
The effects of nonignorable missing data on label-free mass 
spectrometry proteomics experiments

Jonathon J. O'Brien‡, Harsha P. Gunawardena†, Joao A. Paulo‡, Xian Chen†, Joseph G. 
Ibrahim†, Steven P. Gygi‡, and Bahjat F. Qaqish†

Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA, 02115, 
USA; Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 
3101 McGavran-Greenberg Hall, CB 7420, Chapel Hill, NC 27599, USA; Department of 
Biochemistry and Biophysics University of North Carolina at Chapel Hill 120 Mason Farm Rd, 
Campus Box 7260 Chapel Hill, NC 27599 USA

Abstract

An idealized version of a label-free discovery mass spectrometry proteomics experiment would 

provide absolute abundance measurements for a whole proteome, across varying conditions. 

Unfortunately, this ideal is not realized. Measurements are made on peptides requiring an 

inferential step to obtain protein level estimates. The inference is complicated by experimental 

factors that necessitate relative abundance estimation and result in widespread non-ignorable 

missing data. Relative abundance on the log scale takes the form of parameter contrasts. In a 

complete-case analysis, contrast estimates may be biased by missing data and a substantial amount 

of useful information will often go unused.

To avoid problems with missing data, many analysts have turned to single imputation solutions. 

Unfortunately, these methods often create further difficulties by hiding inestimable contrasts, 

preventing the recovery of interblock information and failing to account for imputation 

uncertainty. To mitigate many of the problems caused by missing values, we propose the use of a 

Bayesian selection model. Our model is tested on simulated data, real data with simulated missing 

values, and on a ground truth dilution experiment where all of the true relative changes are known. 

The analysis suggests that our model, compared with various imputation strategies and complete-

case analyses, can increase accuracy and provide substantial improvements to interval coverage.
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1. Introduction

Label-free mass spectrometry proteomics experiments provide quintessential applications 

for the field of missing data statistics. The sources of missing data are rooted in known 

technological and scientific processes and the proportion of missing values will often exceed 

50% of a dataset (Karpievitch et al., 2009). Consequently, well-informed missing data 

models can be used to substantially impact the final results of an analysis. However, 

straightforward applications of missing data techniques are complicated by the unusual 

nature of proteomics data. In the experiments we explore, all of the parameters of interest 

are contrasts. Understanding how missing data affects these contrasts has profound 

implications for informing data analysis techniques and interpreting the results. Modeling a 

missing data mechanism allows us to avoid numerous pitfalls associated with complete-case 

analyses and imputation based methods while utilizing information in the data that would 

otherwise not contribute to estimation. Specifically, we create a selection model which is 

informed by all the observed and missing values within each protein, along with an overall 

estimated relationship between outcomes and the probability of missingness. An R package 

for the implementation of the selection model can be installed from www.github.com/

ColtoCaro/missMS.

At the highest level, proteomics is the large scale study of the structure and function of 

proteins. The properties and methods discussed in this paper pertain to a set of experiments 

called data-dependent, label-free, bottom-up, discovery proteomics (Chen and Yates, 2007). 

This paper does not apply to methods using isobaric tags (Ross et al., 2004; Thompson et al., 

2003), top-down proteomics (Catherman, Skinner and Kelleher, 2014), data-independent 

analysis (Röst et al., 2014) or targeted proteomics (Liebler and Zimmerman, 2013). 

Furthermore, our discussion is limited to a single step in a complicated workflow, where 

peptide level measurements are used to make protein level inferences. The full workflow for 

a proteomics experiment goes far beyond this, with software packages typically performing 

analyte identification, quality control, false discovery rate filtration and many other essential 

informatics tasks. These aspects of the experimental workflow are outside of the scope of 

this paper, but their importance cannot be overstated.

If the rest of the workflow has not been done well, then no statistical modeling will ever 

make up for the loss in quality. However, we will demonstrate that the choice of statistical 

methodology alone can profoundly alter the final results of a discovery mass spectrometry 

experiment. The challenges to statistical inference posed by missing data are substantial and 

progress can only be made by isolating one problem at a time. With this goal in mind we 

will explore the challenges of estimating relative protein abundance without regard to the 

prerequisite steps in the overall workflow. Consequently, the dangers and advances discussed 

in this paper can be applied to any workflow capable of exporting peptide level intensities 

prior to protein level estimation.

In Section 2, we will discuss the pertinent experimental details that motivate our data 

generating model, with a special focus on sources of missing data and the necessity of 

relative quantification. In Section 3, we discuss various methods that have been proposed for 

handling missing data in proteomics experiments. We then define our selection model and 
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discuss a general framework for protein estimation. In Section 4, we analyze simulated data, 

real data with simulated missing values and finally a ground truth dataset with known 

relative changes that we created with a series of dilution experiments. The first two analyses 

are designed to demonstrate the basic relationships between missing data and contrast 

estimation in the simplest possible setting. We show that our missing data model can 

improve accuracy and that non-ignorable missingness can cause a divergence between 

methods that would otherwise provide identical results. This divergence has important 

implications for how the results of a study are summarized and used in downstream 

analyses. The analysis of the ground truth dilution experiment presents more complicated 

patterns of missing data and shows the advantages of our selection model in terms of 

accuracy and interval coverage. Section 5 contains a discussion of our findings and 

highlights areas for future research.

