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Abstract

Background: The decreasing cost of obtaining high-quality calls of genomic variants and the increasing availability
of clinically relevant data on such variants are important drivers for personalized oncology. To allow rational
genome-based decisions in diagnosis and treatment, clinicians need intuitive access to up-to-date and
comprehensive variant information, encompassing, for instance, prevalence in populations and diseases, functional
impact at the molecular level, associations to druggable targets, or results from clinical trials. In practice, collecting
such comprehensive information on genomic variants is difficult since the underlying data is dispersed over a
multitude of distributed, heterogeneous, sometimes conflicting, and quickly evolving data sources. To work efficiently,
clinicians require powerful Variant Information Systems (VIS) which automatically collect and aggregate available
evidences from such data sources without suppressing existing uncertainty.

Methods: We address the most important cornerstones of modeling a VIS: We take from emerging community
standards regarding the necessary breadth of variant information and procedures for their clinical assessment, long
standing experience in implementing biomedical databases and information systems, our own clinical record of
diagnosis and treatment of cancer patients based on molecular profiles, and extensive literature review to derive a set
of design principles along which we develop a relational data model for variant level data. In addition, we characterize
a number of public variant data sources, and describe a data integration pipeline to integrate their data into a VIS.

Results: We provide a number of contributions that are fundamental to the design and implementation of a
comprehensive, operational VIS. In particular, we (a) present a relational data model to accurately reflect data
extracted from public databases relevant for clinical variant interpretation, (b) introduce a fault tolerant and
performant integration pipeline for public variant data sources, and (c) offer recommendations regarding a number of
intricate challenges encountered when integrating variant data for clincal interpretation.

Conclusion: The analysis of requirements for representation of variant level data in an operational data model,
together with the implementation-ready relational data model presented here, and the instructional description of
methods to acquire comprehensive information to fill it, are an important step towards variant information systems
for genomic medicine.
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Background
Personalized, genome-based therapy has become a
promising tool in modern oncology. Its basis is the anal-
ysis of the mutational profile found in a patient’s tumor,
i.e. its particular set of genomic variants, and our (limited)
knowledge of how these mutations might influence tumor
progression and individual druggability. To allow interpre-
tation of a given mutational profile, oncologists require a
concise, yet comprehensive set of information describing
each detected variant. This includes the variant’s bio-
logical impact on (tumor) cell function, prevalence in
different tumor types, ongoing, past or planned clinical
trials targeting this variant, results from genome-wide
association studies (GWAS) etc. Such information can
only be obtained when consulting multiple, distributed,
and heterogeneous databases, such as ClinVar [1], CIViC
[2], COSMIC [3], DrugBank [4], or KEGG [5]. These
databases have different updating strategies, use different
identifiers and terminologies, and often focus on particu-
lar tumor types or therapy situations. As a consequence,
finding the most relevant data and condensing it into a
comprehensive overview on a given patient’s set of vari-
ants is difficult even for the expert. Today, this process of
data integration is mostly done manually, with the molec-
ular oncologist consulting a spectrum of at least half a
dozen databases and additionally performing extensive lit-
erature search. Such manual, case-based search and data
acquisition is enormously time consuming and prone to
missing relevant data, and has been identified as one of
the most pertinent bottleneck in precision medicine [6].
In recent work, requirements have been described

regarding the necessary breadth and quality of variant-
associated information to make them useful in the
clinic [7–12]. These descriptions range from classifica-
tion schemes and strategies for how the clinical relevance
of a given variant may be quantified, to definitions of
which data elements need to be captured for each variant
to allow such classification. Such standards are of great
importance for setting a common ground for variant level
interpretation in clinical oncology. They do, however, only
specify requirements, leaving aside the technical details of
an actual implementation of such standards.
A Variant Information System (VIS) (see Fig. 1) offers

such an implementation of the clinical needs regarding
information on variants and provides a single point of
access to search and retrieve this information. To this end,
it has to address several conceptual and technical chal-
lenges: A VIS inevitably has to integrate a host of different
primary databases. It must accurately model the biological
reality behind this information, carefully setting variants
into their specific genomic and transcriptional context
and discerning between different isoforms. In addition to
variant-centric data, it should include information regard-
ing functional characteristics of affected genes, like their

role in different cellular pathways or their druggability
by pharmacological substances. A VIS should support
the usage of multiple different ways to name biological
entities (e.g., genes or drugs), or medical concepts (e.g.,
diseases or tumor grading), reflecting the existing seman-
tic heterogeneity between the primary databases it is fed
from. It also must be able to represent conflicting data,
because results from different studies often differ, orig-
inal databases are updated at different frequencies, and
concepts are often not consistently defined across these
databases; for instance, even the definition of basal cell-
cycle related pathways differs considerably between dif-
ferent pathway databases [13]. The necessity to cope with
different reference genomes and different gene models in
the source databases adds further complications. Even-
tually, a VIS must implement robust and flexible update
mechanisms to achieve a high level of currency despite its
quickly and independently evolving base systems [14].
Taking these considerations into account, in this paper,

we discuss two fundamental issues of implementing a
comprehensive VIS: We (a) present a relational data
model to accurately represent data extracted from public
databases relevant for clinical variant interpretation, and
(b) report on the technical design of integration pipelines
to fill such a model with actual data. We build on our
extensive experience in working with genomic and variant
level data, and on lessons learned from applying such data
in clinical cancer genomics.

Methods
The implementation of a VIS is usually based on a
database schema, which is a structured and computer-
usable model of the data it works upon. Careful design
of such a data model for variant level data in cancer is
crucial for accurate representation of the complex bio-
logical, (bio)technological, medical, and pharmacological
interdependencies between the various entities involved.
Furthermore, it is a prerequisite for efficient storage and
retrieval of this data for clinical interpretation.
In this section, we first describe the design principles

underlying the construction of our data model, followed
by an overview of the design process we applied. We then
give account of the methods used for identification and
integration of appropriate data sources to populate the
resulting model in a VIS.

