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Autologous blood transfusion (ABT) has been frequently abused in endurance sport and is prohibited since the mid-1980s by the
International Olympic Committee. Apart from any significant performance-enhancing effects, the ABT may pose a serious health
issue due to aging erythrocyte-derived “red cell storage lesions.” The current study investigated the effect of blood storage in citrate
phosphate dextrose adenine (CPDA1) on the red blood cell (RBC) membrane proteome. One unit of blood was collected in CPDA1
blood bags from 6 healthy female volunteers. RBC membrane protein samples were prepared on days 0, 14, and 35 of storage.
Proteins were digested in gel and peptides separated by nanoliquid chromatography coupled to tandem mass spectrometry
resulting in the confident identification of 33 proteins that quantitatively change during storage. Comparative proteomics
suggested storage-induced translocation of cytoplasmic proteins to the membrane while redox proteomics analysis identified
14 proteins prone to storage-induced oxidation. The affected proteins are implicated in the RBC energy metabolism and
membrane vesiculation and could contribute to the adverse posttransfusion outcomes. Spectrin alpha chain, band 3 protein,
glyceraldehyde-3-phosphate dehydrogenase, and ankyrin-1 were the main proteins affected by storage. Although potential
biomarkers of stored RBCs were identified, the stability and lifetime of these markers posttransfusion remain unknown. In
summary, the study demonstrated the importance of studying storage-induced alterations in the erythrocyte membrane
proteome and the need to understand the clearance kinetics of transfused erythrocytes and identified protein markers.

1. Introduction

Transfusion of whole blood or erythrocyte concentrates is
considered blood doping and prohibited by the World
Anti-Doping Agency (WADA) [1]. To detect doping with
homologous blood, Anti-Doping Laboratories use flow
cytometry to screen for erythrocyte surface markers which
vary between individuals [2, 3]. In an attempt to detect

doping by autologous blood transfusion (ABT), the Athlete
Biological Passport approach is applied. Within this approach,
hematological data of athletes are collected longitudinally
and monitored over time, and deviations from the athletes’
individual reference values can indirectly indicate usage of
doping substance or method [4]. Unfortunately, due to lim-
ited sensitivity, ABT can still be abused by athletes to increase
the oxygen delivery capacity to the tissue and subsequently
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enhance aerobic performance [5, 6]. Although there are
performance-enhancing effects from applying the transfu-
sion, one also needs to consider the possible adverse effects
such as deep venous thrombosis and transfusion-related
acute lung injury which might be connected to aging
erythrocyte-derived “red cell storage lesions” [7]. Other side
effects such as acute and delayed hemolytic reactions,
blood-borne infections, or graft-versus-host disease are also
related to incompatibilities with donor blood and can occur
in cases of homologous blood transfusion [8].

Aging erythrocytes in stored blood undergo extensive
remodeling of the membrane and marked structural changes.
They display removal signals on their surface among which
are neoantigens on band 3 protein and phosphatidylserine
(PS). Both neoantigens on band 3 and PS when bound by
autologous IgG or macrophage scavenger receptors, respec-
tively, will trigger phagocytosis [9]. The oxidative injury of
lipids and proteins that occurs with storage can lead to the
formation of erythrocyte membrane microparticles and
release of bioactive lipids from its membrane [10] and con-
tribute to storage lesions [11].

Reactive oxygen species (ROS) are continuously gener-
ated in the vicinity of the ferrous hemoglobin molecule
and released into the extracellular space. Erythrocyte super-
oxide dismutase and methemoglobin reductase can scavenge
superoxide radicals and ferric methemoglobin contribut-
ing to the recovery from oxidative injury. However, stored
erythrocytes have an impaired glycolytic pathway and
decreased levels of glutathione—both needed to prevent the
formation of extremely harmful hydroxyl radicals via the
Fenton reaction [12]. Hydroxyl radicals derived by the Fen-
ton reaction can mediate direct oxidation, in particular of
sulfur-containing amino acids like methionine and cysteine
[13], altering protein conformation and function. Protein
carbonyls are other frequently used biomarkers of protein
oxidation and oxidative stress as they are irreversible modifi-
cations [14]. One of the methods available for the assessment
of carbonylated proteins is oxyblotting that gives information
of the molecular weight of carbonylated proteins. Another
approach, applied for this study, is to use the mass spectrom-
etry technique that allows the identification of protein targets
and sites of AA carbonyl modifications [15].

Different methodologies of blood storage are available.
The most common way is to store the blood in a refriger-
ator, but RBCs can also be frozen when cryoprotected by
glycerol. For refrigeration, blood can be stored as whole
blood or separated into red blood cell concentrate and
plasma with or without removal of leukocytes. Blood bags
with different additives, like saline-adenine-glucose-manni-
tol (SAGM) or Erythro-Sol (E-Sol), affecting the storage
time exist [16].

