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Abstract

Objective—Evaluate the quality of clinical order practice patterns machine-learned from 

clinician cohorts stratified by patient mortality outcomes.

Materials and Methods—Inpatient electronic health records from 2010–2013 were extracted 

from a tertiary academic hospital. Clinicians (n=1,822) were stratified into low-mortality (21.8%, 

n=397) and high-mortality (6.0%, n=110) extremes using a two-sided P-value score quantifying 

deviation of observed vs. expected 30-day patient mortality rates. Three patient cohorts were 

assembled: patients seen by low-mortality clinicians, high-mortality clinicians, and an unfiltered 

crowd of all clinicians (n=1,046, 1,046, and 5,230 post-propensity score matching, respectively). 

Predicted order lists were automatically generated from recommender system algorithms trained 

on each patient cohort and evaluated against i) real-world practice patterns reflected in patient 

cases with better-than-expected mortality outcomes and ii) reference standards derived from 

clinical practice guidelines.

Results—Across six common admission diagnoses, order lists learned from the crowd 

demonstrated the greatest alignment with guideline references (AUROC range=0.86–0.91), 

performing on par or better than those learned from low-mortality clinicians (0.79–0.84, P<10−5) 

or manually-authored hospital order sets (0.65–0.77, P<10−3). The same trend was observed in 

evaluating model predictions against better-than-expected patient cases, with the crowd model 
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(AUROC mean=0.91) outperforming the low-mortality model (0.87, P<10−16) and order set 

benchmarks (0.78, P<10−35).

Discussion—Whether machine-learning models are trained on all clinicians or a subset of 

experts illustrates a biasvariance tradeoff in data usage. Defining robust metrics to assess quality 

based on internal (e.g. practice patterns from better-than-expected patient cases) or external 

reference standards (e.g. clinical practice guidelines) is critical to assess decision support content.

Conclusion—Learning relevant decision support content from all clinicians is as, if not more, 

robust than learning from a select subgroup of clinicians favored by patient outcomes.
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1. INTRODUCTION

Healthcare often falls short of recommended, evidence-based care, with overall compliance 

with guideline recommendations ranging from 20–80%.[1] Yet, even with recent reforms,[2] 

evidence-based medicine from randomized controlled trials cannot keep pace with the 

growing breadth of clinical questions. Only 11% of guideline recommendations are 

supported by high-quality evidence.[3] Variability and uncertainty in medical practice is 

further exacerbated by a medical knowledge base that is perpetually expanding beyond the 

cognitive capacity of any individual.[4] A clinician is thus left to synthesize vast streams of 

information in an attempt to make the best decisions for each individual patient. As such, 

medical practice routinely relies on anecdotal experience and individual expert opinion.

To address these issues, healthcare organizations increasingly seek clinical decision support 

(CDS) systems. CDS aims to reinforce best-practices by distributing knowledge-based 

content through order sets, templates, alerts, and prognosis scoring systems.[5] Here we 

focus specifically on clinical orders as concrete manifestations of point-of-care decision 

making. Computerized provider order entry (CPOE) typically occurs on an “a la carte” 

basis, where clinicians search for and select orders to trigger subsequent clinical actions 

(e.g., pharmacy dispensing and nurse administration of a medication, laboratory analysis of 

blood tests, consultation to a specialist).[5] Because clinician memory and intuition can be 

error-prone, health system committees manually curate order set templates to distribute 

standard practices for common diagnoses and procedures.[6] This top-down approach 

enables clinicians to draw clinical decisions from pre-constructed, human-authored order 

sets.
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Existing approaches to CDS increase consistency and compliance with best practices,[7–8] 

but production of this content is limited in scale and scope by a committee-driven, manual 

production process that requires the collaboration of physicians, nurses, and department 

heads. Even once such content is produced, ongoing maintenance is required to keep it up to 

date with new evidence, technology, epidemiology, and culture,[9] ultimately making it 

infeasible to manually produce a comprehensive knowledge base.[10] One of the “grand 

challenges” in CDS is thus to automatically generate decision support content by data-

mining clinical data sources from the bottom-up.[11] In the era of electronic health records 

(EHR), there is an opportunity to create data-driven CDS systems that leverage the aggregate 

expertise of many healthcare providers and automatically adapt to the ongoing stream of 

practice data.[12] This would fulfill the vision of a health system that continuously learns 

from real-world data and translates them into usable, point-of-care information for 

clinicians. Prior research into data-mining for decision support content includes association 

rules, Bayesian networks, and unsupervised clustering of clinical orders and diagnoses.[13–

20] In our prior work, inspired by similar information retrieval problems, we developed a 

data-driven clinical order recommender engine[21] analogous to Netflix and Amazon.com’s 

“customers who bought A also bought B” system.[22] Our engine dynamically generates 

order recommendations based on real-world clinical practice patterns represented in EHR 

data, in effect enabling automatically generated order sets.