2. Pertinent Experimental Details

The label-free quantification (LFQ) experiments described in this paper are referred to as 

bottom-up proteomic methods because inference about relative protein abundance is made 

from measurements on protein fragments called peptides. A typical bottom-up proteomic 

workflow involves the extraction of proteins from cells, tissues or biological secretions, 

followed by proteolysis which cleaves proteins into peptides. Typically cleaving proteins 

into peptides is achieved by adding a protease (usually trypsin) that breaks the peptide bond 

after lysine and arginine amino acid residues. After this digestion, peptides from the sample 

are separated according to each peptide's hydrophobicity, where the more hydrophobic 

peptides will be the last to elute. This process is referred to as liquid chromatography. As 

they elute, peptides are ionized into the gas phase and enter a mass spectrometer, where the 

number of ions corresponding to each mass is measured. How exactly the measurement is 

made depends on the specific technology. Two commonly used types of mass spectrometers 

are time of flight and Orbitrap® instruments. All of the data generated in this paper were 

analyzed with Orbitrap® mass spectrometers. Regardless of the specific technology, the 

process of separating ions and measuring their masses happens continuously as analytes 

elute.

Peptides with the largest signals (relative to whatever else is simultaneously processed) will 

be selected for fragmentation and a second mass measurement (MS2) which will be used to 

sequence the peptide. The process of selecting peptides for a second mass measurement, 

based on the relative magnitude of the counts, is called data-dependent analysis (DDA). In 

an iTRAQ or TMT experiment quantification also takes place during or after MS2, which 

has important consequences for the missing data mechanism and places these technologies 

beyond the scope of this paper. Each identified peptide may be associated with many ion 

counts measured through time. The term, peptide intensity, refers to a summary of these 

measurements which is usually computed as either an area under an interpolated curve or as 

the maximum observed measurement (Cox and Mann, 2008). A more comprehensive 

description of the LFQ workflow can be found in Sandin et al. (2011). In this manuscript, 

we will focus on only the experimental details which motivate our statistical model.
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2.1. Relative abundance

Advances in mass spectrometry technology have provided us with a tremendous ability to 

manipulate ions. Consequently, ionization of peptide molecules is an indispensable aspect of 

a mass spectrometry based proteomics experiment. Critically, not all of the peptides from the 

sample will successfully ionize and enter the mass spectrometer. Certain peptides tend to 

ionize more efficiently, while others will not ionize at all. The probability that a given 

peptide molecule will ionize can be referred to as ionization efficiency.

Ionization efficiency is a function of the chemical structure of a peptide and other properties 

of the solution at the time of ionization. For example, the presence of other co-eluting 

peptides, sometimes referred to as matrix interferences, or changes in the salinity of the 

solution could alter ionization efficiency. Schliekelman and Liu (2014) found that 

competition for charge between background peptides may actually be a more important 

factor than abundance in determining if a peptide will be detected. Regardless of which 

factors are most important, ionization efficiency can cause the proportion of peptides that 

enter into the mass spectrometer to be drastically altered. Consequently, intensities are not a 

monotone increasing function of concentration.

One peptide might be far more abundant than another in a given sample but a lower 

ionization efficiency could reverse the relationship for peptide intensities. The observed 

intensities represent the abundance of a peptide found in the sample multiplied by the 

proportion of those molecules that are successfully measured by the mass spectrometer. 

Fortunately, if the proportion parameter, p, is considered to be a property of the individual 

peptide, it will cancel out when put into a ratio with the same peptide from another sample. 

This relationship is outlined in Table 1. In theory the assumption of equivalent ionization 

efficiencies for each peptide is sound, since the determining factors should be equivalent 

from run-to-run. Of course, in practice this may not be true. Unexpected changes in 

electrospray voltage or flow rate could lead to slightly different probabilities from run-to-

run. One of the motivations for multiplexing with isobaric tags (Thompson et al., 2003) is 

that such variations will affect all of the experimental conditions in the same way since they 

are measured concurrently. Thus, peptide by run interactions can be used as a blocking 

variable. However, in a label free experiment, condition and run are usually confounded, 

leaving little choice but to allow run-to-run variations to increase to the overall experimental 

error.

Ionization efficiency explains why proteomics experiments are often referred to as relative 

quantification experiments. When modeling the data from a log-normal distribution, 

parameter ratios take the form of contrasts on the log scale. The contrasts give us 

information on the relative abundance that existed in the original sample, whereas estimates 

of parameters that describe the average log intensity for a protein are confounded by 

variations in the ionization efficiency. This distinction becomes especially important when 

considering the impact of missing data.
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2.2. Intensity-Dependent Missingness

Unlike microarray experiments in which missing values often comprise about 1-11% of the 

data (de Brevern, Hazout and Malpertuy, 2004), proteomics datasets almost always have a 

much higher percentage of missing data. A multitude of sources create this missing data 

problem. When combined, the missing data mechanisms yield data where both missing at 

random (MAR) and non-ignorable missing values, are found throughout the entire range of 

intensities. We say that a missing value is non-ignorable when the probability that the 

random variable will be unobserved is dependent on the underlying value. In contrast, MAR 

peptides are missing for reasons entirely unrelated to their intensities. In this section we will 

explain some of the primary sources of both MAR and non-ignorable missingness.

