S1) as well as max-
imum-likelihood phylogenetic analysis (Fig. S5), isolate D16
clustered together with I5 and I7, suggesting that it could
actually be a T. b. gambiense isolate. Alternatively, D16
could actually be a T. b. rhodesiense isolate and the three T.
brucei subspecies may not be monophyletic as previously
suggested [42].

These combined results confirm an overall absence of aneu-
ploidies in all three T. brucei subspecies, as previously
observed by RDC analysis in T. b. gambiense [32] and by
PFGE and fluorescence cytophotometry analyses for the
three subspecies [6, 27]. The only isolate with a non-diploid
pattern in our analysis, T. b. rhodesiense D11, presents all its
chromosomes in the same polysomic state (Fig. S3). Trip-
loid T. brucei parasites have already been obtained in exper-
imental mating in the tsetse fly, suggesting that T. brucei
can sustain whole genome aneuploidies in laboratory

conditions [30, 31]. However, polyploidy has not yet been
documented in T. brucei field isolates [43]. Recent ploidy
estimations in 56 Trypanosoma congolense field isolates led
to the identification of one triploid lineage, BANANCL2
[39]. This triploid isolate was viable and stable during all
the life-cycle stages of the parasite and was efficiently trans-
mitted to mice, resulting in systemic infections [43]. These
results suggest that parasites from the Salivarian evolution-
ary branch, T. brucei and T. congolense, can sustain polys-
omy, but do not appear to be aneuploid as observed in
T. cruzi [15, 26] and in Leishmania [13], where different
chromosomes present different somies. CCNV evaluations
in other parasites from the Salivaria clade, such as Trypano-
soma vivax and Trypanosoma evansi, as well as from proto-
zoans closely related to T. cruzi (e.g. Trypanosoma rangeli,
Trypanosoma grayi) and Leishmania (e.g. Crithidia fascicu-
lata, Leptomonas pyrrhicoris) would be valuable to under-
stand this potential dichotomy in genome structure in
kinetoplastids.

Transcription in trypanosomatids is polycistronic, sharing a
profound overlap with DNA replication, where both pro-
cesses frequently start at strand-switch regions [44, 45].
However, whereas each of the 11 megabase-sized T. brucei

Fig. 3. T. brucei chromosome 2 allele frequency ratio and segmental duplication. (a) Allele frequency ratio distribution for chromo-

some 2. The x-axis denotes the allele frequency ratio of heterozygous positions from 0 (0%) to 1 (100%), while the y-axis denotes the

occurrence of that allele frequency in chromosome 2. (b) In this image, the blue line corresponds to the normalized RDC of each posi-

tion in a chromosome, estimated by the ratio between the RDC and the genome coverage. Below, the protein-coding genes are

depicted as rectangles drawn proportional to their length, and their coding strand is indicated by their position above (top strand) or

below (bottom strand) the central line. Cyan boxes represent VSGs and ESAGs. Black boxes represent all other genes. Segmental

duplications not located in sub-telomeric regions are highlighted by a red box. Isolates D16, I5 and I7 show a major skewed allele fre-

quency distribution, while STIB348TBABB, STIB704C, STIB900 and STIB920 show a minor skewed allele frequency distribution. Isolate

D3 was added as an example of a disomic chromosome.
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chromosomes have several origins of DNA replication [44],

the same mapping strategy in Leishmania revealed either a
single or a highly preferred origin of replication per chro-

mosome [46]. It is possible that this differing pattern of
DNA replication initiation accounts for the distinct ploidies

of the two related parasites. For instance, a clash between

the transcription and replication machineries at the prefer-
ential or singular origin in Leishmania may result in a dupli-

cation failure of a given chromosome, which could
compromise survival of the parasite. For this reason, the

retention of extra chromosomal copies in Leishmania could

mitigate against eventual chromosomal loss (Fig. 4). In fact,
it has already been suggested that CCNV in Leishmania is

generated by asymmetric chromosomal replications, yield-
ing chromosome gains and losses after a number of mitotic

generations [47, 48]. The presence of several origins of repli-

cation in each T. brucei chromosome would shield this para-
site from chromosomal losses due to clashes between the

replication and transcription machineries, as DNA replica-

tion that emanates from one origin but suffers a blockade
could still be completed using replication from another ori-

gin [44]. Alternatively, aneuploidies could be generated by
recombination events, as observed in the Candida albicans

parasexual cycle [49]. In this model, the fusion of parental

cells is followed by karyogamy, resulting in a polyploid
progeny that undergoes reductional mitotic divisions and

genome erosion [49]. Environmental pressures could then
select parasite cells that present extra copies of chromo-

somes whose amplification could be advantageous for para-

site survival due to increased copy number of their genes.
This mechanism is supported by the subtetraploidy found

in T. cruzi experimental hybrids, which present 70% higher
DNA content compared to parental strains [50, 51], and by

chromosomal amplification variations as Leishmania

migrates from the insect vector to the mammalian
host [20].

Fig. 4. Schematic representation of aneuploidy in trypanosomatids. Parasites from the genus Leishmania that present mosaic aneu-

ploidy have a preferential origin of DNA replication (Ori) in each chromosome, while all three T. brucei subspecies lack aneuploidies

and present several origins of replication in each chromosome.
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Conclusion

The putative presence of aneuploidies in Leishmania and
T. cruzi but not in T. brucei or T. congolense suggests that
although evolutionarily related, these parasites present dif-
ferent tolerance to CCNVs. Whether Salivarian parasites
lost an ancestral ability to sustain aneuploidy, or whether
Leishmania and T. cruzi evolved this mechanism indepen-
dently is still unknown. The evaluation of CCNV in a larger
number of trypanosomatids and kinetoplastids, and corre-
lating this property with DNA replication initiation and
recombination, will shed light on the biological mechanisms
behind aneuploidy generation in this evolutionary grouping,
which will have relevance for all eukaryotes.
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