The “wisdom of the crowd” phenomenon purports that the collective assessment of a group 

of individuals can often be surprisingly as good as, if not better than, that of individual 

experts.[23] Condorcet’s Jury Theorem illustrates mathematically why one might expect 

collective opinion to be more likely correct than expert opinion, even when individual 

members of a group are less likely to be correct than individual experts.[24] In the context of 

data-driven CDS for medical decision making, we translate this to training machine-learning 

models on all available data, including patterns generated by clinicians of varying levels of 

experience and competence.[25] However, effective medical decision making may be 

compromised if patterns are learned from clinicians with systematically biased decision 

making that yield poorer patient outcomes. Instead, it could prove advantageous to learn 

from a cherry-picked subset of clinicians, such as those with notably lower observed than 

expected patient mortality rates, a metric commonly used to evaluate clinician and hospital 

performance.[26] With the emergence of data-driven CDS systems, should we learn 

indiscriminately from the wisdom of the entire crowd, or only from a select subset of data 

generated by “preferred experts?”

2. OBJECTIVE

To identify “expert” and deviant providers in a tertiary academic hospital, we develop a 

methodology to stratify clinician populations based on observed vs. expected patient 

mortality rates. To determine whether machine-learning clinical order patterns from all 
clinicians or a cherry-picked clinician subgroup with “better” patient outcomes yields more 

robust results, we evaluate association models trained on “low-mortality” clinicians, “high-

mortality” clinicians, and an unfiltered clinician “crowd” against two reference standards: i) 

real-world practice patterns reflected in patient cases with better-than-expected patient 
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mortality outcomes and ii) consensus order lists derived from published clinical practice 

guidelines for common admission diagnoses.

3. METHODS

3.1 Data Source

We extracted deidentified, structured patient data from the (Epic) EHR for inpatient 

hospitalizations from 2008–2013 via the Stanford University Medical Center (SUMC) 

Clinical Data Warehouse (Figure 1, methodology pipeline).[27] The dataset covers patient 

encounters from their initial (emergency room) presentation until hospital discharge, 

comprising >74K patients, >11 million instances of >27K distinct clinical items, and >5.3K 

admission diagnosis ICD9 codes. The clinical item elements include >7.8K medication, 

>1.6K laboratory, >1.1K imaging, and >1.0K nursing orders.

3.2 Data Preparation

Medication data was normalized with RxNorm mappings[28] down to active ingredients and 

routes of administration. Numerical lab results were binned based on “abnormal” flags 

established by the clinical laboratory, or being outside two standard deviations from the 

population mean. ICD9 codes were aggregated up to the three digit hierarchy to compress 

the sparsity of diagnosis categories, but original (four-five digit) codes were retained if 

sufficiently prevalent. Problem list and admission diagnosis ICD9 codes were used to assign 

Charlson Comorbidity Indices.[29] Income levels were inferred from 2013 US census data 

by cross-referencing patient zip codes with the median household income in that region. 

Physician specialties (e.g. Otolaryngology, Plastic Surgery, Thoracic Surgery) were grouped 

into broader treatment team categories (e.g. Surgery Specialty). These pre-processing steps 

enable us to model each patient as a timeline of clinical event instances, with each event 

mapping a clinical item to a patient at a discrete time point.

As clinical item instances follow the 80/20 rule of a power law distribution,[30] the majority 

of item types may be ignored with minimal information loss. As described in our prior work,

[31] ignoring rare clinical items (occurring for <1% of patients) significantly reduces the 

number of distinct items considered while still capturing ~98% of all clinical item event 

instances. Ultimately, ~2.0K candidate clinical orders were considered for prediction, 

including >700 medication, >350 laboratory, and >200 imaging orders.