2.2.1. Detection Limit—Mass spectrometers have both theoretical and practical limits of 

detection (LOD). The theoretical LOD is the minimum number of ions a given instrument 

can capture while still producing an ion current with adequate signal enhancement. Although 

any peptide exceeding this number of ions could theoretically be detected by the mass 

spectrometer, every sample contains a considerable amount of noise. This noise results in a 

practical detection limit, whereby the software fails to distinguish peptide peaks from 

background noise. How exactly the processing software delivers signal intensities depends 

on both the type of mass spectrometer and even the instrument vendor. For this reason, 

sample-related factors that either result in a higher practical detection limit or a decreased 

intensity due to the nature of the sample can result in missing values. As discussed 

previously, a major driver in this setting is the peptide ionization efficiency. If the ionization 

efficiency is low then the intensity will be low and may fall below the detection limit. This is 

a form of non-ignorable missingness where the probability of a missing value is directly 

related to the magnitude of the intensity.

2.2.2. Data-Dependent Tandem Mass Spectrometry—Sequence identification 

occurs by selecting a peptide peak from the first scan (MS1) in a mass spectrometer and then 

mass analyzing the fragments of the ions that generated the MS1 peak. Many methods 

utilize data dependent analysis (DDA) whereby peptides are selected for MS2 according to 

the rank order of their signal intensities during a brief window of time. In a DDA analysis, 

peptides that are not identified will usually result in missing values. Thus, even above the 

practical LOD, an intensity dependent process can result in non-ignorable missing values. 

Consequently, in DDA experiments we need to consider two sources of non-ignorable 

missingness, one which occurs below a random detection limit and another above.

2.2.3. Sources of random missingness—A peptide might appear in one sample and 

not in another simply because it was misidentified. Identification algorithms are designed to 

minimize this problem, but false identifications will still be present in every dataset. A 

similar problem comes from shared peptides; i.e., peptides that are properly identified but 

that could belong to more than one protein. Many software programs assign shared peptides 

to the candidate protein highest number of other identified peptides Cox and Mann (2008), 

however more conservative approaches could treat peptides with no unique labels as 

missing. Missingness of this sort would be due to the sequence mapping and not the 

magnitude of the outcome. It is also possible that due to interfering ions, a particular peptide 
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will simply fail to be identified with any certainty, resulting in more missing values. It is 

probably safe to classify missingness caused by classification errors as MAR since the 

mechanisms are independent of the intensities.

The MAR distinction is important because ignoring MAR values will not result in biased 

estimates. However, since MAR values can occur throughout the whole range of intensity 

values, the problem of determining which peptides are MAR is likely intractable. In the next 

section, we present a way to incorporate a missing data mechanism without attempting to 

decipher the exact source of missing data for each peptide.

3. Methods

3.1. The mean model

We first need discuss the mean model for a complete case analysis. For the rest of this paper 

we assume that intensities have undergone a log base 2 transformation so that additive 

models are appropriate, and the ratios of interest are contrasts.

A common experimental design might include factors for protein, peptide within protein, 

sample and run. Protein parameters might represent unique protein identifications nested 

within conditions, biological replicates or even groups of proteins that researchers expect to 

share a parameter. Similarly, the condition parameters might represent disease states, time 

courses or just biological replication. The exact design of the experiment is not relevant for 

the purposes of this paper.

Let the jth peptide j(i) = 1,…, Ji, be nested within the ith protein, i = 1,…, I, in condition k, k 
= 1,…, K and replicate l, l(k) = 1,…, Lk. Then for a given peptide the number of molecules 

in a sample should depend on the sample, the peptide and possibly some systematic 

experimental deviations in the form of a run effect. The mean model for peptide abundance, 

aijkl, is given by

E(ai jkl) = β0 + αi + β j(i) + γk + δl(k) + ηik .

Where, the difference in protein abundance across conditions, ηik, would typically be the 

parameter of interest. Systematic variations in conditions, γk and replicates δl(k) are usually 

considered to be artifacts since the experiments are built on the assumption that overall 

protein abundance will be the same from run-to-run. Note that this is more than a theoretical 

assumption. Multiple steps in the experimental procedure, prior to mass analysis, repeatedly 

alter sample concentration to ensure that an equal amount of total protein is contained in 

each sample.

Unfortunately, we never directly observe the peptide abundance that was in the solution. So 

the model for aijkl is purely theoretical. When considering a model for the observed 

intensities, yijkl, we must first consider a model for the probability that a peptide will ionize 

and enter a mass spectrometer πijkl. This unobserved probability can be conceptualized with 

a slightly different framework.
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πi jkl = β0
∗ + β j(i)

∗ + δl(k)
∗

where the sum of parameters is constrained between 0 and 1.