One possible method readily available to athletes, which
does not require access to professional transfusion equip-
ment, is the storage of whole blood in citrate phosphate
dextrose adenine (CPDA1) blood bags at 4°C. However,
blood stored in this way contains both platelets and leuko-
cytes that can promote oxidative injury of erythrocytes dur-
ing the prolonged storage. It has been shown that storage
affects the stability of cytosolic protein complexes [17], and

in an investigation on the storage-induced changes of the
cytosolic red blood cell proteome, proteins were detected
which could serve as potential markers for autologous
blood doping [18, 19]. Other doping-related studies have
looked into changes of the erythrocyte membrane proteome
[20–22]. Currently, there is no information available on the
specific impact of CPDA1 whole blood storage on the eryth-
rocyte membrane proteome.

Therefore, this study is aimed at investigating changes in
the erythrocyte membrane proteome of whole blood stored
in CPDA1 blood bags. Liquid chromatography tandem mass
spectrometry (LC-MS/MS), a method commonly used to
investigate changes of the RBC proteome [23, 24], was used
to identify possible changes that could potentially serve as
markers to identify blood-doped athletes.

2. Materials and Methods

2.1. Materials. PlusOne Coomassie tablets PhastGel Blue R-
350 and 12.5% ExcelGel were purchased from GE Healthcare
Life Sciences (Uppsala, Sweden). CPDA1 blood bags were
purchased from Medharmony (Qingdao, China). Dithio-
threitol was purchased from Bio-Rad (Hercules, USA).
Trypsin gold was purchased from Promega (Fitchburg,
USA). Complete Protease Inhibitor Cocktail was purchased
from Roche (Mannheim, Germany). Other chemicals and
reagents were purchased from Sigma (Germany) unless indi-
cated otherwise.

2.2. Subjects and Blood Collection. Six healthy female vol-
unteers, aged 28–37 years, were recruited. All subjects
were tested for their hemoglobin concentration, and only
those with a concentration above 12 g/dL were included
in the study. All participants provided written informed
consent to the procedures approved by the ADLQ Institu-
tional Review Board Ethics Committee (approval number:
E20140000013). Age and hematological characteristics of
the participants are shown in Table 1.

Subjects’ heart rate, body temperature, and systolic and
diastolic blood pressures were recorded before blood with-
drawal and found to be in acceptable ranges. One unit of

Table 1: Age and hematological characteristics of participants.

Parameter Unit Mean± SD
Age Years 32.17± 3.19
WBC 103/μL 7.77± 2.16
LYMPH % 37.02± 8.37
MONO % 8.13± 2.03
GRAN % 54.85± 10.27
RBC 106/μL 4.95± 0.28
Hb g/dL 13.30± 0.60
Hct % 40.93± 1.39
PLT 103/μL 258.00± 49.09
WBC: white blood cell count; LYMPH: lymphocyte count; MONO:
monocyte count; GRAN: granulocyte count; RBC: red blood cell count;
Hb: hemoglobin concentration; Hct: hematocrit; PLT: platelet count.
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blood (450mL± 10%) was collected in CPDA1 blood bags,
without buffy coat, plasma removal, or leukocyte filtration
according to standard procedures at the Blood Donation
Unit at Hamad Medical Corporation, Doha, Qatar. Blood
cold chain was maintained for the transportation of blood
bags from the blood donation center to the laboratory in
order to avoid potential adverse effects by a temperature
increase [25]. Blood bags were stored at 4± 2°C and 50mL
of whole blood was extracted from the bags under sterile con-
ditions immediately after blood withdrawal and after 14 and
35 days of storage.

2.3. Preparation of Erythrocyte Ghosts. Peripheral blood
mononuclear cells, platelets, and plasma were separated
using Histopaque-1077, and the isolated erythrocytes were
treated for 15min at room temperature with 100mM N-
ethylmaleimide (NEM) in 20mM phosphate buffer to
quench free thiols prone to oxidation during protein isola-
tion. This was followed by hypotonic lysis of erythrocytes
with 5mM phosphate buffer on ice for 20min. Erythrocyte
membranes (“ghosts”) were pelleted by centrifugation at
17000g for 20min at 4°C. Erythrocyte ghosts were washed
3 times (17000g, 20min, 4°C) with 5mM phosphate buffer
supplemented with 100mM NEM and 1 tablet/50mL Com-
plete Protease Inhibitor Cocktail, followed by 3 washes with
PBS (17000g, 20min, 4°C). Samples were stored at −80°C
until further analysis.