3.3 Clinician Stratification by 30-Day Mortality Rate

Hospital clinicians are subject to performance metrics including compliance with 

documentation and process measures (e.g. ensuring patients suffering from a heart attack are 

discharged on specific medications) as well as factors like patient’s length of stay and 

unplanned readmission rate.[32] Here, we use 30-day patient mortality to stratify clinicians 

who saw patients between 2010 and 2013 (n=1,822). Mortality provides a concrete and 

reproducible metric prominently featured in existing quality ranking systems used to assess 

hospital and clinician performance (see Appendix 9).[26,32–35] We avoid process measures 

that do not necessarily translate into meaningful patient outcomes, and measures like length 

of stay that could be “gamed” by compromising other care considerations.[33]
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In this step, we sought to identify “low-” and “high-mortality” clinician subgroups, defined 

as clinicians with lower or higher observed than expected 30-day mortality rates among the 

patients they treated, respectively. We attributed clinician-patient treatment relationships 

whenever a clinician signed a History and Physical Examination (H&P) note during a 

patient’s hospital encounter. After the last recorded admission, whether or not the patient 

died within 30 days was a binary outcome, yielding observed dead and alive patient counts 

for each clinician.

Observed mortality counts can be biased by variable patient sickness and clinical specialties 

that naturally see sicker patient populations. To address this imbalance, we computed per-

clinician expected mortality counts. Given patient data commonly used to inform prognosis 

models and adjust for severity of illness,[36–38] we trained a L1-regularized logistic 

regression model using 10-fold cross validation (cross-validation AUROC=0.86) to predict 

patient probability of death within 30 days of their last recorded admission. Features 

included demographic data (age, ethnicity, gender, income level), initial vital signs 

(temperature, pulse, blood pressure, etc.), initial standard lab test results (white blood cell 

count, blood sodium level, blood urea nitrogen, etc.), Charlson Comorbidity Indices[29] to 

capture past medical history, treatment team designations (e.g. to distinguish medical from 

surgical patients), and admission diagnoses from patients seen between 2008–2009 

(n=6,797). Grid-search hyperparameter tuning (systematically iterating through a manually-

specified list of potential shrinkage parameters) was used to minimize the cross-validation 

area under the receiver operating characteristic curve (AUROC) yielding an optimal 

shrinkage parameter λ = 2 × 10−3.[39] We then predicted probabilities of 30-day mortality 

for patients seen between 2010 and 2013 (n=64,598). The expected 30-day mortality count 

for each clinician was computed as ∑i = 1
N j pi rounded to the nearest integer, where Nj = 

number of patients attributed to clinician j, and pi = patient i’s predicted probability of dying 

within 30 days.

Although commonly used in practice, raw observed vs. expected ratios yield unstable rate 

estimates for small sample sizes.[40] To address this, we integrated an assessment of 

numerical confidence in the estimates by calculating Pj for each clinician, the P-value for the 

observed vs. expected mortality contingency table (Table 1) using a two-sided Fisher Exact 

Test. This approach, common to genomics,[74] captures certainty of deviation from 

expected norms based on combined effect size and patient cohort size. We then assign each 

clinician j a score Sj defined as:

S j = − log P j i f observed rate > expected rate

S j = + log P j i f observed rate < expected rate

For clinicians with insufficient data to make statistically confident claims (or whose 

observed and expected rates are nearly identical), Sj converges to 0. This has the effect of 

assigning a large positive score to “low-mortality” clinicians (n=397) with observed 
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mortality rates that are detectably less than expected and inversely, large negative scores to 

“high-mortality” clinicians (n=110).

3.4 Patient Cohort Assembly

Using clinician-patient assignments defined in Step 3.3, we assembled three patient cohorts 

seen from 2010–2013: 1) Low-mortality (n=8,641) comprised of patients treated by one or 

more low-mortality clinicians but no high-mortality clinicians, 2) high-mortality (n=1,376), 

comprised of patients treated by one or more high-mortality clinicians but no low-mortality 

clinicians, and 3) crowd (n=64,598), comprised of the unfiltered superset of all patients. 

Low- and high-mortality patient cohorts are mutually exclusive.

3.5 Propensity Score Matching

As we are interested in comparing the effect of different clinician decision making 

behaviors, we need to account for underlying differences in patient characteristics and 

disease severity. To minimize biases arising from confounding covariates between patient 

cohorts assembled in Step 3.4, we conducted common-referent 1:1:K propensity score 

matching.[41] In this approach, we first conduct 1:1 propensity score matching between the 

low- and high-mortality patient cohorts (round 1), and subsequently conduct 1:K propensity 

score matching between the already matched low-mortality and unmatched crowd patient 

cohort (round 2). Using K=5 balanced post-matching standardized mean difference (SMD) 

similarity against data loss.