Notice that we have not included an interaction term for peptide level ionization effects. 

Such an interaction could be used to model peptides sticking to an elution column or run-to-

run variations in ionization efficiency, labeling efficiency, peptide digestion, spray instability 

and over-labeling. Unfortunately, in a label-free experiment, a peptide-by-run interaction 

results in a saturated model. Attempting to estimate anything else, including the contrasts of 

interest, will result in identifiability problems. Accordingly, great care must be taken to 

minimize the run-to-run variation experimentally.

Having decided on appropriate models for abundance and ionization we can describe the 

model for the observed intensities with the sum

E(yi jkl) = (β0 + β0
∗) + αi + (β j(i) + β j(i)

∗ ) + γk + (δl(k) + δl(k)
∗ ) + ηik .

Notice that in this model, though many parameters can only be interpreted as a combination 

of ionization and abundance effects, the contrast between two samples k and k′ with all 

other factors fixed, (γk+ηik–γk′–ηik′), only contains parameters from the abundance model. 

Thus, even though we only make observations on the number of ions that enter a mass 

spectrometer, estimating contrasts still provides a way to make inference on the original 

sample.

A potential alteration to this model may be needed for researchers working with large 

population level studies who need to differentiate between biological and technical 

replicates. One way to achieve this would be to completely nest biological replicates within 

a protein, and technical replicates within each biological replicate. The parameter of interest, 

at the population level, could then be defined as a hierarchical mean parameter for the 

contrasts shared by all of the biological replicates, e.g. if q(i), q = 1,…, Q indexes biological 

replicates, then letting the contrast parameter ηqk ∼ N(μi, τ) would make μi be the parameter 

of interest in the population level study. This example highlights an important and unusual 

aspect of proteomics experiments; statistical inference is required just to figure out what was 

in a single sample. Simultaneously making inference to both protein levels within individual 

samples, and population level parameters, would require complex models like the one just 

suggested. However, exploring the properties of such models goes beyond the scope of this 

paper where we aim to study the effects of missing data on even the simplest of models.

We now define the notation used in this paper for an arbitrary design matrix Xn×p, parameter 

vector θ, of length p and outcome vector y, of length n. The mean model can be described as 

E(y) = Xθ. We use the matrix subscripts to denote submatrices such that X[.,i] denotes the ith 

column of X and θ[j] denotes the jth entry of θ. Negative indices imply a vector component, 

matrix column or row has been removed. For the Bayesian formulation we assume that y|θ ∼ 

O'Brien et al. Page 7

Ann Appl Stat. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



N(Xθ, σ2In×n), where In×n is an identity matrix. Further, let the ith entry of θ, θi N(βi, τi
2), 

and for all i ≠ j, θi ⊥θj. The hyperparameters βi, τi
2, σ2 could be treated as random variables 

or they could be fixed real numbers. Later in this paper we will assign non-informative 

distributions to the hyperparameters. However the use of informative priors might be a 

desirable alternative, as researchers often have a very good idea of the range of values their 

experiments will produce.

3.2. Modeling Missingness

Many efforts have been made to correct for missing data biases in proteomics experiments. 

However, the vast majority of solutions involve using single imputations. By default, 

MSstats (Clough et al., 2012) uses an imputation from an accelerated failure time (AFT) 

model which is similar to the approach proposed by Tekwe, Carroll and Dabney (2012). 

Inferno by Taverner et al. (2012) allows for K-Nearest Neighbors (KNN) imputation 

(Troyanskaya et al., 2001) and in previous versions allowed for imputation from a mixture 

model proposed by Karpievitch et al. (2009). Many more single imputation methods have 

been evaluated in review papers by Lazar et al. (2016) and Webb-Robertson et al. (2015), 

including simple imputations of column means and column minimums as well as an 

imputation based on the singular value decomposition originally proposed for microarray 

data (Owen and Perry, 2009).

A few imputations operate on the protein level including an algorithm in the popular Perseus 

software package (Keilhauer, Hein and Mann, 2015) and another based on a survival model 

Tekwe, Carroll and Dabney (2012). Since these imputations occur after protein estimation 

has occurred they do not address the problems discussed in this manuscript and will not be 

discussed further.

Lazar et al. (2016) reported that missing not at random (MNAR) imputation methods were 

problematic since the range of imputed values is not representative of the true range of 

missing values. These MNAR imputations along with the the AFT model assume that every 

missing value falls below or at some lower limit of detection. As discussed in Section 2.2, 

MAR values can occur throughout the entire range of values. Thus, imputing below a 

detection limit may inappropriately take values that should be MAR above the estimated 

detection limit and forces them to be too small. Webb-Robertson et al. (2015) evaluated 

many different single imputation methods in regards to accuracy and downstream effects on 

classification problems. They found that no one method was superior and in certain 

situations not using any imputations improved performance. Consequently, they 

recommended only using imputation when absolutely necessary. We largely share their 

concerns, but believe that the dangers of single imputation methods go further still.