2.4. Preparation of Proteomic Samples. Erythrocyte ghost
samples were centrifuged at 17000g for 20min at 4°C.
The pellet was resuspended in 4% SDS/0.1M HEPES and
incubated for 30min at 37°C with agitation 1000 rpm. Pro-
tein concentration was determined with the Lowry assay
using BSA as protein standard [26]. Normalized samples
were applied to 12.5% ExcelGels and run on a Multiphor II
Electrophoresis System (Amersham Biosciences) at 600V,
30mA, and 30W for 140min. Proteins were visualized
by staining the gel with Coomassie PhastGel Blue R-350.
The whole sample lines were divided into 15 equal parts,
excised by hand, and placed in protein LoBind Eppendorf
microcentrifuge tubes (Eppendorf, Hamburg, Germany).
Excised gel pieces were destained overnight and washed for
2 hours with 50% MeOH in water containing 5% acetic acid.
Gel pieces were then completely dehydrated with 100%
acetonitrile in a vacuum centrifuge (Eppendorf, Hamburg,
Germany) for 5min. Subsequently, samples were reduced
with 10mM dithiothreitol in 100mM ammonium bicarbon-
ate and alkylated with 100mM iodoacetamide in 100mM
ammonium bicarbonate. Finally, proteins were digested
overnight at 37°C using 0.6μg of trypsin gold in 50mM
ammonium bicarbonate. Peptides were eluted in 50mM
ammonium bicarbonate with 0.1% formic acid, and the
volume was reduced to 20μL using a vacuum centrifuge as
described above.

2.5. Mass Spectrometry. Shotgun peptide mixtures were sepa-
rated on a 25 cm reversed-phase C18 column (75μm, 2μm
Acclaim RSLC C18, Thermo Scientific, Waltham, USA)
using Easy n-LC II (Thermo Scientific, Waltham, USA)

coupled to an Orbitrap Elite mass spectrometer (Thermo Sci-
entific, Waltham, USA) over 68min gradient of 5% to 60%
acetonitrile (0.1% formic acid) with a constant flow of
300 nL/min. Thermo Xcalibur (version 3.0) software was
used to control the instrument setup. Data-dependent acqui-
sition (DDA) was performed using FTMS master scan pre-
view mode, mass range 400–1800m/z at 120000 resolution,
for triggering MS/MS events. The mass spectra analyzed in
DDA were set for charge state≥ 2 and dynamic exclusion
with 45-second duration for the most intense ion. Selected
peptides were fragmented with collision-induced dissocia-
tion (CID) fragmentation with 2m/z isolation window, nor-
malized collision energy 35, and 10ms activation time.

2.6. Data Processing and Analysis. Acquired MS/MS spectra
were searched against UniProt Homo sapiens database
(downloaded on 17 January 2017) using SEQUEST HT
search engine in Proteome Discoverer 1.4 (PD 1.4, Thermo
Scientific, San Jose, California, USA) to reveal the changes
in the erythrocyte membrane proteome. The search parame-
ters for CID-ion trap mass spectrometry (ITMS) fragment
ion masses included 10 ppm precursor mass tolerances,
0.6Da fragment mass tolerance, and maximum of 2 missed
cleavages for tryptic peptides. A minimum precursor mass
was set to 350Da and the maximum to 5000Da. The peptide
false discovery rate (FDR) was calculated by a target-decoy
approach and was set to 0.01. For protein identification, the
following identification criteria were set: (1) at least 2 unique
peptides and (2) XCorr value of at least 1.5 for singly, 2.0 for
doubly, and 2.5 for triply charged peptides.

Furthermore, data acquired was also searched through
the database using the comprehensive workflow that
included several variable modifications of peptides (see
Table S1), including carbamidomethylation at cysteine
(+57.021Da), N-terminal carboxymethyl and C-terminal
oxidation and terminal-independent carbonylation (+13.979Da),
monooxidation (+15.995Da), dioxidation (+31.990Da),
trioxidation (+47.985Da), oxidation of His to Asn
(−23.016Da) or Asp (−22.032Da), oxidation of Lys to
aminoadipic acid (+14.963Da), and carbonylation of Arg to
glutamic semialdehyde (GluSA, −43.053Da), Lys to
aminoadipic semialdehyde (allysine, −1.032Da), and Pro to
pyrrolidinone (−30.010Da) [27].

Only peptides with high confidence (p < 0 01) were used
for filtering of the data for comparative proteomics and redox
proteomics analysis of erythrocyte membrane proteins. Pep-
tides with medium (p < 0 05) and high confidence (p < 0 01)
were used for the initial filtering of data for label-free quanti-
tation analysis.