In both rounds of matching, using demographic data, initial vital signs recorded before the 

onset of care, initial lab tests, and Charlson Comorbidity Indices as covariates, we applied an 

un-regularized logistic regression model to compute the probability p of each patient’s 

assignment to the low-mortality patient cohort, defined as the propensity score to match on. 

We then conducted caliper matching on the logit of the propensity score log p
1 − p , using 

caliper widths (maximum tolerated differences between matched patients) of 0.29 and 0.11 

which were chosen based on 0.2×σ where σ = the pooled standard deviation of propensity 

score logits across each pair of unmatched patient cohorts.[42] This ultimately yielded 

balanced cohorts of 1,046, 1,046, and 5,230 (1:1:5) patients.

3.6 Association Rule Episode Mining

Using patient hospitalization data from each balanced patient cohort, we conducted 

association rule episode mining on clinical item pairs to capture historical clinician behavior. 

Our previously described clinical order recommender algorithm[21,31,43–44] counts co-

occurrences for all clinical item pairs occurring within 24 hours to build time-stratified item 

association matrices. These counts are then used to populate 2×2 contingency tables to 

compute association statistics such as baseline prevalence, positive predictive value (PPV), 

relative risk (RR), and P-value by chi-square test for each pair of clinical items. Co-

occurrence counts can also be extended to identify orders associated with groups of clinical 

items.

For a given query item (e.g. admission diagnosis) or set of query items (e.g. admission 

diagnosis followed by initial clinical items administered during a given patient visit), we can 
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then generate a list of clinical order suggestions score-ranked by a specified association 

statistic. Score-ranking by PPV prioritizes items that are likely to occur after the query 

items,[45–46] whereas score-ranking by P-value for items with odds ratio >1 prioritizes 

orders that are disproportionately associated with the query items.[21] We trained three 

distinct association models using patient encounters from the balanced low-mortality, high-

mortality, and crowd patient cohorts, each reflecting clinical order patterns from the 

corresponding clinician population.

3.7 Hospital-Authored Order Sets

Manually-authored hospital order sets are provided as a clinician resource for addressing 

common diagnoses and procedures, typically curated by hospital clinical committees. 

Existing order sets provide us a real-world, standard-of-care benchmark for decision support 

content.

3.8 Evaluation Against Real-World Practice Patterns

In automatically generating order lists, we seek to inform medical decision making that 

results in “successful” patient cases, which we define as encounters that yield better-than-

expected patient mortality outcomes. Using the patient mortality predictor defined during 

clinician stratification (Step 3.3), we identified patients seen between 2010–2013 with 30-

day mortality probabilities >0.5 who, against expectations, survived past the 30-day 

threshold. We then excluded patients inputted during association model training (n=136). In 

our first prediction task, we sought to emulate real-world practice patterns exhibited in these 

“successful” patient cases.

For each patient, we isolated usage instances of manually-authored hospital order sets within 

the first 24 hours of a hospitalization (n=426). We then generated a personalized order list at 

each such moment in time by querying each association model with the patient’s admission 

diagnosis and clinical orders administered up to the hospital order set usage instance.[45] 

For each instance, we compared outputted clinical order suggestions against the “successful” 

set of orders that actually occurred during the patient encounter within a verification window 

of 24 hours post-order set usage.

3.9 Evaluation Against Practice Guidelines

In our second prediction task, we automatically generated an “order set” given an admission 

diagnosis. We generated order lists from each association model for six common admission 

diagnoses: altered mental status (ICD9: 780.97), chest pain (ICD9: 786.5), gastrointestinal 

(GI) hemorrhage (ICD9: 578), heart failure (ICD9: 428), pneumonia (ICD9: 486), and 

syncope and collapse (ICD9: 780.2). These diagnoses were selected because they have a 

significant quantity of clinical data examples to study and relevant published guidelines and 

manually-authored hospital order sets to benchmark against.

We sought to evaluate each predicted order list’s alignment with clinical practice guidelines. 

To develop a guideline-based reference standard for order quality, two board-certified 

internal medicine physicians curated reference lists of clinical orders based on clinical 

practice literature available from the National Guideline Clearinghouse (www.guideline.gov) 
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and PubMed that inform common practices like hospital management of chest pain,[47–48] 

gastrointestinal hemorrhage,[49–51] heart failure,[52–53] and pneumonia,[54–55] as well as 

less well-defined standards for management of syncope,[56–57] and altered mental status.