Imputing from an inappropriate model may bias point estimates, but a larger problem is poor 

estimation of experimental error. As explained by Little and Rubin (1987, ch. 4.4) standard 

errors are systematically underestimated when nothing is done to account for imputation 

uncertainty. Karpievitch, Dabney and Smith (2012) sought to resolve the underestimated 

variance through a post-estimation adjustment of p-values. Whether or not this effort 

succeeds, it only aims to correct p-values, and does not address concerns regarding point and 
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interval estimation. Furthermore, though not accounting for imputation uncertainty may 

underestimate error on average, for any given protein, which will often have only a small 

number observations, the results are unpredictable. The error may be too small or, as we will 

show, it may be far too large as a result of imputing values far away from where the true 

values would have been.

Problems with single imputations are amplified in the field of proteomics due to the nature 

of a relative quantification experiment. Since the parameters of interest are contrasts, 

imputations might hide the fact that certain contrasts are inestimable. Furthermore, even if 

the contrast is estimable, it might only be estimable through the recovery of interblock 

information (Scheffé, 1999, pp. 170-178). In the absence of missing data, most estimation 

techniques will rely solely on intrablock contrasts. Consequently, an imputation may result 

in the failure to recover interblock information precisely when it is most needed. For these 

reasons we will attempt to model missing data without using any imputations.

One missing data solution that does not use single imputations is the mixture model 

proposed by Karpievitch et al. (2009), which proposes a maximum likelihood based 

approach. They explicitly model a combination of censored values below a peptide-specific 

detection limit and a missing at random mechanism above this detection limit. This does not 

exactly meet our requirement for allowing non-ignorable missingness throughout the whole 

range of values, but it is a very interesting idea and might serve as a useful approximation. 

Unfortunately, their algorithm relies on the existence of fixed effects estimates as initial 

conditions. This works well for the authors because they employ a filtering algorithm that 

removes proteins with either low information content or that contain any inestimable 

contrasts. While this almost certainly leads to a more reliable final set of inferences, the 

amount of discarded data could be substantial, potentially resulting in lost discoveries that 

would have been detected by simpler methods.

To escape the dangers of single imputations while attempting to utilize the entirety of a 

collected dataset, we model the probability of missingness in the form of a selection model 

(Little and Rubin, 1987, ch. 15). In a selection model, the likelihood is parametrized in terms 

of the probability of a missing value conditional on the outcome. We refer to this as the 

selection model for proteomics (SMP).

Let I() be an indicator function, and let Ri = I(yi is observed), where yi is the ith response, so 

that Ri = 1 when the ith outcome is observed and Ri = 0 when the value is missing. We 

assume (Ri|yi) ∼ Bernoulli(Φ(a+byi)) where a and b are real valued parameters and Φ() is 

the cumulative distribution function of a N(0,1) random variable. We use R to denote the 

vector of all Ri values for i = 1, …, n.

This missing data mechanism, combined with the mean model from the previous section 

defines the data generating model. An advantage of this missing data mechanism is that full 

conditionals, for use in a Gibbs Sampler, are straightforward to derive. Two non-standard 

relationships are required: the distribution of a missing value, y, given everything else 

f(y|θ,R,a,b) , and the distribution of θi given everything else, f(θi|Y,θ[−i],R) .
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Derivations (shown in the Supplementary Text (O'Brien et al., 2018a)) reveal that if the mth 

data point, ym, is missing then the full conditional has an Extended Skew Normal 

distribution (Azzalini and Capitanio, 2014).

f
(ym θ, R, a, b)

(x) =
ϕ

x − μx
σ Φ( − a − bx)

σΦ(ω)

where

μx = (Xθ)[m], ω =
−a − bμx

1 + (σb)2
.

We also find that

(θi |y, θ[ − i], R) N
βiσ

2 + τi
2∑ j

J (yi − (Xθ) ∗[ j] )

σ2 + τi
2I

,
σ2τi

2

σ2 + τi
2J

,

where (Xθ)* is the product of the matrix X without the ith column, with the vector θ without 

the ith component. The indices j,…, J represent the row indices for which X[.,i] = 1. In other 

words, j,…, J represent the data points that depend on θi.

It should be noted that this model is similar to one proposed for iTRAQ data by Luo et al. 

(2009), where the probability of a missing value is modeled with a logistic regression. 

However, iTRAQ and other types of isobaric tag data, are fundamentally different from LFQ 

data. With isobaric labeling, ions from all of the conditions contribute to the MS1 signal. 

Consequently, the missing data mechanism should not be a function of a single intensity, 

rather it would be a function of the ion count from all conditions combined. This is a very 

difficult problem since changes to any one of the conditions could have resulted in a smaller 

sum. Further complicating the situation, the sum of observed intensities in an isobaric tag 

experiment will not actually add up to the corresponding observed MS1 signal. This is in 

part because the observed signals are constrained, resulting in a type of compositional data 

(O'Brien et al., 2018b). Consequently, the reasoning that motivated the SMP model is not 

valid when considering data from an isobaric tag proteomics experiment.