The Software Tool for Rapid Annotation of Proteins
(STRAP, version 1.5.0.0) developed by the Cardiovascular
Proteomics Center, Center for Biomedical Mass Spectrome-
try at Boston University School of Medicine, was used to ana-
lyze gene ontology annotations available in the UniProt
database [28].

2.7. Quantitative Statistical Analysis—Bayesian Approach.
The analysis was performed on the values obtained with PD
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1.4, described in the previous section, and the method further
discussed was applied on peptides and proteins separately.

Prior statistical analysis data were preprocessed including
the following criteria: (1) one set of variable (protein) for
each subject, (2) only the variables that are present in over
5/6 subjects in at least one group, (3) exclusion of irrelevant
variables, and (4) normalization using median scale normal-
ization. To account for outliers (i.e., variability between the
subjects in the group), we applied the median scale normali-
zation described in [29]. Briefly, the data of each subject was
multiplied by the ratio between its median and the entire data
set median (of nonzero values). This is only valid for the
assumption that the majority of the variables will not change
and, implicitly, the groups should have the same median.
Figure 1(a) indicates the boxplot of the raw data, correspond-
ing to each subject per group. Subjects 2 and 3 in group 1
(Figure 1(a) id, 2 and 3) have overall higher values of the
areas; however, after the normalization (Figure 1(b)), the
median for each subject is the same which indicates the
reduction of the outliers.

As the study was conducted on the samples originating
from the same 6 subjects differing in the storage duration,
the statistical methods that account for the dependencies
between groups have been applied. To assess the statistically
significant differences between the “fresh” (i.e., group 1, day
0) and “stored” (i.e., groups 2 and 3, days 14 and 35, respec-
tively) samples, the paired differences between the values of

the variables (areas) were calculated based on the dependent
set of observations according to the hypothesis:

H0i E Δj−1,i = 0,

H1i E Δj−1,i ≠ 0
1

H0 is the hypothesis that there are no significant changes
before storage and after/during storage while H1 is the
hypothesis that there are significant changes before storage
and after/during storage. E Δj−1,i represents the expected
value (i.e., average) of the pairwise differences between the
area in group j and group 1 (reference group day 0) for the
same subject, while index i represents each variable for which
the hypothesis testing was run.

In order to outline the variables (i.e., proteins and/or pep-
tides) that provide sufficient evidence of storage-induced
changes of the human erythrocyte membrane proteome, the
quantitative proteome data was tested for normality using
the Jarque-Bera test [30]. The test was performed per variable
(protein/peptides) for each group separately and it showed
that approximately 50% of the variables were not normally
distributed. This indicates that a proper test would be a non-
parametric test such as Wilcoxon. As the deviation from
normality can be due to biological variability or outliers, a
more robust test such as Bayesian hypothesis testing was also
performed [31]. Pairwise comparison was applied on the
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Figure 1: The distribution of the data before (a) and after (b) median scale normalization.
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differences Δj−1,i expressed in the previous equation. The core
of the Bayesian statistics is the use of the following equation:

p Hi ∣D = p D ∣Hi p Hi

∑ip D ∣Hi p Hi
, 2

where p Hi ∣D is the posterior probability of the hypoth-
esis i and p D ∣Hi is the likelihood of the data given the
hypothesis Hi. In the previous equation, p Hi is the prior
probability of the hypothesis Hi. The denominator of (2) is
the normalization parameter. In the context of the hypothesis
testing, two posterior probabilities of the competing hypoth-
eses are compared as follows:

p H1 ∣D
p H0 ∣D

= p D ∣H1 p H1
p D ∣H0 p H0

3

When no prior knowledge is available on each of the
hypothesis, equal probability is assigned (i.e., 0.5); thus, the
prior term in (3) is cancelled. The likelihood in this case is
assumed to be Student’s t distribution as it allows to include
outliers without affecting the first moment (i.e., the mean).
However, an integration is required over all the parameters
of the distribution (mean, standard deviation, and degrees
of freedom).

The posterior probability cannot be analytically inte-
grated; hence, the sampling from the posterior must be
employed (i.e., random samples are drawn for each param-
eter and are introduced in the expression of the posterior
distribution, which is finally numerically integrated). For
the sampling, the Metropolis-Hastings algorithm was used.
For more details on this method, the reader is advised to
address to the reference [24]. The Bayes factor, i.e., the pos-
terior odds of the null hypothesis with respect to the alter-
native hypothesis, was estimated for tests of mean as a ratio
between the prior to posterior probabilities in a region of
practical equivalence (ROPE) according to Kruschke [31],
with defined ROPE being equal to ±2.5% of the variable.
A Bayes factor below 1 will indicate that the posterior odds
are in favor of the alternative hypothesis (i.e., there is a signif-
icant difference), while a Bayes factor greater than 1 would
mean the opposite.

