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Sex and death: from cell fate specification to 
dynamic control of X-chromosome structure  
and gene expression

ABSTRACT  Determining sex is a binary developmental decision that most metazoans must 
make. Like many organisms, Caenorhabditis elegans specifies sex (XO male or XX hermaph-
rodite) by tallying X-chromosome number. We dissected this precise counting mechanism to 
determine how tiny differences in concentrations of signals are translated into dramatically 
different developmental fates. Determining sex by counting chromosomes solved one 
problem but created another—an imbalance in X gene products. We found that nematodes 
compensate for the difference in X-chromosome dose between sexes by reducing transcrip-
tion from both hermaphrodite X chromosomes. In a surprising feat of evolution, X-chromosome 
regulation is functionally related to a structural problem of all mitotic and meiotic chromo-
somes: achieving ordered compaction of chromosomes before segregation. We showed 
the dosage compensation complex is a condensin complex that imposes a specific three-
dimensional architecture onto hermaphrodite X chromosomes. It also triggers enrichment of 
histone modification H4K20me1. We discovered the machinery and mechanism underlying 
H4K20me1 enrichment and demonstrated its pivotal role in regulating higher-order X-chro-
mosome structure and gene expression.

INTRODUCTION
I feel honored to receive the unexpected tribute of an E. B. Wilson 
Medal. I am extremely lucky to be a scientist during an explosive 
period of discovery in cell biology and to have carried out research 
with wonderfully talented and dedicated students, postdoctoral fel-
lows, staff scientists, and collaborators at both the Massachusetts 
Institute of Technology and the University of California, Berkeley.

The work being honored began during my postdoctoral years 
when I joined the small cadre of scientists led by Sydney Brenner 
who saw the potential of the nematode Caenorhabditis elegans for 
understanding eukaryotic developmental mechanisms. I was drawn 
to the question of how the nematode specifies its sex. Determining 

sex is a fundamental, binary developmental decision that most 
metazoans must make (Cline and Meyer, 1996).

I was stimulated to tackle this problem by my graduate work with 
Mark Ptashne, which demonstrated the power of a simple virus and 
a binary developmental decision to yield important lessons in gene 
regulation and development. My work was instrumental in elucidat-
ing the binary genetic switch by which bacteriophage lambda trig-
gers one of two developmental fates: a quiescent lysogenic state or 
a replicating state (Meyer et al., 1975, 1980; Meyer and Ptashne, 
1980; Johnson et al., 1978; Maurer et al., 1980). The work revealed 
fundamentally new principles in gene regulation, including cooper-
ativity in repressor binding to turn off gene expression (Johnson 
et al., 1979).

Before I joined the nematode field, Victor Nigon and Robert 
Herman had shown that C. elegans determines sex with high fidelity 
by tallying X-chromosome number relative to the ploidy, the sets of 
autosomes (X:A signal; Figure 1A; Nigon, 1951; Madl and Herman, 
1979). The process is finely tuned and executed with remarkable 
accuracy, allowing embryos with ratios of 1X:2A (0.5) and 2X:3A 
(0.67) to develop into fertile males and embryos with ratios of 3X:4A 
(0.75) and 2X:2A (1.0) to develop into self-fertile hermaphrodites 
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FIGURE 1:  Chromosome-based sex determination. (A) The ratio of X 
chromosomes to sets of autosomes (X:A signal) determines nematode 
sex. (B) xol-1 is the direct target of the X:A signal and the master 
sex-determination switch gene. It activates male fate when turned on 
and permits hermaphrodite fate when turned off. (C) Overview of the 
genetic hierarchy controlling both sex determination and dosage 
compensation in C. elegans. In diploid XX hermaphrodites, the 
dosage compensation complex (DCC) binds to both X chromosomes 
to reduce transcription by half, thereby equalizing it with that of the 
single male X. The hermaphrodite-specific gene sdc-2 triggers 

(Figure 1A). I wanted to determine the molecular mechanisms by 
which C. elegans counts its X chromosomes to determine how small 
changes in the concentrations of molecular signals can be translated 
into dramatically different developmental fates. Jonathan Hodgkin 
had found that mutations in individual genes caused diploid XX ani-
mals to develop into males or XO animals into hermaphrodites, 
showing the problem might be genetically tractable (Hodgkin and 
Brenner, 1977; Hodgkin, 1980).