Data model design principles
The design process of the data model was guided by a set
of design principles which we initially compiled based on
our own experience, and refined in the initial steps of the
process using literature review. With each of the design
principles listed here we indicate how it is reflected in
the resulting data model, which will be described in more
detail in the next section.
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Fig. 1 A Variant Information System (VIS) integrates public data sources and makes their joint information available for use both within inhouse
systems for patient knowledge management and directly to domain expert users. (Clipart source: openclipart.org; public domain)

Representation of biological entities Modelling of enti-
ties and their relationships in a VIS has to be consistent
both with the information needs of the clinical oncologist
and with the knowledge actually available for the respec-
tive entities. This includes accurate modeling of their
biological and therapeutic relationships. For instance, the
data model has to reflect the complex interplay of variant
identification, description, naming, and genomic posi-
tioning [15], or the diverse effects drugs can have based
not only on variants themselves but also on other factors
including the tumor type: Conceptually, the central entity
of a data model for representation of variant level data for
cancer therapy has to be a Cancer Variant that represents
the therapeutic inseparability of a genetic variant and a
specific cancer type. Representing entities also includes
the definition of a concise set of core data elements most
relevant for oncological interpretation of variant data;
values for these core elements are mandatory to ensure
interpretability. Besides such core data elements, entities
may be described by additional, optional attributes. For
instance, the amino acid substitution caused by a base-
level variant is indispensable for clinical interpretation,
whereas knowing the chromosome the mutated gene is
located on may be optional. Although such optional infor-
mation is typically not considered during systematic scor-
ing of variants, having it readily available for investigative
inspection is a functionality often requested by practition-
ers. Consequently, our data model can host a variety of

information about variants, cancer types and their biolog-
ical context. At the core, however, it is designed around
a concise set of data elements most relevant for clinical
interpretation.

Alignment with community standards The data model
of a VIS should be consistent with existing community
standards as much as possible. Most relevant to our
work is the Minimum Variant Level Data (MVLD) set
recently suggested by the Somatic CancerWorking Group
of the Clinical Genome Resource [16] (Ritter et al. [7]),
which defines a concise set of data elements necessary
for descriptive and interpretive assessment of variants in
cancer therapy. This information should be considered as
core elements of any VIS data model. Regarding variant
assessment, Li et al. [8] provide guidelines for aggregating
primary evidences into easy-to-use scores as a basis for
clinical decision-making. The authors define a categoriza-
tion of variants into four tiers ranging from variants with
strong clinical significance (Tier I) to benign variants (Tier
IV). These guidelines have been developed for somatic
variant interpretation by the Association of Molecular
Pathologists (AMP) to complement the guidelines of the
American College of Medical Genetics and Genomics
(ACMG) for germline variants. While the actual interpre-
tation of variant data in a given clinical context has to
be left to the clinical oncologist, any VIS model should
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support implementation of guidelines for variant assess-
ment. Furthermore, next to relevant data and guidelines
for variant assessment, important functionality required
from an application in support of precision oncology has
been identified by the community from the user interface
perspective [17], which a VIS has to be able to support.
This includes the need for solutions to challenges posed
by the use of multiple different terminologies, the pres-
ence of conflicting data, and the distribution of knowledge
over a multitude of databases.
Following this principle, the selection of data elements

to include in the core data set of our data model tightly
follows the standard defined by Ritter et al. Furthermore,
it explicitly allows integration of interpretive guidelines,
which we showcase by the example of the Clinical Rele-
vance Score for each genomic variant in a specific cancer
type.

Support for multiple namespaces and terminologies
Many, if not all entities relevant to variant level oncology
can be identified by numerous different internationally
used identification systems and ontologies [18]. Genes,
for instance, can be identified by their Entrez Gene ID
[19], Ensembl ID [20], RefSeq ID [21], or the UniProt ID
[22] assigned to one of the proteins they code. Compre-
hensive tracking of different identifiers for each individual
entity is necessary to allow integration of data from dif-
ferent sources. Special care must be taken to associate
names and entities at the right level of granularity, to dis-
cern (or not), for instance, a given gene, its transcripts, its
mRNAs and the protein isoforms it codes for. Similarly,
different terminologies (or ontologies) exist for defining
medical concepts like diseases, phenotypes, or the func-
tion of genes and drugs. For instance, cancer types are
listed as concepts in SNOMED-CT [23], ICD-10 [24], the
Human Phenotype Ontology [25], and the Disease Ontol-
ogy [26], to name just a few. Even for a single cancer type
within a single terminology, multiple names may be given.
For instance, ICD-10 (CM 2017 C18.9) lists the following
synonyms for the concept colon cancer: adenocarcinoma
of the colon, cancer of the colon, carcinoma of colon,malig-
nant tumor of the colon, and malignant neoplasm of the
colon. Source databases of variant level information in
cancer typically use any one of these synonyms to describe
the respective entity - without including the unambiguous
ID of the concept itself.
For our VIS data model, it is thus not only important to

decide on a standardized target ontology with a coverage
and a level of detail suitable for describing the respective
entity types, but also to include links which map within
and between different terminologies.

Representation of conflicting data Any implementa-
tion of an integrative data model must take into account

the current situation that information on variants is dis-
persed over a multitude of databases and publications and
that it is often contradictory and incomplete. For instance,
the evidence level reported for the effect of a given drug
on a given variant and cancer type may vary significantly
from data source to data source. Even for less complex,
presumably basic biomedical facts, contradictions are not
uncommon: a given pathway may contain a different set
of genes in Reactome [27] than in KEGG [5], transcripts
may have different positions in Ensemble [28] and Ref-
Seq [21], and diseases are structured differently in HPO
[25] and UMLS [29]. Any VIS must decide on how to cope
with this situation: It can either (1) deliberately choose
only one source of knowledge, (2) perform some form of
expert curation to derive unambiguous statements despite
heterogeneous evidences, or (3) choose to transparently
represent such cases in its own model, essentially leaving
the responsibility of deciding which information to trust
to the user.
The data model and integration pipeline we propose

here for implementing a VIS follows the third option. The
rational is that in the process of clinical decision making,
full transparency regarding available information should
be warranted.