[58] The physicians were instructed to include candidate clinical orders in their reference 

lists if a guideline explicitly mentioned them as appropriate to consider (e.g. treating 

pneumonia with levofloxacin), or heavily implied them (e.g. bowel preparation and NPO 

diet orders are implicitly necessary to fulfill explicitly recommended endoscopy procedures 

for gastrointestinal bleeds). For ambiguous cases, the physicians were instructed to consider 

whether the order was appropriate for inclusion in a general purpose order set for the given 

admission diagnosis. After independently producing their lists, the two physicians resolved 

disagreements (items included in one list but not the other) by consensus to produce a final 

reference standard (Appendix 7, see reference [59]). To assess pre-consensus agreement 

between the two clinicians, we computed Cohen’s Kappa statistics[60] ranging from −1 to 

+1, with values <0 indicating poor agreement and values >0.6 indicating substantial 

agreement (Appendix 7).[60]

3.10 Evaluation Metrics

In both prediction tasks, we ranked predicted order lists generated from low-mortality, high-

mortality, and crowd association models by PPV and evaluated predicted order lists against 

the corresponding guideline reference list or “successful” order history using area under the 

receiver operating characteristic (AUROC) and precision and recall for the top K ranked 

items. Comparison of such metrics sought to determine how association models differed in 

their i) alignment with clinical practice guidelines and ii) ability to emulate “successful” 

real-world patient cases.

3.11 Additional Analyses

We conducted a number of supplemental analyses to validate the robustness of our study 

design.

To assess the stability of our clinician stratification method relative to other potential quality 

measures, we compared clinician cohorts stratified by 30-day mortality against those 

stratified by two alternative outcome variables, 30-day readmission and joint 30-day 

mortality or readmission, following the same P-value based approach (Appendix 1).

To assess whether physicians assigned to low- and high-mortality cohorts held majority 

responsibility for patients attributed to them, we quantified clinician responsibility using a 

shared-attribution model based on daily H&P and progress notes (e.g. a provider who signs 

three out of five notes is responsible for 60% of a patient’s hospitalization).[61]

Manually-authored hospital order sets are provided as a resource for clinicians to utilize, 

influencing clinical order entry. As such, association models may recapitulate pre-authored 

order set templates in lieu of truly capturing individual clinical practice patterns. To gauge 

the influence of order set templates on learned patterns, we compared association models 

trained on clinical order data with or without the inclusion of real-world order set usage 

(Appendix 2).
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In addition to comparing predicted order lists against reference standards derived from 

better-than-expected patient cases and practice guidelines, we can also directly compare 

similarity among predicted order lists. For this task, traditional measures of list agreement 

like Kendall’s τ-metric[62] are not ideal as they often require identically-sized, finite lists, 

and weigh all list positions equivalently. To compare scored order lists, we instead calculated 

agreement by Rank Biased Overlap (RBO),[63] which accounts for rank-order (see Table 3 

in reference [59] for full RBO description and results). RBO values range from 0.0 (no 

correlation or random list order) to 1.0 (perfect agreement).

In our study design, we isolate low-mortality clinicians in an attempt to curate a high-quality 

clinician cohort from the bottom-up based on patient outcomes. Similarly, one could also 

begin with the full clinician crowd and filter out high-mortality clinicians, curating from the 

top-down. To compare these two approaches, we evaluated association models trained on an 

unfiltered crowd and top-down filtered crowd (Appendix 5).

4. RESULTS

Figure 2 shows the distribution of clinician performance scores alongside observed vs. 

expected (O:E) patient mortality ratios for all clinicians who saw patients between 2010 and 

2013. Performance scores correlate with O:E ratios but are also dependent on patient count 

and effect size.

Appendix 4 shows covariate distributions for low-mortality, high-mortality, and crowd 

patient cohorts after 1:1:5 common referent matching. Post-matching standardized mean 

differences (SMD) were <0.2 across all covariates, indicating an insignificant difference 

between balanced patient cohorts.

Table 2 shows examples of clinical orders disproportionately associated with a given 

admission diagnosis generated by low-mortality and crowd association models for six 

admission diagnoses of interest (see reference [59] for extended order lists generated by all 

three association models). Many predicted orders are shared across cohorts, although their 

relative ordering and specific association statistics differ. Across all six diagnoses, the three 

association models exhibit substantial pairwise agreement overall as indicated by RBO 

values in Appendix 3 ranging from ~0.6–0.7.[59]

Figure 3 shows mean AUROC, precision, and recall values obtained by each association 

model in predicting personalized order lists to emulate real-world practice patterns reflected 

in 426 better-than-expected patient cases. In this first evaluation task, the crowd model 

(mean AUROC 0.91) outperformed the low-mortality model (0.87, P<10−16) and order set 

benchmarks (0.78, P<10−35).