4. Results

To test model performance we analyze simulated data, real data with simulated missing 

values, and a new ground truth dataset with known relative abundances. The first two 

analyses are designed to elucidate the important relationship between missing values and 

relative abundance estimates in the simplest possible setting. The ground truth experiment is 
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used to highlight more complex missing data patterns and to evaluate model performance in 

terms of accuracy and interval coverage without resorting to any simulations.

We first explore the relationship between missing data and contrasts taken within peptide 

blocks. We will show that missing data can result in a substantial divergence between 

contrast estimates from models that would otherwise yield equivalent results. As explained 

in Section 2, the parameters of interest should be the contrasts between conditions. The 

danger we wish to emphasize is that researchers might plot or report estimates of non-

relative parameters without realizing that these results are not equivalent to what would be 

obtained if contrasts were estimated directly. Scientifically it should be clear that ionization 

efficiency prevents the estimation of absolute abundance. Yet, in a statistical model a protein 

term exists and it is difficult to see why some sort of quasi-absolute abundance should not be 

estimated directly.

This notion of quasi-absolute abundance is similar to the a number of published methods 

including a linear model based protein quantification proposed by Clough et al. (2012), 

iBAQ which is computed as the average protein intensity adjusted for the theoretical number 

of peptides that could be observed (Fabre et al., 2014), and QRollup which estimates 

proteins using the average of the upper 66% of peptides within a protein (Polpitiya et al., 

2008). Clough et al. (2012) are careful to explain that their protein quantification estimates 

differ from absolute abundance estimates, because they should not be used to make any 

comparisons between different proteins. They also observe that their protein quantification 

will differ from relative quantification when missing data is present, and suggest that the 

relative estimates will be more accurate. It is this relationship between relative abundance 

estimates and missing data that we wish to explore by analyzing the simplest possible LFQ 

proteomics experiment: the comparison of proteomes between just two conditions where the 

contrast is estimable given the observed data alone.

4.1. Two-sample model

Data was simulated from the SMP model where the design matrix contains factors for 

protein within sample and peptide within protein. Details of the simulation, including the 

full specification of the SMP model, are provided in the Supplementary Text (O'Brien et al., 

2018a). We examine accuracy in terms of root mean squared error (RMSE) of the posterior 

means from the SMP model along with estimates from five other methods for relative 

protein estimation: a two-way ANOVA (twoway), a one-way ANOVA (oneway), a mixed 

model (MM), the two-way ANOVA after imputing column minimums (cMin), and the two-

way ANOVA after imputing column means (cMean). Details of model implementation are 

provided in the Supplementary Text(O'Brien et al., 2018a). Notice that in the absence of 

missing data contrast estimates from the mixed model and the one-way and two-way 

ANOVA's would all be equivalent.

When simulating missing values, not all protein contrasts will be estimable. For the rest of 

this paper we will refer to proteins as either estimable or inestimable based on whether or 

not the contrasts would be estimable in the complete case two-way ANOVA model. This 

terminology will be used even in conjunction with Bayesian models for which estimability is 

not relevant. In a two-sample fixed effects model that includes peptide blocks, for a protein 
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contrast to be estimable, at least one peptide must be observed in both samples. In larger 

datasets, the distinction becomes more complicated. An algorithm for determining which 

model parameters are estimable is detailed in the Supplementary Text(O'Brien et al., 2018a). 

For the simulation we examine estimates from only estimable contrasts so that comparisons 

are being made on equivalent sets of simulated proteins.

The results in Figure 1 show that the SMP model does appear to provide an increase in 

accuracy, the column based imputation methods appear to be purely detrimental and there is 

a clear divergence in performance between the one- and two-way ANOVAs. The contrast in 

a one-way ANOVA is essentially just the average intensity in one condition minus the 

average from the other. While in the two-way ANOVA, when a peptide is observed in one 

sample but not in the other, the observed peptide contributes nothing to the contrast estimate. 

Consequently, the divergence between the one- and two-way ANOVA's demonstrates why it 

is ill advised to estimate non-relative protein effects. When dealing with non-ignorable 

missing data, the contrast between protein averages is not the same as the direct estimate of 

a protein contrast.

Two obvious weaknesses to this study are that the simulation is unfairly biased towards the 

SMP model, and that there are more intelligent ways to perform an imputation. The former 

concern will be addressed by repeating the simulations with two distinct missing data 

mechanisms, analyzing real data with simulated missing values, and finally testing 

performance on a dilution experiment with known true ratios. The latter concern will be 

addressed only with the dilution experiment as better imputation methods often rely on an 

abundance of samples in order to identify patterns in the data. Two samples provide very 

little information to rely upon for imputation, hence the use of simple column summary 

statistics.

Simulation results from data generated with different missing data mechanisms (one using a 

quadratic logit probability model and another using a combination of random detection 

limits and a missing completely at random mechanism) can be found in the Supplementary 

Text(O'Brien et al., 2018a). Interestingly, these analyses provide very similar results in terms 

of accuracy. In all cases, SMP provides a substantial improvement, there is a noticeable 

divergence between the ANOVA's and the imputations always perform poorly.