Linking to original evidences All available knowledge
on entities stored in a VIS must be backed by scientific
evidence to allow evaluation of its trustworthiness for
oncological decision making. The possibility of following
data lineage from a stored fact back to its original evidence
is especially important when gathering data from different
data sources [30] - and even more when this leads to con-
tradicting data as outlined above. Judging the quality and
reliability of each information source in the face of het-
erogeneous and potentially contradicting data can not be
done automatically.
Accounting for this issue, our data model is designed to

not only capture heterogeneous information and to have
it available for expert judgment, but to also associate each
piece of information with a link to its original data source.

Extensibility In a field evolving as quickly as preci-
sion oncology, extensibility of a data model has to
be a core aspect of the design process. For instance,
while MVLD only addresses mutations on the genomic
level, aberrations on the transcript level are starting to
become increasingly important [11]. MVLD also captures
information on single variants only, whereas research
increasingly studies the impact of variant combinations
or even mutational signatures [31]. Note that resolutions
of these two issues are actually contained in the model
presented here; however, the field of molecular oncology
is evolving at a pace that rapidly changes and extends
the underlying biological model itself. For instance, we



Starlinger et al. BMCMedical Informatics and DecisionMaking          (2018) 18:107 Page 5 of 19

decided – for now – to model only variants in cod-
ing regions, although it is quite likely that future clinical
research will also include variants in non-coding regions.
To be future-proof, a data model has to be able to easily
accommodate additions and updates.
As a consequence, we not only include the aforemen-

tioned conceptual extensions to MVLD, but especially
provide clearly defined extension mechanisms to guide
further development of the model even in ways currently
not foreseeable.

Data model design process
Based on these design principles, our model was gener-
ated by an interdisciplinary team of computer scientists,
clinical oncologists, and bioinformaticians. The design
process followed an iterative approach, intermixing two
complementary steps:

1. Top-down We studied several emerging standards for
variant level data representation and interpretation to
include a comprehensive range of elements and perspec-
tives (e.g., [1, 2, 7–12, 17]). We also build on our own long-
standing experience in working with data from the area of
systems biology and systems medicine. This includes both
technical expertise in integration of such data and its stor-
age in relational databases and information systems (e.g.,
[32–35]), and practical application of such data in molec-
ular oncology - and the insight of which information our
own treatment decisions are influenced by.

2. Bottom-up From the other end, we studied several
existing databases of variant level data (e.g., [1–4, 27, 36]).
We mapped the data available in these databases to our
expectations and experience of which data is relevant.
Iteratively refining the model, we included additional data
elements where necessary. From the start of the design
process, it was clear that not all possible elements, data
types, and tools could be included in the final model.
Where necessary, we made an educated choice of which
tools, ontologies, and data elements to include based on
our own experience and literature review. However, we
did construct the data model in an extensible way, as
outlined in our design principles above, allowing these
choices to be easily revised by the respective user.

Data acquisition methodology
Existing public structured databases provide curated data
that partially overlaps with the variant level data set
described in our model. Several of these databases have
to be integrated to acquire comprehensive variant level
data covering all elements of the data model. This inte-
gration of data from source databases encompasses a) the
selection and characterization of data sources to include

and b) the setup of a technical integration pipeline for the
integration process.

Identification of source databases From the multitude
of databases available that provide data on genomic vari-
ants and their known relationships to cancer types, drugs,
or both, we made a selection based on our experience of
using these databases for manual aggregation of data for
clinical decision making, and based on their respective
coverage of elements relevant for our model.
As such, we characterized some of the most important

public data sources (see Table 3 in Results), based on prac-
tical experience, third party reviews (e.g., [2, 8, 9]), and
additional literature search (e.g, [37, 38]). In particular, we
analyzed the selected databases with respect to the volatil-
ity of the information contained in them, the overlap in
the data models employed by those databases, the termi-
nologies used to identify respective entities, and potential
conflicts and mappings between those terminologies.

Integration of source databases Taking from this char-
acterization, we propose the design of a multi-step inte-
gration pipeline. This pipeline is based on well-established
techniques of data integration [39] and assembles these to
generate a materialized representation of the source data
within the VIS. The rational for choosing amaterialization
as an endpoint of integration (as opposed to virtual inte-
gration with online acquisition of the source databases)
lies in (a) increased fault tolerance, e.g., against failure
of single sources in the assembly, (b) privacy regarding
patient data, i.e., potentially identifying mutation profiles
do not have to be transmitted to source databases at query
time, and (c) better performance in query execution.

Results
We here introduce our data model for variant level data
for precision oncology, based on the design principles
described in the previous section. We also present an
integration process for filling such a model with facts
extracted from public reference databases, such as COS-
MIC, ClinVar, or CIViC. We highlight areas that require
special focus, such asmethods for deriving aggregated risk
scores.

Data model
We developed a relational data model for representa-
tion of variant level data for molecular oncology. We
choose a relational data model both because it can accu-
rately represent the complex interrelationships between
the various types of entities to be represented, and
because it provides clear instructions for implementation
of such a model inside a relational database manage-
ment system1. Such implementation is well understood
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and has excellent tool support - which is a highly rel-
evant aspect for widespread applicability and adoption.
Figure 2 shows the relational class diagram of the result-
ing data model as the basis for a VIS implementation.
Table 1 gives an overview of the corresponding data types
and example values for each attribute. SQL files of both
schema and sample data are included in the Additional
files 1 and 2.
The data model is compliant with the requirements pos-

tulated in [7, 8], but also has several features not foreseen
therein. In particular, it (1) acknowledges the fact that
for many types of variant-associated information multi-
ple and potentially diverging evidences exist, (2) allows
the assignment of variants to transcripts (instead of only
to genes) and thus splice variants, and (3) adds additional
capacity for inclusion of clinically highly relevant back-
ground data such as prevalence and context of variants
in public (or in-house) patient cohorts (e.g., The Cancer
Genome Atlas (TCGA) [40] or the Exome Aggregation
Consortium (ExAC) [41]).
In the following, we discuss the model’s elements

in detail and explain our motivation for the con-
crete modeling constructs used; further considerations

regarding linking of data elements to original evi-
dences and extensibility of the model can be found in
Additional file 3.