Figure 4 and Appendix 6 show ROC plots and precision-recall curves, respectively, 

evaluating alignment of automatically-learned “order sets” generated by each association 

model to guideline reference standards for the six admission diagnoses. In this second 

evaluation task, the crowd model similarly demonstrated the greatest alignment with 

guideline references (AUROC range 0.86–0.91), performing on par or better than the low-
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mortality clinician model (0.79–0.84, P<10−5) and manually-authored hospital order sets 

(0.65–0.77, P<10−3).

5. DISCUSSION

In this study, we validate two trends. First, automatically learning clinical practice patterns 

from electronic medical records can generate decision support content that is more robust 

than conventional, manual methods. Second, content learned from an unfiltered crowd of all 
clinicians is as, or more robust, than that learned from a cherry-picked clinician subset 

favored by patient mortality outcomes. These findings are consistent across AUROC, 

precision, and recall metrics in two distinct evaluation tasks: i) emulation of real-world 

practice patterns represented in patient cases with better-than-expected mortality outcomes 

(Figure 3) and ii) alignment with clinical practice guidelines for six common admission 

diagnoses (Figure 4, Appendix 6).

These results may seem surprising when individual clinicians can exhibit substantial practice 

variability. While some clinicians will certainly make poor decisions sometimes, 

Condorcet’s Jury Theorem[24] posits that aggregating the non-random decisions of many 

converges towards correctness. This is the same argument behind the wisdom-of-the-

crowd[23] and ensemble-based machine-learning algorithms that generate strong classifiers 

from individually weak ones.[64] Whether such models are better trained on all available 

cases or a cherry-picked subset of clinical decision makers illustrates a bias-variance 

tradeoff.[65] Intuition may suggest isolating “better” clinicians or excluding low-performing 

ones (Appendix 5). Instead the crowd model, which simply aggregates all available data, 

shows greater alignment in relation to the low-mortality model across both clinical practice 

guidelines (AUROC range 0.86–0.91 vs. 0.79–0.84, P<10−5) and real-world practice patterns 

(mean AUROC 0.91 vs. 0.87, P<10−16). Selecting a cohort of low-mortality clinicians can 

reduce bias in learned practice patterns towards more desirable medical decisions, but also 

reduces the amount of data available to the learning algorithm and can thus increase variance 

in model estimations.

The key risks and limitations of this study point to the importance of its contribution. Here, 

we focus on patient mortality as a concrete patient-centered outcome; this presumes 

mortality is undesirable and preventable. However, a doctor who realigns the goals of care 

for a terminally-ill patient towards end-of-life hospice treatment may well represent “better” 

treatment than one who reflexively keeps patients alive on artificial life support for 

prolonged periods. We do not expect this to significantly alter our usage of death as an 

undesirable outcome however, as less than 2% (1,262/74,880) of patients studied were ever 

treated with care goals purely directed towards “Comfort Care Measures.” Factoring 

treatment team into the expected mortality predictor was similarly important to account for 

different expectations of clinicians in different specialties (e.g. medical vs. surgical). Even 

after accounting for the aforementioned, the potential vagaries of interpretation mean we do 

not advise using any such scoring method to credibly distinguish care quality at the 

individual level. Indeed, we specifically avoid labeling individual physicians as “good, bad, 

correct, or incorrect” as it is difficult to reliably assign causality between individual order 

patterns and patient outcomes. Instead, we identify clinician populations and their practice 
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patterns most associated with “better” patient outcomes (e.g. better-than-expected mortality). 

While we do not expect our system to reliably make distinctions between clinicians ranked 

10 vs. 15, it is sufficient to discriminate between the top 100 vs. bottom 100. The 

discriminating power of the underlying mortality predictor (AUROC=0.86) is comparable 

with state-of-the-art mortality predictors [21,39,66]. As such, we could confidently risk-

stratify a population of high-mortality clinicians from low-mortality ones. We gain further 

reassurance in noting that alternative clinician stratification metrics such as 30-day 

readmission and joint 30-day readmission or mortality produced clinician subgroups that 

substantially overlapped with those stratified by our 30-day mortality approach (Appendix 