To further validate these results we analyze data obtained from two breast cancer tumor 

tissues (Basal and Luminal A). The data, described in the Supplementary Text (O'Brien et 

al., 2018a), can be found in the Supplementary Tables. The problem with using real data to 

evaluate methodologies is that we never know the true values. However, we can still use the 

data to to analyze the effects of non-ignorable missingness on contrast estimation. To this 

end, we reduced the cancer data to only peptides that were observed in both conditions. We 

then simulated missing values with a combination of MAR and random limits of detection. 

By increasing the mean of the random detection limits and the percentage of random 

missingness, details in the Supplementary Text(O'Brien et al., 2018a), we generated 7 data 

sets with approximately 1, 5, 10, 20, 30, 40 and 50 percent missing values. Each dataset was 

analyzed with the six methods and root mean squared error was computed by using 
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estimates from the two-way ANOVA computed on the complete data as the truth. 

Divergence from these baseline results are shown in Figure 2.

These results provide further support for the three lessons from the simulation studies. Once 

again the SMP provided a substantial improvement to accuracy and both the mixed model 

and the two-way ANOVA steadily outperformed the one-way ANOVA and the two 

imputation methods.

While these studies offer simplicity and a clear demonstration of the divergence between 

methods, a larger dataset is necessary to show the full complexity of missing data patterns 

and the effects of different methodologies on both point and interval estimation.

4.2. Accuracy and Coverage

The assessment of accuracy in a mass spectrometry experiment is a difficult task because we 

rarely know what proteins will be observed, let alone their true values. Nevertheless, many 

datasets that include known relative abundances of proteins can be found on websites such 

as http://compms.org/resources/reference-data. We expect the effects of missing data to be 

the strongest for label-free experiments that utilize DDA. Unfortunately, we were able to 

find only one benchmark dataset generated with this technology and it contains only six 

proteins with known abundance ratios (Mueller et al., 2007). For this reason we conducted 

our own dilution experiment. Using 3 different human cell lines analyzed at 4 different 

dilution levels (1:4:16:100), with either one or two technical replicates, we generated LFQ 

DDA data with known relative abundances. Details of the dilution experiment and models 

used for analysis can be found in the supplement(O'Brien et al., 2018a).

Having established a ground truth dataset, we compare seven estimation strategies in terms 

of accuracy and coverage. The SMP model is compared against the two-way ANOVA, the 

mixed model and four different imputation strategies. Now that we have more data we can 

utilize more advanced imputation techniques. In addition to the column minimum 

imputation from the previous section, we also add a KNN imputation, an SVD imputation, 

and the imputation of the minimum observed intensity for each peptide sequence (pMin). Of 

critical importance, we no longer confine our analysis to parameters that are estimable. The 

distinction between estimable and non-estimable parameters proves to be very important as 

some methods do not adequately capture the error associated with estimation in these 

particularly difficult situations. Consequently, reference selection also becomes highly 

important as the reference choice will determine what comparisons are estimable and in a 

complete case analysis it will determine which data points end up being used in estimation.

The results presented in Table 2 show convincingly that the effects of missing data can be 

profound. This analysis provides further support for the lessons from the simulation analyses 

and the cancer data. SMP once again provides the best accuracy and the imputation methods 

continue to hurt performance relative to complete case analyses. Regarding the inestimable 

contrasts, SMP still provides the most accurate estimates and the cMin and pMin 

imputations outperform both SVD and KNN.
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Just as important as our ability to accurately estimate relative abundance is the ability to 

estimate the associated error. To this end we examine the frequency in which 95% 

confidence and credible intervals contain the true values. The results are shown in Table 3. 

Interestingly, the best coverage comes from the cMin imputation for both estimable and 

inestimable parameters, while the second best performance comes from the SMP model. The 

other imputation methods yield comparable coverage numbers to the complete case analyses 

for estimable contrasts but completely fail to compensate for the imputation uncertainty 

when the contrasts are inestimable. This finding strongly highlights the risk of allowing 

imputations to hide an inestimable contrast, as many of these cases could end up creating 

false positive discoveries.

To better visualize the performance of different algorithms, Figure 3 highlights two 

interesting proteins from this study. The contrast between condition 1 and 3 for protein 

A0A1W2PPX5, from the HEK cell line can be estimated, in a complete case analysis, only 

through the recovery of interblock information (shown in part A). The path to estimability is 

shown by the connecting lines in part C). In part B, we show the contrast between conditions 

1 and 2 for protein A0A087X054, also from the HEK cell line, is inestimable in the two way 

ANOVA (however none of the conditions is completely missing as shown in part D).

Figure 3 reveals why the cMin method had the best coverage: the intervals are substantially 

larger. This shows that in general, it is not always true that imputations will artificially 

decrease error estimation. The cMin method always imputes very small values which works 

decently well in a dataset dominated by large changes, but it also tends to drastically 

increase the error estimate.