Sample preparation steps can introduce spontaneous
(artificial) methionine oxidation. The interference of artificial
methionine oxidation has been minimized by simultaneous
processing of all samples assuming that spontaneous oxida-
tion of amino acids took place in all samples to the same or
a highly similar extent. To quantify the ratios of oxidized ver-
sus nonoxidized (oxidized/nonoxidized) peptides [32], the
peptide ion intensities were extracted from the MS/MS files
of representative samples using precursor ion area detector
node in PD 1.4. By combining the methionine oxidation
results across all the samples, the doubtful oxidized methi-
onine peptides were excluded from the data presentation.
The degree of oxidation was measured using the ratio
(oxidized/nonoxidized) peak areas of the same peptide in
oxidized and nonoxidized form, respectively. Multivariate
analysis (i.e., principal component analysis (PCA)) was

applied to a selection of oxidized peptides in order to assess
the clustering of the peptides for each day group [33].

An in-house script was built using MATLAB R2016B for
the preprocessing (i.e., normality test and Wilcoxon and
Bayesian hypothesis testing) of the data. All simulations were
executed on a system with the following specifications:
Intel(R) core(TM) i-7 6700K CPU @ 4GHz, 64G of RAM,
64 bit Windows 10 operating system.

3. Results

Changes in erythrocyte membrane proteome of human
erythrocytes stored in CPDA1 bags were established by a
comparative analysis of proteins identified in all fresh
samples (n = 6) versus those identified in all stored samples,
irrespective of the duration of storage (n = 12 with 6 for
14 and 6 for 35 days of storage) when analyzed for differen-
tially expressed proteins and the redox proteome. Changes
in the amount of membrane proteins were established by a
comparative analysis of proteins identified in more than
80% (15 out of 18 samples) fresh samples (n = 6) with those
identified in samples stored for 14 (n = 6) and 35 days
(n = 6). Erythrocyte membrane proteins did not appear to
be greatly different from fresh and stored samples on SDS
gels (data not shown). This could be due to low resolution
of SDS gels and because most abundant erythrocyte mem-
brane proteins are either partially or fully retained in all sam-
ples irrespective of storage.

In contrast, the LC-MS/MS analysis of tryptic digests
revealed significant storage time-dependent changes in the
quantity of 33 proteins (Figure 2). The statistical evaluation
of the data described in the “statistical evaluation” of the
material and method section was applied to the proteins
and peptides separately. The variables (i.e., peptides and pro-
teins) were filtered in Bayesian framework as follows: if
within the ROPE, the posterior odds are below 1, the vari-
able is retained (i.e., there is sufficient evidence of a differ-
ence between the two likelihood distributions) otherwise
the variable is excluded from the set of interest. The classical
nonparametric approach, Wilcoxon test, filtered the vari-
ables that have a p value greater than 0.05, i.e., there is a sig-
nificant evidence in favor of the null hypothesis (i.e., there is
no difference between the concentrations from one day to
another). The Wilcoxon test points to a significant change
without discriminating between quantitative increase and
decrease of the variable. The Bayesian approach however
provides a posterior distribution from which an estimation
of the fold change can be extracted by calculating the maxi-
mum a posteriori (MAP).

Statistical analysis includes common compounds that
change in the same direction between starting date and day
14 and starting date and day 35. Supplemental Tables S2
and S3 include the quantitative fold change for the Bayesian
statistical analysis of the peptides and proteins, respectively.
The Wilcoxon test includes several variables (i.e., proteins
and peptides) that are not highlighted by the Bayesian
hypothesis test. This can be explained by the influence of
the outliers on the hypothesis testing. The list of proteins
identified by both approaches is presented in Supplemental
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Table S4. Although the increase or decrease in the quantity was
in agreement with all peptides belonging to the same peptide, we
have observed different fold changes with distinct peptides from
the same protein (Supplemental Table S3). This is due to
limitations of the applied mass spectrometry technique, as
the same is not entirely quantitative due to different
physiochemical properties of proteolytic peptides [34]. This can
be overcome by comparing each individual peptide between
different experimental groups. The quantitative analysis
rendered 5 proteins involved in the erythrocyte metabolism, 3
proteins involved in erythrocyte membrane vesiculation, and 4
proteins involved in protein metabolism to be affected with
storage. Furthermore, the presence of cytoplasmic proteins
was observed in the stored erythrocyte membrane samples,
such as adenylosuccinate lyase and flotillin-2.

The effect of storage on oxidation of erythrocyte mem-
brane proteins is presented in Table 2 and Figures 3 and 4.