1). A final consideration regarding stratification methodology is physician-patient attribution 

in determining a clinician’s observed versus expected patient mortality rate. Multiple 

physicians are often responsible for a given patient’s hospitalization, distributing 

responsibility. In our shared-attribution analysis, we observe that attributed clinicians were 

responsible for the majority of patient stays, such as the high-mortality clinicians who were 

responsible on average for 69.2% of their patients’ hospitalization durations. Attributing 

mortality to the admitting attending (e.g. via H&P notes signed upon admission) rather than 

the discharging attending is preferable, as key diagnostic and management decisions that 

occur early in a patient’s care are often major drivers of patient outcomes like mortality.[67–

68]

In clinical practice, the treatment regimen for an initial admission diagnosis becomes 

increasingly specific as the clinical investigation progresses. For heterogeneous diagnoses, a 

noted concern is the suitability of order set benchmarks, which may not accurately reflect 

real-life patient encounters. For example, the SUMC order set for altered mental status 

contains clinical orders used in specific manifestations of the diagnosis (e.g. naloxone to 

treat emergency narcotic overdose, piperacillin-tazobactam to treat sepsis) and broad 

spectrum orders (e.g. CT head to assess head injuries generally). However, order sets are not 

necessarily meant to function as explicit checklists for any one patient encounter; instead, 

they provide suggestions encompassing diverse possibilities to help clinicians recall 

potential treatment pathways. To improve upon prevailing order set curation methods, 

hospital order sets remain the standard-of-care benchmark although heterogeneous. A 

similar concern is the heterogeneity of automatically-generated order lists (Appendix 8). 

Automatically-curated content, like hospital order sets, provide a superset of investigations 

and treatments that could be the root cause for a given diagnosis. Indiscriminately following 

automatic suggestions could lead to over-treatment and testing. Automated decision support 

content is not meant to supplant complex medical decision making. Instead, such datadriven 

suggestions can reduce information load by enabling physicians to recognize rather than 

recall diverse treatment options during a patient assessment.

Notably, that there is no universal gold standard to define “good” medical decision making. 

Yet the impact of medical decision making on patient care makes it all the more important to 

develop reasonable and reproducible references to better understand these processes (see 

Appendix 7 and reference [59] for guideline reference standards). Here, we introduce 

clinical practice guidelines as an external reference standard to evaluate learned clinical 

order patterns, building upon previous internal statistical benchmarks (e.g. emulating 

existing clinical order patterns based on historical trends).[45] Although natural language 
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processing approaches to interpreting clinical practice literature is an active field of research,

[69–70] translating guidelines into reproducible and verifiable constructs (e.g. discrete 

clinical orders CPOE system input) still requires significant human interpretation. To 

mitigate variability, two physicians independently developed reference lists based on their 

readings of clinical practice guidelines. This yielded substantial agreement with Cohen’s 

Kappa values >0.6 for all diagnoses addressed (Appendix 7), offering reassurance in the 

stability of this reference standard. Examples of differences between the two physicians 

included when only one physician counted guideline references to highly conditional use of 

uncommon interventions (e.g. Factor IX for GI bleeds), general hospital admission orders 

not specifically related to the diagnosis in question (e.g. physical therapy and subcutaneous 

heparin orders), or intensive care unit level interventions which guidelines advised be used 

only if multiple other treatment modalities failed (e.g. dobutamine and nesiritide for heart 

failure). These were ultimately reconciled by consensus as not appropriate to include in the 

reference standard, based on the principle that they would not be expected for inclusion in a 

general purpose default “order set” for the respective admission diagnosis. Even with 

consistency in this reference standard, a fair question is whether clinical practice guidelines 

actually define “good” medical care.[71–73] To more directly identify optimal medical 

decision making, we introduce a second evaluation metric based on “successful” patient 

cases, reflected in encounters with better-than-expected mortality outcomes. Consistent 

trends in both evaluations provides multiple validations of our results.

In applying either evaluation methodology, we highlight the practical engineering tradeoffs 

that arise when deciding to cherry-pick a subset of expert clinicians or learn from an 

unfiltered crowd. This is a natural decision that arises when curating training data for 

medical informatics applications. The relative stability of patterns learned from both low-

mortality and the crowd models (represented by RBO scores in Appendix 3) reflects that 

either approach converges towards a common basis of relevant content (e.g. established 

guideline-based practices). In the end, even more pointed are clinical scenarios where no 

robust practice guidelines exist. The recommender algorithm reviewed here is always able to 

produce some suggestions based on historical practice patterns. The quality of such 

suggestions is inherently difficult to evaluate without a proper reference standard. Here, we 

introduce a data-driven methodology to evaluate order predictions against “successful” real-

world patient cases, even in the absence of practice guidelines. The consistent alignment of 

automatically-generated order lists with both practice guideline standards externally defined 

from the top-down and real-world practice patterns internally curated from the bottom-up 

gives us confidence in the utility of data-driven approaches.