Entities, relationships, cardinalities
Following the classification used by Ritter et al. [7], data
elements regarding cancer types, cancer samples, and
drugs fall into the category somatic interpretive. Gene
variants are described by the allele interpretive, and genes
by the allele descriptive part of the schema.

Somatic interpretive data The central entity of inter-
est is the Cancer Variant representing a specific genomic
variant in a specific cancer type. It is important to note
that in the context of disease treatment and especially
cancer therapy, the variant itself has to be directly asso-
ciated with the respective cancer type to be fully inter-
pretable. For instance, while a drug specifically targeting
a certain gene transcript or even variant may be proven
and approved for therapy in one particular cancer type,
neither its approval, nor its efficacy may be assumed
for other cancer types. An example of such a case is
Vemurafenib, targeting BRAF V600 mutations in different

Fig. 2 The relational class model to represent minimum variant level data (MVLD) and possible extensions; colors correspond to Ritter et al. [7]:
brown: somatic interpretive data; purple: allele interpretive data; blue: allele descriptive data; white: background data extending MVLD. Cardinalities
of relationships indicated as follows: (A)1–n(B): one instance of (A) is associated with an arbitrary number of instances of (B); (A)0..1–n(B): no or one
instance of (A) is associated with an arbitrary number of instances of (B)
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Table 1 Overview of data types and value ranges for data elements covered by the core data model for minimum variant level data

Class Attribute Value range Example

Allele descriptive

Gene Gene ID Internal ID G0002V5Z

Gene name HGNC gene symbols KRAS

Chromosome 1 .. 22, X, Y 12

Entrez gene ID Entrez gene IDs 3845

Ensembl gene ID Ensembl gene IDs ENSG00000133703

RefSeq gene ID RefSeq gene IDs NG_007524

Gene transript Gene ID Internal ID G0002V5Z

Gene transcript ID Internal ID T0006OOW

RefSeq transcript ID RefSeq Transcript IDs NM_033360

RefSeq protein ID RefSeq protein IDs NP_203524

Ensemble transcript ID Ensemble transcript IDs ENST00000256078

UniProt ID UniProt IDs P01116

Gene position Gene ID Internal ID G0002V5Z

Genome version Genome build IDs GRCh37.p13

DNA position Genomic coordinate 12p12.1

Gene pathway Gene ID Internal ID G0002V5Z

Pathway ID Internal ID P003V724

Gene pathway Pathway ID Internal ID P003V724

Common name Activation of RAS in B cells

Kegg ID Kegg IDs map04014

Reactome ID Reactome IDs R-HSA-1169092

PathwayCommons ID PathwayCommons IDs R-HSA-1169092

Allele interpretive

Variant Variant ID Internal ID V0000LBB

Variant type “Single nucleotide variant (SNV)”,
“multinucleotide variant (MNV)”, “insertion
(INS)”, “deletion (DEL)”

SNV

Variant position Variant ID Internal ID V0000LBB

Genome version Genome build IDs GRCh37.p13

DNA sub. & position HGVS genomic coordinate NC_000012.11:g.25398284C>G

Gene variant Gene ID Internal ID G0002V5Z

Variant ID Internal ID V0000LBB

Variant consequence “Non-sense”, “missense”, “silent”, “frame
shift”, “in-frame”, “3UTR”, “5UTR”, “splice”,
“splice-region”, “intronic”, “upstream”,
“downstream”

missense

Gene variant transcript Gene ID Internal ID G0002V5Z

Variant ID Internal ID V0000LBB

Gene transcript ID Internal ID T0006OOW

Protein sub. & Position HGVS formatted variants NM_033360.3(KRAS):c.35G>C (p.Gly12Ala)

Protein domain Descriptive name of protein domain Small GTP-binding protein domain

Variant consequence “Expression”, “amplification”, “deletion”,
“fusion”, “loss of function”, “missense”

missense

Risk score FATHMM, SIFT, PolyPhen 0.98468, 0, 0.97

Somatic interpretive

Cancer type Cancer type ID Internal ID C000WQFL
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Table 1 Overview of data types and value ranges for data elements covered by the core data model for minimum variant level data
(Continued)

Class Attribute Value range Example

Cancer type name NCI thesaurus | Oncotree IDs Colorectal cancer

UMLS ID UMLS concept IDs C1527249

HPO ID HPO concept IDs HP:0003003

Cancer variant Cancer variant ID Internal ID CV00XBQW

Variant ID Internal ID V0000LBB

Cancer type ID Internal ID C000WQFL

Biomarker class “Diagnostic”, “prognostic”, “predictive”,
“predisposing”, “pharmacogenomic”

predictive

Clinical relevance level() “Tier 1”, “Tier 2”, “Tier 3” [8] Tier 2

Cancer variant sample Cancer variant ID Internal ID CV00XBQW

Sample ID Internal ID SXBQW0A7

Somatic classification “Confirmed somatic”, “confirmed germline”,
“unknown”

somatic

Allele frequency Allele frequency in global population 0.00001647

Sample specimen Sample ID Internal ID SXBQW0A7

Tumor purity Ratio 0.763

TNM status TNM values T2N1M1

Primary / relapse Primary || relapse primary

Cancer variant drug Cancer variant ID Internal ID CV00XBQW

Drug ID Internal ID D00000Z9

Cancer variant drug effect Cancer variant ID Internal ID CV00XBQW

Drug ID Internal ID D00000Z9

Effect “Resistant”, “responsive”, “non-responsive”,
“sensitive”, “reduced sensitivity”, “other”

Resistance or non-response

Level of evidence see Table 6 C

Sublevel of evidence see Table 6 3A

Drug Drug ID Internal ID D00000Z9

Substance name FDA approved | DrugBank substance names Panitumumab

DrugBank ID DrugBank IDs DB01269

PharmGKB ID PharmGKB IDs PA162373091

FDA ID FDA IDs 125147

Drug mechanism Drug ID Internal ID D00000Z9

Molecular mechanism Description Binds to the epidermal growth factor recep-
tor (EGFR) on both normal and tumor cells[...]