We also see in Figure 3 (A) that the SVD, KNN and pMin estimates are a bit shifted to the 

left of the SMP, MM and 2-way estimates. The former methods all rely solely on intrablock 

estimates while the latter are informed by interblock information. In Figure 3 (B) we can see 

that the SVD, KNN and pMin imputations did not impute values that brought the estimate 

near to the true values. The SMP estimate came close and the interval is far removed from 

zero suggesting that SMP would have been useful here to detect an interesting change even 

though the parameter was not estimable. cMin also would have achieved this goal, but it 

does so with a rather high increase to the error estimation. Notice further that only the error 

from the SMP model changes dramatically from the estimable to the inestimable scenario 

(as it should).

Many software packages have various safeguards to remove proteins with severe missing 

data problems. However, while these criteria will mitigate the problems, they are not 

sufficient to prevent imputations from hiding inestimable contrasts. Furthermore, these 

results shows that removing inestimable contrasts from the dataset may not be desirable. Our 

predictions for inestimable contrasts have more error than the estimable ones, but there 

seems to be little reason to discard this information so long as the increased error is properly 

taken in account.
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5. Discussion

The combination of non-ignorable missingness and relative abundance estimation 

complicates the analysis of label-free discovery proteomics experiments. Complete case 

analyses may yield biased results and often result in discarding, or simply not making use of, 

large amounts of data. Single imputation solutions create a whole new set of problems by 

failing to account for imputation uncertainty, masking inestimable contrasts and preventing 

the recovery of interblock information.

Label-free data sets will commonly be missing upwards of 50% of the peptide level data. 

Some efforts have been made to alleviate the missing data problem by matching peptides 

across runs so that intensities can be obtained in the absence of an identification (Cox et al., 

2014). However, this approach does not solve the missing data problem. A recent paper that 

used a peptide matching algorithm, provides a dataset where 56.5% of the peptide level data 

is still missing even after the matching (Sacco et al., 2016). Nonetheless, the concept of 

matching between runs does introduce a new source of information not utilized in our 

analysis. Attempting to incorporate information from the matching into the missing data 

modeling would be a very promising direction for future research.

Another common approach to dealing with missing values is to avoid making inference on 

proteins that fail to meet some threshold percentage of observed values. This approach is 

prudent and has served the field well. However, a necessary consequence of this decision is 

that large amounts of valuable data will essentially be discarded. We contend that all of the 

data can be used, so long as efforts are made to properly adjust for the uncertainty caused by 

missing values. Even keeping track of which parameters are estimable and which are not, 

would be a great improvement.

Based on the experimental process, we know that the probability a peptide will be missing 

should be a monotone increasing function of the underlying intensity. This means that the 

missing values contain valuable information about relative abundance. If dozens of peptide 

replicates appear with high intensities in one condition, but the values are almost all missing 

in another, this is highly suggestive of a large relative abundance. In a complete case analysis 

this change may not be estimable and neither the missing data pattern or peptides observed 

in only one condition would ever be put to use. By estimating a missing data mechanism, 

our selection model improves contrast prediction by incorporating this otherwise lost 

information.

The selection model approach relies heavily on model assumptions (the form of the missing 

data mechanism, distributional assumptions, shared variance components, etc.). However, 

with non-ignorable missing data, this is always the case. Even using a complete case 

analysis assumes (falsely) that the missing values are missing at random. The analysis 

presented on a ground truth data set is especially useful because it suggests that our selection 

model improves performance despite any deficiencies in the model assumptions. Relative to 

complete case analyses, we were able to increase overall accuracy, expand the depth of 

discovery, and greatly improve on interval coverage.
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We hope that our model will be a useful framework for future research. Better models may 

be developed, but they should all take into account the main lessons of this paper: the 

parameters of interest are relative abundance estimates which take the form of contrasts; 

single imputations greatly simplify data analysis, but they do so at a severe cost to 

performance; relative to a complete case analysis, modeling a missing data mechanism can 

provide gains to accuracy, depth of discovery and interval coverage.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Root mean squared error (RMSE) of log base 2 fold-changes from 500 simulated data sets 

where missing values were simulated from a probit missing data mechanism. Only estimable 

contrasts are included in this plot.
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Fig 2. 
Root mean squared error (RMSE) of log base 2 fold-changes with varying amounts of 

simulated data. The cancer data was reduced to remove all missing values. Missing data was 

then simulated and the estimates on the complete data were treated as the true values for 

computing RMSE. Only contrasts estimable at all levels of missingness are included in the 

analysis.

O'Brien et al. Page 19

Ann Appl Stat. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 3. 
Two examples of how different techniques handle missing data. (A, B) Point estimates and 

95% intervals for seven different methods for relative abundance estimates between Run1 

and Run 3 in C) and Run1 and Run2 in D). The true values are shown with vertical dashed 

lines. (C, D) Observed peptides are shown with solid dots and the connecting line shows a 

path to estimability.
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Table 1

This table shows the relationship between relative protein abundance and the intensities of a peptide belonging 

to that protein. p is the probability that the peptide ionizes and enters into the mass spectrometer. pW and pZ 
represent the expected intensities from samples A and B, respectively.

Protein Abundance Peptide Abundance Ion Abundance

Sample A X W pW

Sample B Y Z pZ

Ratio
X
Y = μ W

Z = X
Y = μ pW

pZ = μ
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