The redox proteomics analysis identified significant
storage time-dependent oxidative stress-related posttransla-
tional modifications (PTMs) of 14 membrane-associated pro-
teins (PTMs) (Table 2). Storage promoted oxidation of the
three glycolysis proteins, phosphoglycerate kinase 1 (PGK1),
fructose-bisphosphate aldolase A, and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH). Moreover, Band 3
anion transport protein and erythrocyte structural proteins,
spectrin alpha and beta chains, were also found to be prone
to storage-induced oxidation.

A 3.5-fold increase in the number of oxidatively modified
peptides was observed upon 35 days of storage (Figure 3(a)).
Furthermore, the data show a storage-dependent increase in
both oxidation and carbonylation of amino acid (AA)

residues (Figure 3(b)). Though there was not a strong dif-
ference in the carbonylation of AA in samples stored for
14 days, the same showed a sixfold increase in the eryth-
rocyte samples stored for 35 days (Figure 3(b)). As oxida-
tions can be reversible modifications, it is possible that an
increase in irreversible modifications may contribute to
potential adverse posttransfusion outcomes.

Further analysis of quantitative changes in the ratios of
oxidized versus nonoxidized (oxidized/nonoxidized) pep-
tides are shown in Figure 4. A strong storage-dependent
increase in (oxidized/nonoxidized) peptides was observed
for peptides corresponding to GAPDH and Ankyrin-1 pro-
tein (Figure 4(a)). Finally, the multivariate analysis using
PCA, on the oxidized peptides of samples between the three
day groups, is shown on Figure 4(b). The figure shows the
projections of the data on the first, second, and third princi-
pal components (scores plot). Close proximity of samples
would indicate similar profiles; however, the results obtained
showed a clear separation, storage-dependent clustering of
samples between the three day groups.

All proteins found to be affected with the storage were
investigated for their known functions reported in UniProt
using STRAP software (Figure 5).

The obtained data show that the molecular function of
the majority of the altered proteins identified by comparative
proteomics and redox proteome analysis is related to binding
activity, 73% (Figure 5(a)). Moreover, the majority of affected
proteins identified by comparative proteomics analysis and
redox proteome analysis are involved in cell regulation
(60%, respectively), cellular processes (62%), and subcellular
localization (22%) (Figure 5(b)).
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Figure 2: Heat map of differential proteins determined by the Bayesian test comparing day 0 to day 14 and day 0 to day 35 (FDR= 0.05).
Protein ID description with fold change on the day 14 and day 35 is indicated in the Supplemental Table S2.
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Table 2: Oxidative modification of proteins ubiquitously present in samples irrespective of storage. Modifications labeled with Ox or C
represent either peptide oxidation or peptide carbonylation, respectively.