Example data for evidence recording is given in Additional file 3

non-melanoma cancers with great differences in observed
response rates [42]. Furthermore, a particular Biomarker
Class and a certainClinical Relevance can only be assigned
to a variant in the context of a specific cancer type. Note
that we extend the set of biomarker classes suggested by
MVLD (diagnostic, prognostic, predictive) with the addi-
tional classes predisposing and pharmacogenomic [43].
Both entities, Cancer and Variant, are referenced from

this central jointCancer Variant representation. Reflected
by the cardinalities annotated to the referential links in

Fig. 2, a single variant may be found in any given cancer
type and, conversely, a given cancer type may encounter
numerous single variants. The Somatic Classification to
discern somatic from germline variants, and themeasured
Allele Frequency are attributes of a variant in a specific
cancer sample, i.e., a particular Cancer Variant Sample,
and represented as such. ExtendingMVLD, a correspond-
ing Sample Specimen covers multiple such Cancer Variant
Samples - and thus allows (re)identification of mutation
profiles found in individual cancer type specimens. Such



Starlinger et al. BMCMedical Informatics and DecisionMaking          (2018) 18:107 Page 9 of 19

identification of concrete specimens is especially impor-
tant when including data from large scale genetic charac-
terization projects, such as TCGA [40] or 1000 genomes
[44], but also for representing (cancer) cell lines. Sam-
ple Specimen data may also be characterized by clinical
properties of the specimen and sample quality which is
often a relevant criterion when judging and interpret-
ing cancer variants in clinical practice. Such properties
include Tumor Purity, TNM status of the specimen, or
whether the specimen was taken from a tumor’s Primary
Manifestation or a Relapse.
Associated with each single Cancer Variant, several

Cancer Variant Drugsmay have been found to have a cer-
tain Effect on the respective Cancer and Variant with a
certain Level of Evidence. Different sources of information
(e.g., different studies reporting a drug’s effect on a given
cancer for a certain variant) may provide information at
different levels of evidence, and may even describe differ-
ent effects. The data model is tailored to accurately mirror
such differences as Cancer Variant Drug Effects. How dif-
ferent, possibly contradicting reports are to be interpreted
for clinical applicability is left to the clinical expert2.
Since, in turn, a given drug often has different effects,

and even more often different levels of evidence depend-
ing on the respective cancer type and variant, generic
information about the Drug itself is referenced from the
cancer variant specific class. This may (extending MVLD)
include additional information such as the Molecular
Mechanism through which a drug exerts its effect.

Allele interpretive data Information regarding the Vari-
ant itself falls into one of two classes: Data that depends
on the reference genome used when mapping the variant,
and data that is independent of it. The former especially
includes the specific Variant Position within the DNA of
the Genome Version of the used reference, and the DNA
Substitution found in the variant call. A given variant can
have numerous instances of such positional information
associated with it3.
Other Variant related data elements, such as the Vari-

ant Type, the Variant Consequence, and the Protein
Substitution and Position are included in the reference-
independent set of attributes. A further important piece
of information is the Protein Domain affected by a vari-
ant, i.e., the functional substructure of the protein that is
modified. These four attributes actually belong to differ-
ent classes of elements (see Fig. 2):While theVariant Type
is intrinsic to the variant itself, the Variant Consequence
depends on the Gene affected by the variant and is con-
sequently externalized to a Gene Variant class because a
given variant at a given genetic location can affect multiple
genes, incurring different Variant Consequences. Simi-
larly, both Protein Substitution and Position and Protein
Domain describe a Gene Variant Transcript, i.e., one of

several possible transcripts of a mutated gene. Note that
we further extend transcript level data with the inclusion
of methods to calculate the Risk Score of a variant in a
transcript.
Finally, to accomodate genetic alterations measured on

the transcript level, we include a dedicated field to record
the Variant Consequence for each single transcript and
provide a direct link to associate the Cancer Variant Tran-
script with the Variant class itself - circumventing the
necessity to provide gene level variant details for tran-
script level aberrations. This allows to directly include
RNA Seq data in the model, where only the effect (i.e.,
the Variant Consequence) of a variant may have been
measured, such as overexpression of a certain transcript,
without evidence of exactly which genomic alteration is
causal of the observed aberration.

Allele descriptive data Each Gene Variant is associated
with the Gene it affects, which in turn may host multiple
variants. Next to its ID, a gene has a Name, a Chro-
mosome it is located on, and may have multiple Gene
Transcripts identified by RefSeq Transcript ID and RefSeq
Protein ID. As with variants, positional information (DNA
Position) about genes is externalized to reflect its depen-
dence on the particular Genome Version of the reference
build and the subsequent multiplicity of such Gene Posi-
tions for eachGene. Additional information can be linked.
For instance, data about Pathways a gene is involved in,
as sketched in Fig. 2, is especially helpful in cases where
only little actionable evidence is available and the identifi-
cation of pathway information at least provides a starting
point to discuss treatment options. Note that each gene
may be part of multiple pathways, and each pathway will
be comprised of several genes/proteins.

Reference IDs and ontologies
We include attributes for a number of different standard-
ized identification systems for each type of entity in the
data model (extending MVLD), as listed in Table 2. For
example, we not only identify transcripts by their RefSeq
ID (as suggested by MVLD), but also include the Ensem-
ble Transcript ID because it is more universally defined

Table 2 Identifiers included in data model for cross-source entity
identification

Entity type Primary ID source Further ID sources

Gene Entrez gene Ensembl, RefSeq

Transcripts RefSeq Ensembl, UniProt

Disease names Disease ontology UMLS, human phenotype ontology
(HPO)

Drugs DrugBank PharmGKB, FDA

Pathways KEGG Gene ontology, PathwayCommons,
Reactome
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and applicable than its RefSeq counterparts: by defini-
tion, every gene has a canonical Ensemble Transcript ID,
whereas RefSeq identifiers are assigned to transcripts after
they have been identified and cataloged [21]. Features
such as this one ease the mapping of elements from dif-
ferent data sources and allow identification of elements,
especially when data is not per se provided by means of
standard ontologies and controlled vocabularies.