I was also mindful of a possible complication. Many organisms 
that use sex chromosomes to determine sexual fate evolved the es-
sential, chromosome-wide regulatory process called dosage com-
pensation to balance X-chromosome gene expression between the 
sexes (Muller, 1932; Lyon, 1962). The failure to do so is lethal (Cline, 
1978; Cline and Meyer, 1996). We had no knowledge of whether the 
worm had a dosage compensation mechanism and whether its reg-
ulation might be genetically linked to the sex determination deci-
sion. If so, the phenotype caused by disrupting the X:A signal might 
be sex-specific lethality due to improper X gene expression, thus 
masking any reversal of sexual fate. While I considered how to 
approach this problem, Thomas Cline showed that a single devel-
opmental switch gene coordinately controls both sex determination 
and dosage compensation in Drosophila melanogaster, which also 
uses an X:A signal to determine sex (Bridges, 1921; Cline, 1978, 
1979). Null mutations in the switch gene caused the masculinization 
and death of 2X:2A animals, but 1X:2A mutants were wild type. The 
path to take became clear.

Early work as a postdoc and professor demonstrated that nema-
todes compensate for the difference in X-chromosome dosage 
between sexes by repressing X transcript levels in hermaphrodites and 
revealed, via extensive genetic screens, the identity of numerous genes 
that implement dosage compensation (Meyer and Casson, 1986; Miller 
et al., 1988; Plenefisch et al., 1989). We found that dosage compensa-
tion and sex determination were linked by genes that coordinately 
controlled both processes, a finding that allowed us to discover the 
master sex-determination switch gene xol-1 (XO lethal) and the mole-
cular basis of the X:A signal, which controls xol-1 directly (Figure 1B; 
Villeneuve and Meyer, 1987; Miller et al., 1988; Nusbaum and Meyer, 
1989; DeLong et al., 1993; Klein and Meyer, 1993; Rhind et al., 1995; 
Davis and Meyer, 1997; Carmi et al., 1998; Dawes et al., 1999).