Accession Description Sequence
Modification

Day 0 Day 14 Day 35

A0A0K2BMD8
Mutant hemoglobin alpha 2

globin chain
VADALTNAVAHVDDMPNALSALSDLHAHK Ox Ox

P00558 Phosphoglycerate kinase 1

AHSSMVGVNLPQK Ox

IQLINNMLDK Ox Ox

SVVLMSHLGRPDGVPMPDK Ox

VNEMIIGGGMAFTFLK Ox

P02042 Hemoglobin subunit delta EFTPQMQAAYQK Ox

P02549
Spectrin alpha chain,

erythrocytic 1

ADMEAEAPTFQALEDFSAELIDSGHHASPEIEK Ox, C Ox Ox

EKMEILDNNWTALLELWDER Ox Ox

FSSDFDELSGWMNEK Ox Ox, C Ox

LTLSHPSDAPQIQEMKEDLVSSWEHIR Ox, C

SDDKSSLDSLEALMK Ox Ox

P02730 Band 3 anion transport protein

GLDLNGGPDDPLQQTGQLFGGLVR C

YTQEIFSFLISLIFIYETFSKLIKIFQDHPLQK C

PQGPLPNTALLSLVLMAGTFFFAMMLR Ox Ox

RYQSSPAKPDSSFYK Ox

P04075 Fructose-bisphosphate aldolase A IGEHTPSALAIMENANVLAR Ox

P04406
Glyceraldehyde-3-phosphate

dehydrogenase
WGDAGAEYVVESTGVFTTMEK Ox

P11166
Solute carrier family 2, facilitated
glucose transporter member 1

QGGASQSDKTPEELFHPLGADSQV C

SFEMLILGR Ox

P11171 Protein 4.1 SMTPAQADLEFLENAK Ox Ox

P11277 Spectrin beta chain, erythrocytic

DEEGAIVMLK Ox Ox

DGLNEMWADLLELIDTR Ox Ox

DLEDETLWVEER C C

ESQQLMDSHPEQK Ox

GLDAHLEQIFQEAHGMVAR Ox Ox

HQAFVAELASHEGWLENIDAEGK C

KEELGELFAQVPSMGEEGGDADLSIEK Ox, C

LWSYLQELLQSR Ox Ox

QLMDEKPQFTALVSQK C C Ox, C

VISDEIPKDEEGAIVMLK Ox

P16157 Ankyrin-1

DIEVLEGMSLFAELSGNLVPVKK Ox

EGQNANMENLYTALQSIDR Ox

GFTPLYMAAQENHLEVVK Ox

HGVMVDATTR Ox Ox

MGYTPLHVASHYGNIKLVK Ox, C

SLLQYGGSANAESVQGVTPLHLAAQEGHAEMVALLLSK Ox, C

TGASIDAVTESGLTPLHVASFMGHLPIVK Ox Ox

VETPLHMAAR Ox

P27105
Erythrocyte band 7 integral

membrane protein
EEIAHNMQSTLDDATDAWGIK Ox

NLSQILSDREEIAHNMQSTLDDATDAWGIK Ox Ox

P52209-2
Isoform 2 of 6-phosphogluconate
dehydrogenase, decarboxylating

YGPSLMPGGNK Ox

P60709 Actin, cytoplasmic 1 KDLYANTVLSGGTTMYPGIADR Ox
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4. Discussion

The LC-MS/MS analysis of the erythrocyte membrane pro-
teome identified several proteins that were not identified in
a single fresh sample from day 0 but were ubiquitously
present in all stored samples. As erythrocytes cannot synthe-
size new proteins, this could be attributed to the migration of
cytosolic proteins to the membrane triggered by storage-
induced oxidative stress [35]. Indeed, some of the erythrocyte
cytosolic proteins identified in all stored samples include

adenylosuccinate lyase and flotillin-2. Migration of pro-
teins in aging erythrocytes is a valuable tool to evaluate
the quality of stored blood but also represents potentially
good markers for the detection of autologous blood doping
for which currently no direct detection method exists [36].
Quantitative analysis of proteins present in all samples iden-
tified 5 proteins involved in cell metabolism, including pro-
teins involved in RBC energy production like fructose
bisphosphate-aldolase A, glycerol-3-phosphate phosphatase,
and nicotinate phosphoribosyltransferase, whose quantity
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Figure 3: The impact of storage on (a) the number of oxidized peptides and (b) the type of oxidative modification of amino acid (AA)
residues.
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Figure 4: The heat map of semiquantitative assessment of peptide oxidations determined by Bayesian testing comparing day 0 to day 14 and
day 0 to day 35 (FDR= 0.05): (a) protein ID description and peptide sequence are indicated in the table below the heat map; (b) PCA scatter
plot showing the difference in the groups due to the oxidation.
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increased in the stored samples. Storage not only impairs
cellular energy production but it also affects erythrocyte
membrane vesiculation [37]. This study indeed identified 3
proteins involved in the vesicle-mediated transport to be
present in bigger amounts in the stored samples. On the
other hand, 4 out of 11 proteins involved in protein metabo-
lism, like tubulin beta-1 and tubulin alpha 4A chains, were
found to be reduced in the membranes of stored samples.
This reduction could potentially be attributed to the storage
of blood at 4°C, as demonstrated earlier [38].

Analysis of storage-induced oxidative stress PTMs of
the proteins present in all samples irrespective of storage
revealed that prolonged blood storage rendered 14 erythro-
cyte membrane proteins prone to oxidative modifications
in a time-dependent manner. Altered redox homeostasis in
end-stage renal disease patients was shown to affect eryth-
rocyte morphology and to induce erythrocyte membrane
proteome remodeling [39]. One of the most common modi-
fication in this study was found to be oxidized methionine.
Beside cysteine, methionine is another sulfur-containing
AA implicated in the antioxidant protection of proteins in
order to preserve their structure and function [40]. Although
oxidation of methionine can be reversed, this PTM may act
as a regulatory switch. Accumulation of oxidized methionine
as a function of the storage time indicates deleterious effects
of storage-induced oxidative stress. The oxidized methionine
form can inhibit the phosphorylation of adjacent amino
acid sites, such as serine, threonine, or tyrosine, in proteins
altering protein function [41, 42]. Furthermore, prolonged
storage led to a significant increase in the irreversible modifi-
cations of AA indicating a longer time period required to
activate this type of PTMs compared to methionine oxida-
tion. Moreover, it is likely that by the de novo sequencing,

additional modifications would be identified as search data-
bases can only partially address the PTMs [43].