Integration of public databases into the VIS model
The data model presented in the previous section is
capable of accurately representing variant-level data as
required for supporting clinical decision-making in preci-
sion oncology. In this section, we first discuss important
sources of such data with respect to their usefulness for
providing variant data to a VIS. Next, we present strate-
gies for actually performing their technical and semantic
integration.
An overview of such an integration process is shown

in Fig. 3. It consists of multiple steps: First, relevant data
sources, i.e., high-quality variant level databases, need to
be selected and understood. Next, these databases must
be downloaded and integrated technically into the VIS,
which typically leaves the data itself unchanged but makes
it available for specialized database programming lan-
guages such as SQL. In the third step, the actual semantic
integration of data must be performed to transform the
source data into the targetmodel.We discuss each of these
steps in detail in the following sections.

Important public variant-level databases
Table 3 compares several important public cancer variant
databases concerning their coverage of data represented
in our data model. It is apparent that no single database
provides all elements. In some cases the respective infor-
mation is provided indirectly by linking to another data
source within which the data can be found. From a tech-
nical perspective, most sources provide their data as com-
pressed flat files in either CSV or TSV format. Those
source files can be accessed via FTP or HTTP(s) and in
some cases an API interface is provided. The files range
in size from less than a MB to multiple GB and num-
ber from one file up to 94 files per source. The majority
of sources is updated at a three month interval, however,
some are updated nightly. When using flat files to gather
the information from each source, it is imperative to auto-
matically control the structure of those files before import
and compare them to earlier versions, since any unnoticed
restructuring may result in unexpected conflicts.

Architecture for a data integration pipeline
Integrating data from a multitude of regularly updated
sources requires a highly automated approach without
manual intervention: scripted pipelines have to be cre-
ated for each of the various sources to download the data,
and to parse and transform it into a format which can
then be loaded into the VIS [45]. Ideally, these pipelines
should be robust to changes in the individual data models
employed by the source databases, as these data models

Fig. 3 Overview of data integration: source databases are processed by extract/transform/load (ETL) scripts which generate source specific table
spaces within the local database. From these, the relevant elements are semantically mapped to and loaded into the core data model
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also evolve over time. One strategy to ensure such robust-
ness is to decouple technical integration from the seman-
tic integration required for actually making joint use of
the integrated data. To this end, it is advisable to partition
the table space within the target database to include sep-
arate data tables for each source that are consistent with
the source schema, i.e., the relational layout of the data
within the source database. The target model is filled from
these tables in a subsequent step. This approach not only
reduces error rates in physical integration, but also has
the benefit of incorporating comprehensive, source spe-
cific data into the target database that may not be included
in MVLD (and would require unreasonable upfront cost
and effort to integrate into a global schema), but is read-
ily available for further in depth analysis of data elements
source by source.

Semantic data integration
The step of semantic integration moves and transforms
each relevant data element from each of the sources’
local schemata into the VIS model. It is divided into two
sub-problems [46]: (1) Mapping of schema elements, i.e.,
determining which elements of a source should be copied
into which part of the target schema, and (2) mapping of
data instances, i.e., determining how data values must be
transformed to achieve a consistent representation. Both
of these sub-problems have to cope with semantic het-
erogeneity between the elements considered. For schema
elements, this occurs, for instance, when the information
about the name of a given tumor in a data source is stored
in an attribute called “cancer_entity”, while it is stored
in an attribute “cancer_type” in the target schema. Such
conflicts have to be detected and bridged. As schemas
are typically small (a few dozen elements), resolution of
conflicts at the schema level is usually performed man-
ually using general data management tools. In contrast,
conflicts at the instance level, such as two variants hav-
ing different names, have to be resolved programmatically
as millions of values are concerned. In the following, we
discuss the most relevant data elements affected by such
issues, and how appropriate solutions can be achieved.

Variant identification Different data sources identify
variants using a variety of namespaces. This results in
ambiguities when mapping data to a particular variant.
If provided, information such as chromosome position,
assembly and range can be used to link the informa-
tion of different sources to a variant. The HGVS (Human
Genome Variation Society) notation [47], combining
those pieces of information into a standardized string for-
mat, can be used to universally identify variants on various
different genetic levels including the genomic location (g),
coding DNA (c), RNA (r), protein (p), mitochondria (p)
or non-coding DNA (n) location. However, even in its

complete form, the HGVS identifier can be ambiguous, as
the example in Table 4 shows. It is therefore advisable to
only use a single designated authoritative source for the
reference string. The genomic location (g) should be pre-
ferred over themore specific locational designators within
HGVS, since it is subject to the underlying assembly only.
A more detailed account of the considerations underpin-
ning this recommendation can be found in Additional
file 3.

Molecular risk scores An essential piece of informa-
tion for assessing the clinical relevance of a given variant
is its impact at the molecular level. Such information is
contained in many variant-level databases and must be
integrated into the VIS for inspection by the treating
oncologists. In most cases, this information originally was
computed by algorithms like SIFT [48], PolyPhen [49], and
ClinGen [50]. These algorithms analyze signals such as the
change of an amino acid and the corresponding changes of
polarity or acidity in the protein, the creation of a stop or
a start codon, or the provocation of a frame shift, to assess
the functional impact of variants. However, the results of
these programs are frequently inconsistent, as shown in
Table 5.
It is therefore recommended to use two or more inde-

pendent algorithms to calculate risk scores for variants. If
the assessments are integrated from a public data sources,
care must be taken to check which programs were used to
produce them, to be able to judge if these are independent
evidences. During integration, all assessments should be
kept and eventually be presented to the user.