assembly of the DCC onto X and activates the hermaphrodite sexual 
fate by repressing the male-determining gene her-1, which is the first 
gene in the sex-determination branch of the genetic hierarchy. In 
diploid XO males, xol-1 represses sdc-2, thereby preventing the DCC 
from binding to the male X and preventing sdc-2 from repressing 
her-1. (D) Model for X:A signal assessment. XSEs and ASEs bind 
directly to numerous sites in xol-1 regulatory regions to antagonize 
each other and thereby control xol-1 transcription. Molecular rivalry at 
the xol-1 promoter between XSE transcriptional repressors (nuclear 
receptor SEX-1, magenta binding sites; homeodomain protein 
CEH-39, orange binding sites) and ASE transcriptional activators 
(T-box transcription factor SEA-1, blue binding sites; zinc-finger 
protein SEA-2, numerous brown binding sites) causes high xol-1 
transcript levels in 1X:2A animals with one dose of XSEs and low 
levels in 2X:2A embryos, with two doses of XSEs. The RNA binding 
protein FOX-1, an XSE, then enhances the fidelity of X counting by 
binding to an alternatively spliced xol-1 intron (yellow), thereby 
blocking proper splicing and causing mRNA splice variants with 
in-frame stop codons. High XOL-1 protein levels induce male fate and 
low XOL-1 levels permit hermaphrodite fate. Black rectangles, xol-1 
exons; dark-gray rectangles, xol-1 introns; light-gray rectangles, 5′ 
and 3′xol-1 regulatory regions.
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COUNTING CHROMOSOMES TO DETERMINE SEX
We discovered that a set of X-linked genes called X-signal ele-
ments (XSEs) communicates X-chromosome dose by repressing 
xol-1 in a cumulative, dose-dependent manner (Figure 1C; Akerib 
and Meyer, 1994; Nicoll et al., 1997; Carmi et al., 1998; Gladden 
et al., 2007; Gladden and Meyer, 2007; Farboud et al., 2013). In 
addition, a set of genes encoded on autosomes called autosomal 
signal elements (ASEs) communicates the ploidy by stimulating 
xol-1 activity in a cumulative, dose-dependent manner to counter 
XSEs (Figure 1C; Powell et al., 2005; Farboud et al., 2013). XOL-1, 
a GHMP kinase, is activated in 1X:2A embryos to set the male fate 
but repressed in 2X:2A embryos to promote the hermaphrodite 
fate, including the activation of dosage compensation (Rhind 
et al., 1995; Luz et al., 2003). Both XSEs (nuclear receptors and 
homeodomain proteins) and ASEs (T-box and zinc-finger proteins) 
bind directly to multiple, distinct sites in xol-1 regulatory DNA in 
vitro to counteract each other’s activities and regulate xol-1 tran-
scription (Figure 1D; Farboud et  al., 2013). Disrupting ASE and 
XSE binding sites in vivo recapitulated the misregulation of xol-1 
transcription caused by disrupting the cognate signal element 
genes. The X:A signal is thus transmitted in part through multiple 
antagonistic molecular interactions carried out on a single pro-
moter (Farboud et al., 2013). Fidelity of X:A counting is then en-
hanced by a second tier of repression, via an XSE that binds a xol-1 
intron to prevent proper RNA splicing (Figure 1D; Hodgkin et al., 
1994; Nicoll et al., 1997; Skipper et al., 1999). The concept of a sex 
signal using competing XSEs and ASEs arose as a theory for D. 
melanogaster one century ago (Bridges, 1921). Recent work 
showed the fruit fly signal does not fit this simple paradigm, but 
our work showed the worm signal does (Erickson and Quintero, 
2007; Farboud et al., 2013).

X-CHROMOSOME DOSAGE COMPENSATION: 
REPRESSING X CHROMOSOMES VIA MOLECULAR 
MACHINES
Strategies for dosage compensation differ from worms to mammals, 
but invariably a regulatory complex is targeted to X chromosomes 
of one sex to modulate transcription along the entire chromosome 
(Meyer, 2010; Kuroda et  al., 2016; da Rocha and Heard, 2017; 
Samata and Akhtar, 2018). This heritable regulation of X-chromo-
some expression during development is exemplary for dissecting 
the coordinate regulation of gene expression over large chromosome 

FIGURE 2:  Overview of dosage compensation in C. elegans. (A) The 
DCC is compared with condensin I of other eukaryotes. The DCC 
condensin subunits (MIX-1, DPY-27, DPY-26, DPY-28, and CAPG-1) are 
color matched to their condensin I homologues. All DCC condensin 
subunits except DPY-27 also act in other distinct condensins that 
function in C. elegans mitosis and meiosis. The DPY-27 paralogue 
SMC-4 (Hagstrom et al., 2002) replaces DPY-27 in mitotic and meiotic 
condensins. The DCC likely arose by duplicating and modifying the 
gene encoding SMC-4 to create DPY-27 for a specific role in gene 
expression. The DCC also includes the XX-specific protein SDC-2 that 
triggers DCC assembly onto X. Two DCC subunits aid SDC-2 in 
recruiting the complex to X: SDC-3 (a zinc-finger protein) and DPY-30 
(a subunit of the MLL/COMPASS H3K4me3 methyltransferase 
complex). Two subunits, SDC-1 (a zinc-finger protein) and DPY-21 
(Jumonji C H4K20me2 demethylase), are required for DCC activity 
but not DCC assembly. (B) Cartoon model of TAD formation on a 
segment of X. Top, the DCC remodels the topology of X into a 