Prolonged storage has been reported to affect the glyco-
lytic pathway rendering cells susceptible to storage-induced
oxidative damage of proteins. Indeed, results revealed three
key proteins in glycolysis that are prone to storage-induced
oxidation. The oxidation of PGK1, fructose-bisphosphate
aldolase A, and GAPDH could be responsible for decreased
glycolytic pathway in the stored samples and contribute to
further oxidative injury of membrane proteins. This is sup-
ported by recent findings of Reisz and colleagues that
reported the storage-dependent oxidation of GAPDH func-
tional amino acid residues result in the enzyme activity loss
[44]. Reversible oxidation of GAPDH results in metabolic
shift from glycolysis towards the pentose phosphate pathway
to counteract oxidative stress [45]. In addition, in intact
erythrocytes, aldolase and GAPDH bind with high affinity
to cytoplasmic domain of Band 3 anion transport protein
[46, 47]. Although, to the best of our knowledge, there are
no studies showing the binding affinity of PGK1 to Band 3
protein, as an immediate GAPDH downstream enzyme in
the glycolytic pathway, it is possible that PGK1 is another
protein involved in the band 3-dependent glycolytic regula-
tion. PGK1 is the first ATP-generating enzyme in the glyco-
lytic pathway [48], and the oxidation of the same can
alter enzyme function and ATP production in erythrocytes.
The impaired ATP production of stored erythrocytes is
associated with poor in vivo survival [49] and was reported
to potentially contribute to severe posttransfusion outcomes
such as respiratory failure [50]. This study further showed
that Band 3 protein is prone to storage-induced oxidative
injury that could further impair its regulatory function of
glycolysis and binding of glycolytic enzymes as earlier
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Figure 5: Repartition of molecular functions (a) and biological processes (b) corresponding to erythrocyte membrane proteins altered with
the storage process.

9Oxidative Medicine and Cellular Longevity



reported for phosphorylation of amino acid residues of the
same protein [47].

An earlier time-course study of SAGM-stored erythro-
cytes showed continuous biochemical and structural alter-
ations from day 14 onwards [51], that is, in agreement with
the CPDA1-stored erythrocytes (this study). Protein oxida-
tion is one of the PTMs that affects organization of RBC
complexes [52]. The oxidative modification of erythrocyte
structural proteins, such as spectrin alpha and beta chains,
identified in this study, has been reported in the literature
to promote erythrocyte microparticle formation [53, 54].
Also, prolonged storage in CPDA was found to increase
carbonylation of cytoskeletal proteins and accumulation of
oxidized hemoglobin that could promote storage-induced
vesiculation [55]. In a recent publication, using the same
samples, we reported a 100-fold increase in erythrocyte
microparticles already 14 days after storage [56]. Oxidative
damage of band 3 and other membrane proteins triggers
a series of events leading to vesiculation [57]. It has been
proposed that in high oxidative stress, microenvironment
oxidatively damaged proteins that accumulate in vesicles
could represent a mechanism of removing damaged proteins
[23, 58]. Indeed, an initial gradual increase throughout
several weeks in the carbonylated RBC proteins decreases
by the end of the storage that could be attributed to vesic-
ulation [59].

Additionally, the multivariate PCA of oxidized peptides
revealed clear clustering of the samples for each day group,
indicating that the oxidized form of the same peptide has a
higher intensity (and consequently higher area) of the
peaks. Moreover, the fact that all 3 day groups are clustered
(i.e., the cluster centroids) distant from one another points
to the fact that the oxidation is different from day 0 to day
14 and to day 35.

Taken together, comparative proteomics, redox proteo-
mics, and quantitative proteomics analyses revealed proteins
that could become useful markers to identify athletes that
have received an ABT. Still, the stability and lifetime of those
markers posttransfusion remain unknown. The posttransfu-
sion clearance of erythrocytes depends on the duration of
storage and on the preservative used. Within the first hour
posttransfusion, the majority of transfused damaged erythro-
cytes are cleared; however, still more than 75% of erythro-
cytes remain in the circulation 24 hours posttransfusion
[60]. Interestingly, although CPDA1 is one of the standard
preservatives, the leukoreduced CPDA1 erythrocytes were
shown to contribute to harmful effects associated with blood
transfusion [61] and it is likely that different changes might
have occurred in the membranes of those erythrocytes. Thus,
it is possible that different markers will rise from erythrocytes
stored under different conditions including compositions of
cellular components stored. Furthermore, the alterations of
the erythrocyte membrane proteome might be responsible
for the impaired erythrocyte energy and protein metabolism
and vesiculation, contributing to potential adverse posttrans-
fusion outcomes. Thus, the understanding of the posttransfu-
sion consequences on the human health and erythrocyte fate
needs to be elucidated. Altogether, the data demonstrate
the importance of studying storage-induced alterations in

erythrocyte membrane proteome and the need to understand
the clearance kinetics of transfused erythrocytes and protein
markers identified in this study.
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