Evidence levels An essential piece of information for
variant assessment are associations between a given vari-
ant, a tumor entity, and a drug. Such associations can be
supported by different levels of evidence, ranging from

Table 4 Ambiguities using HGVS nomenclature arising from
overlapping genes and different sources, by the example of
variant rs121913529

Ensembl HGVS dbSNP HGVS Associated
gene

NC_000012.11:g.25398284C>G KRAS

ENST00000256078.4:c.35G>C NM_033360.3:c.35G>C KRAS-004

ENSP00000256078.4:p.Gly12Ala NP_203524.1:p.Gly12Ala KRAS-004

ENST00000311936.3:c.35G>C NM_004985.4:c.35G>C KRAS-001

ENSP00000308495.3:p.Gly12Ala NP_004976.2:p.Gly12Ala KRAS-001

ENST00000556131.1:c.35G>C KRAS-002

ENSP00000451856.1:p.Gly12Ala KRAS-002

ENST00000557334.1:c.35G>C KRAS-003

ENSP00000452512.1:p.Gly12Ala KRAS-003
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Table 5 Assessment of the effect of different variants as
provided by the SIFT and PolyPhen algorithms showing
disagreement: While for variants one and two only one program
calculates a score resembling the (true) clinical findings, variant
three is corroborated by both programs and agrees with the
clinical findings

rsID SIFT PolyPhen Clinical evidence

rs104894359 0 0.361 Pathogenic

rs121913529 0 1 Pathogenic

rs1137282 0.85 0.012 Benign

Legend:

SIFT: 0 (deleterious) - 1 (tolerated)

PolyPhen: 0 (benign) - 1 (probably damaging)

FDA approved links to predictions based on in-silico anal-
ysis only. Databases storing such associations typically
annotate them with distinct evidence levels which quan-
tify the strength of the association; similarly, community
standards sometimes define such levels. However, the
scales and definitions used in practice are highly hetero-
geneous. In Table 6, definitions for evidence levels from
Ritter et al. [7], CIViC [2], OncoKB [36], Meric-Berstam
et al. [37], and Andre et al. [38] are compared. While all
sources show a strong similarity in the definitions on the
macro-level, the depth of the sub-leveling differs: Ritter
et al. propose the usage of four tiers, CIViC defines five
evidence levels and Andre et al. [38] suggest ten distinct
levels. Mapping the sub-level of a given source to the cor-
responding macro-level is straight forward, however the
sub-leveling of a given macro-level is challenging, since in
depth literature research is required. Resolving such sit-
uations requires an experienced clinician. Again, a VIS
should store each evidence level provided by individual
data sources together with a detailed account of which
source the respective entry was retrieved from.

Discussion
We introduced an operational data model for imple-
menting a VIS as a fundamental cornerstone of any
evidence-based and genome-focused approach to preci-
sion oncology. Building on previously proposed standards
regarding the set of relevant information and data ele-
ments, our model properly reflects biological, medical,
and biotechnological interdependencies between all rele-
vant entities. Furthermore, the model addresses a num-
ber of secondary issues regarding these data elements.
In particular, it implements a rigorous representation of
underlying original evidences, the representation of fac-
tual inconsistencies and heterogeneities between differ-
ent, equally important data sources, and defined hooks
for extensions to cater for future changes in our under-
standing of clinically relevant variant data. We proposed
an architecture for populating this data model with data

from databases of structured bio-oncological knowledge,
describing a robust, multi-step integration process, and
targeting practically viable solutions for challenges posed
by both physical and semantic integration.
Nevertheless, ourmodel still has a number of limitations

which we discuss in the following sections.

Offering up-to-date information
Considering the pace at which new research results
emerge in the fields of oncology and molecular genetics,
the currency of information is a factor of great importance
in oncological practice. Clearly, clinical decisions always
should be derived from the most current data available.
Obtaining the most up-to-date information, however, is
difficult for many reasons. Firstly, relevant results take
some time to appear in the (peer-reviewed) literature.
Database curation incurs a further delay, as publications
first have to be picked and analyzed by the curators before
their structurized content becomes part of the database
[6]. A third obstacle is the fact that relevant data is dis-
persed overmultiple sources, requiring substantial time to
be searched.
A VIS can alleviate only the third of these issues, by

providing a single point of access for data from multiple
sources. On the other hand, it introduces a singular source
of delays, because updates in the primary databases take
time to be ingested into the VIS. Many databases offer
web user interfaces, which always work on the most cur-
rent state of the database, yet only periodically provide
complete database releases, which are the data sets inte-
grated into a VIS. Although being slightly outdated, using
such database releases has the advantage of defining a
stable reference, which is a prerequisite for reproducible
decisions. Consider a clinician taking a therapy decision
based on information found in a curated variant database.
When this decision, at a later stage, must be defended, it is
vital to be able to exactly reproduce the state of this vari-
ant database at the time of retrieval; this is only possible
if the release of the database at the time of the deci-
sion is known (and was archived), whereas online searches
are not guaranteed to be reproducible as the underlying
database might have changed in the meantime and only
few online databases support queries against specific past
versions of their data.

Maintaining a VIS database
Technically, approaches which build integrated VIS by
periodically integrating releases of primary databases are
called materialized systems because they maintain a copy
of every data element [51]. An alternative are so-called vir-
tualized systems, which forward user requests to the pri-
mary databases and build the integrated answer on-the-fly
[52]. Virtual integration systems thus do not maintain any
database themselves; instead, they only translate queries.
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The model we put forward in this work is a materialized
system, which offers a number of advantages over vir-
tual systems: They can answer queries faster, data within
the database can be changed and corrected locally, they
are more stable and offer higher availability, they allow a
broader range of possible queries over the integrated data,
and they allow reproducible decisions when the integrated
databases don’t support versioned queries themselves. At
the down-side, the most critical factor in a materialized
VIS is its update frequency. VIS update procedures must
be fast, robust, and be able to exchange the content of an
updated data source at any time, all of which is only pos-
sible if a high degree of automation has been achieved.
These procedures must also care about synchronization
issues, which may occur if the state of data sources dif-
fer; for instance, one data source might still reference a
gene which has already been deprecated in a newer ref-
erence genome. In our proposed integration process, we
ease handling of such issues by the separation of source-
specific data partitions from the target data model and
by the two-step integration procedure. Still, we are not
aware of any practical and general solution to the problem
of asynchronous updates; instead, developers must imple-
ment their own, source- and VIS-specific strategies using
custom ETL code.