hermaphrodite-specific conformation by forming topologically 
associating domains (TADs). DCC-dependent looping interactions are 
found between high-affinity rex sites (filled red rectangles) located at 
TAD boundaries. Middle, deletion of the high-affinity DCC binding 
site rex-47 (open red rectangle) located at a DCC-dependent TAD 
boundary eliminates boundary formation. Bottom, severe disruption 
of DCC binding by an sdc-2 mutation eliminates formation of all 
DCC-dependent TADs on X. (C) The DPY-21 H4K20me2 histone 
demethylase regulates three-dimensional chromosome structure and 
gene expression by modulating enrichment of H4K20me1. The 1.8 Å 
crystal structure and biochemical activity of DPY-21 revealed a novel, 
highly conserved H4K20me2 JmjC demethylase subfamily that 
converts H4K20me2 to H4K20me1 in vitro in an Fe2±-dependent and 
α-ketoglutarate–dependent manner. In somatic cells, DPY-21 
binds to X chromosomes via the DCC and enriches H4K20me1 to 
repress gene expression. The H4K20me1 enrichment controls the 
higher-order structure of X chromosomes by facilitating compaction 
and TAD formation. In germ cells, DPY-21 enriches HK20me1 on 
autosomes in a DCC-independent manner to promote chromosome 
compaction.
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territories and the role of chromosome structure and chromatin 
modification in regulating gene expression.

We discovered the C. elegans dosage compensation complex 
(DCC) and showed its homology to condensin, a complex that me-
diates the compaction, resolution, and segregation of mitotic and 
meiotic chromosomes from yeast to humans (Figure 2A; Chuang 
et al., 1994, 1996; Hsu et al., 1995; Lieb et al., 1996, 1998; Davis and 
Meyer, 1997; Dawes et al., 1999; Tsai et al., 2008; Csankovszki et al., 
2009; Mets and Meyer, 2009; Pferdehirt et al., 2011; Hirano, 2016). 
We found the DCC binds to both hermaphrodite X chromosomes to 
reduce transcription by half, thus equalizing X expression between 
the sexes (Figure 1C; Chuang et al., 1996; Jans et al., 2009; Kruesi 
et al., 2013). Failure to do so causes elevated X expression and her-
maphrodite-specific lethality. Ectopic binding of the DCC to the 
single male X chromosome in xol-1 mutants causes male-specific 
lethality.

Most DCC condensin subunits also control the structure and 
function of mitotic and meiotic chromosomes by participating in 
two other distinct condensin complexes, whose roles in recombina-
tion and chromosome segregation were dissected (Hagstrom et al., 
2002; Chan et al., 2004; Tsai et al., 2008; Csankovszki et al., 2009; 
Mets and Meyer, 2009; Meyer, 2010). The promiscuous DCC con-
densin subunits are initially recruited to hermaphrodite X chromo-
somes by a large (350 kDa) hermaphrodite-specific DCC subunit 
called SDC-2 (sex determination and dosage compensation) that 
triggers binding to cis-acting elements on X called rex (recruitment 
elements on X) sites (Dawes et al., 1999; Csankovszki et al., 2004; 
McDonel et al., 2006). These rex sites recruit the DCC in an autono-
mous, sequence-dependent manner using DNA motifs enriched on 
X (Jans et al., 2009; Pferdehirt et al., 2011).