Exposing conflicting data
Very often, different data sources provide diverging infor-
mation regarding a variant’s impact in a specific tumor
type or for the effect a drug has on a given variant. This
fact creates a fundamental dilemma for any VIS based
on data integration: Should all diverging information be
kept and presented as such to clinicians, or should the
VIS implement guidelines and rule sets for cleansing and
aggregation of such issues upon data integration? The for-
mer strategy allows users to obtain a comprehensive and
unbiased overview of existing data, and enables her to
perform her own assessment. On the other hand, it also
delegates responsibility for each decision to the individ-
ual user, and might be considered as creating information
overload rather than efficiently supporting an informed
decision. With the proposed data model, designed for
explicitly tracking the lineage of single data elements, we
currently recommend to use the former strategy because
it provides maximum information – but it also expects
a very knowledgeable user. To this end, current work
to automate such aggregation in a clinically sound man-
ner or privide guidance to clinical judgement is ongoing
[46, 53, 54]. In the future, inclusion of such tools may
become a viable option.

Clinical relevance levels
One particular issue in clinical oncology is the Clinical
Relevance Level of a given cancer variant, which depends

on a number of factors including available therapeutic
drugs, the respective drug’s effect, or the biomarker class
of the variant itself [8]. Any finding regarding any of these
attributes itself is associated to an evidence level, roughly
reflecting the trust in the truth of the finding. The Clini-
cal Relevance Level is not included in our proposed data
model as a regular attribute but rather as a user defined
function which will produce the corresponding value from
the respective input values at request time. While it may
seem desirable to pre-compute such values, it must be
kept in mind that many of the information such complex
assessments are based on change over time. For instance,
FDA approval of a drug for a given cancer type will lead
to a change in its evidence level, which in turn will affect
the respective variant’s relevance for clinical treatment.
Thus, any systemwith precomputed clinical relevance lev-
els must revisit and repeat these computations whenever
their information sources have changed.

Extensibility beyond cancer
Arguably, oncology currently is one of the most active
and actionable fields of variant related therapy. How-
ever, variants are also playing an increasingly important
role in many other disease areas, such as immunology or
genetics. While the data model proposed here specifically
targets variant information in cancer, only few changes are
required to allow its application also for other diseases.
In particular, several relation names would be changed
from Cancer to Disease (e.g., Cancer Variant to Disease
Variant), one must add attributes to specify the spe-
cific Disease Type for each Disease Variant, and further,
disease type specific information, must be modeled in
additional tables, similar to how cancer specific informa-
tion is currently represented by Cancer Type. With these
changes, we believe that our proposed model is also appli-
cable for representing variant level data in diseases outside
the oncological spectrum.

Beyond variants in coding regions
The MVLD, on which our model is built, only covers vari-
ants in coding regions characterized by directly observ-
able changes on the nucleotide level. In oncological
practice, however, other types of genetic alterations
play an increasingly important role. For instance, RNA
sequencing detects changes at the transcriptome level,
indicating that a gene (or rather one of its transcripts)
is expressed, amplified, deleted, fused, etc. Such obser-
vations may form important, genetically determined
biomarkers for diagnosis and decision, yet their direct
cause, such as a mutation in a transcription factor binding
side or a large-scale duplication of chromosomal regions,
often remains hidden. We have shown how such alter-
ations are included in our model by extending the vocab-
ulary for Variant Type, by tracking Variant Consequences
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at the transcript level (see Table 1), and by providing
relations for transcriptional alterations without a known
association to a genomic variant. However, making tran-
scriptome aberrations first class citizens in our data model
would require extending the HGVS nomenclature itself,
which is beyond the scope of our work.
Analogously, alterations of non-coding regions affect-

ing, for example, miRNA, promoter regions, chromatin
structure, or epigenetic factors, are currently not ade-
quately represented in the data model. Furthermore, the
model cannot capture the combined effects of multiple
variants in the same sample, where the essential informa-
tion could be the influence on a pathway and not at a
single gene level. The foreseeable necessity of including
such data into a VIS data model underlines the advan-
tages of designing the data model to accurately reflect the
true biological relationships between the involved enti-
ties. Only then can additional relationships be seamlessly
integrated into the existing model.

Conclusions
Variant Information Systems (VIS) are becoming a fun-
damental necessity for scaling clinical availability of com-
prehensive variant information in precision oncology.
However, the informed selection of data elements to
include in a VIS, the accurate design of the data model
to hold this data, and the integration of existing data into
that data model pose a number of challenges both from
a clinical, and from a technical perspective. To this end,
this paper provides a threefold contribution: Firstly, we
performed a detailed analysis of data requirements for
a VIS, incorporating existing and emerging community
standards, own experience with both precision oncology
and biomedical information systems, and the technical
reality of existing sources of variant related data. Taking
from this analysis, secondly, we designed and presented
an implementation-ready data model to host a compre-
hensive set of data elements necessary for clinical utility
and technical compatibility of variant information. And
thirdly, we gave an instructional description of meth-
ods to acquire and merge data from a large number
of heterogeneous public data sources to fill the model,
together with a critical discussion of the technical and
conceptual challenges such integration comes with. We
believe that both the anlaysis and the solutions pro-
vided here will be highly instrumental to the community
for the creation of comprehensive Variant Information
Systems.

Endnotes
1As opposed to Entity Relationship (ER) diagrams
2By clinical expert we mean any person using a VIS in

patient care. Note, however, that such users typically do

not directly access a database system but use intermedi-
ate applications. These applications may, again, perform
certain data filtering or aggregation, implementing, for
instance, organization-wide standards.

3We discuss practical consequences of this multiplicity
for variant level data integration in the next section.
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