CONDENSIN-DRIVEN REMODELING OF 
X-CHROMOSOME TOPOLOGY DURING DOSAGE 
COMPENSATION
Involvement of condensin subunits in dosage compensation sug-
gested the DCC might alter the topology of X to regulate gene 
expression. Furthermore, other observations promoted the view 
that the DCC acts globally through a chromosome-wide mechanism 
to repress transcription rather than locally on a gene-by-gene basis. 
For example, a nearby DCC binding site is neither necessary nor 
sufficient to compensate an endogenous X-linked gene, and all 
transgenes integrated randomly on X, whether near or far from a 
DCC binding site, become dosage compensated (Jans et al., 2009; 
Wheeler et al., 2016). We found the DCC remodels hermaphrodite 
X chromosomes into a unique, sex-specific spatial conformation, 
distinct from autosomes, using its highest-affinity rex sites (Figure 2B; 
Crane et  al. 2015). Dosage-compensated X chromosomes have 
self-interacting domains (∼1 Mb) resembling mammalian topoplogi-
cally associating domans (TADs; Crane et  al., 2015; Galupa and 
Heard, 2017). TADs on X have stronger boundaries and more regu-
lar spacing than those on autosomes. Most TAD boundaries on X 
coincide with the highest-affinity rex sites. Those boundaries are 
lost in DCC mutants, causing X structure to resemble that of auto-
somes (Figure 2B; Crane et al., 2015). Deleting a single endoge-
nous rex site at a DCC-dependent boundary disrupted the bound-
ary, indicating the DCC forms TADs using its strongest binding sites 
(Figure 2B; Crane et al., 2015). Our study was the first to identify the 
machinery and DNA sites that create chromosome-wide TAD struc-
ture and to use specific mutations to disrupt it. The structure of 
dosage-compensated X’s offers fertile ground to decipher the 
mechanistic relationship between higher-order chromosome struc-
ture and gene expression.

DYNAMIC CONTROL OF X-CHROMOSOME 
CONFORMATION AND REPRESSION BY A HISTONE 
H4K20 DEMETHYLASE
The role of chromatin modification in establishing higher-order 
chromosome structure during gene regulation has been elusive. 
Dosage-compensated X chromosomes of C. elegans are enriched 
in H4K20me1 (Liu et al., 2011; Vielle et al., 2012; Wells et al., 2012; 
Kramer et  al., 2015). We dissected the mechanism underlying 
H4K20me1 enrichment on X during dosage compensation and dis-
covered a key role for H4K20me1 in regulating X-chromosome to-
pology and chromosome-wide gene expression (Bian et al., 2017; 
Brejc et al., 2017). Structural and functional analysis of DCC subunit 
DPY-21 revealed a novel Jumonji C demethylase subfamily that 
converts H4K20me2 to H4K20me1 in worms and mammals via an 
Fe2+-dependent and  α-ketoglutarate–dependent mechanism 
(Figure 2C; Brejc et al., 2017). H4K20me1 is also enriched on the 
inactive X chromosome of female mice, relating our studies to 
mammalian development (Kohlmaier et al., 2004). Inactivation of 
demethylase activity in C. elegans eliminated H4K20me1 enrich-
ment on X in nematode somatic cells, increased X-linked gene ex-
pression, reduced X compaction, and disrupted X conformation by 
diminishing TAD formation (Figure 2C; Bian et  al., 2017; Brejc 
et al., 2017). DPY-21 demethylase binding to X is both DCC-de-
pendent and cell-cycle–dependent, enriching H4K20me1 on X 
during interphase, but not mitosis. Thus, the DCC recruits an 
“eraser” of a histone modification, enriching H4K20me1 by activat-
ing an H4K20me2 demethylase.

DPY-21 also binds to autosomes (but not X) of germ cells in a 
DCC-independent manner to enrich H4K20me1 and compact chro-
mosomes (Figure 2C; Brejc et al., 2017). Thus, DPY-21 is an adapt-
able chromatin regulator. Its demethylase activity can be harnessed 
during development for distinct biological functions by targeting it 
to diverse genomic locations. In both somatic and germ cells, 
H4K20me1 modulates three-dimensional topology, showing a di-
rect link between chromatin modification and higher-order chromo-
some structure.

THE NEXT STEPS
Deeper mechanistic insights into sex determination and dosage com-
pensation await future experiments with single-cell and single-mole-
cule resolution as well as continued structural analysis of the DCC.
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