6. CONCLUSIONS

A clinician scoring system based on P-values of observed vs. expected 30-day patient 

mortality rates can stratify clinician cohorts by taking into account combined effect size and 

certainty of deviation from expected norms. Automatically learning clinical practice patterns 

from historical EHR data can generate decision support content that aligns with clinical 

practice guidelines and emulates real-world practice patterns as well as, if not better than, 

conventional manually-authored content. Learning decision support from data generated by 
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all clinicians using this approach is as, or more, robust than selecting a subgroup of 

clinicians favored by patient mortality data.
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Highlights

• Patterns from clinical order entry data can yield relevant decision support 

content

• Automatic patterns outperform manually-authored order sets by multiple 

metrics

• Deviation in observed from expected patient outcomes can stratify clinicians

• Patterns from all clinicians prove more robust than those from “preferred” 
clinicians
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Figure 1. Methodology Pipeline to Investigate Whether Clinician Stratification by Patient 
Mortality Yields Better Automatically Learned Practice Patterns.
1) Data source: de-identified, structured patient data was extracted from Stanford University 

Medical Center’s EHR (Epic). 2) Data preparation: patient data was processed to reduce 

complexity across medication, lab result, and diagnosis codings. 3) Clinician stratification: 

to mitigate confounding factors resulting from underlying patient characteristics, a L1-

regularized logistic regression model was trained on 2008–2009 clinical data to predict a 

patient’s probability of mortality within 30 days based on treatment team, comorbidities, 

demographics, severity of illness, etc. and used to predict expected 30-day mortality counts 

for active clinicians in 2010–2013. Using a P-value-transformation of observed versus 
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expected mortality counts and H&P authorship to identify clinician-patient relationships, 

clinicians at extremes were stratified into groups with lower or higher than expected patient 

mortality. 4) Patient cohort assembly: low-mortality (patients seen by low-mortality 

clinicians and no high-mortality clinicians), high-mortality (vice versa), and crowd patient 

cohorts (patients seen by any clinician) were assembled. 5) Propensity score matching: to 

further mitigate confounding factors, the three patient cohorts were balanced across 

covariates including medical history, treatment specialty, and demographic data, ensuring 

that the patient cohorts differed primarily in which class of clinicians they saw. 6) 

Recommender system training: applying association rule episode mining to clinical order 

data extracted from each patient cohort, three distinct recommender systems were trained, 

each reflecting the clinical order patterns of the corresponding clinician cohort. 7) Order list 

prediction: each recommender system outputted order suggestions for two predictions tasks: 

i) given an admission diagnosis and clinical orders administered up to the usage of an order 

set from a real-world patient case, predict a personalized order list; ii) given an admission 

diagnosis, predict a general diagnosis-specific order list. For (i), we considered patient cases 

with better-than-expected mortality outcomes from 2010–2013 EHR data, left-out from 

model training. For (ii), we considered six common admission diagnoses. 8) Evaluation: 

predictions generated by the three association models and corresponding hospital order set 

benchmarks were evaluated against: i) real-world practice patterns reflected in the actual 24 

hours of orders administered after the order set usage instance; ii) practice guideline 

reference standards curated by two board-certified internal medicine physicians based on a 

review of clinical practice literature. EHR: electronic health record. H&P: history & physical 

examination note.
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Figure 2. Distribution of clinician performance scores and corresponding patient cohort sizes 
among 2010–2013 clinicians.
Each x-axis position represents one clinician considered with blue peaks representing the 

number of patients whose treatment was attributed to the clinician. Figure 1A illustrates 

clinicians sorted purely by observed-to-expected patient mortality ratio (gray points). The 

raw ratio proves unstable as a metric. Nearly half of clinicians show a “perfect” ratio of 0, 

mostly due to small patient cohort size, and a small cluster of clinicians on the right show an 

undefined ratio when the expected death denominator is zero. Figure 1B sorts clinicians by 

total patient count attributed to them. The clinician performance score (orange curves) 
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accounts for both effect size of observed-to-expected patient mortality as well as certainty in 

those rate estimates based on the quantity of patient data available for each clinician. Figure 

1C sorts clinicians by performance score, illustrating that by design the majority of 

clinicians (72.2%, n=1315 of 1822) are left unstratified in the middle range with an Sj score 

of zero, largely given patient cohort sizes too small to draw statistically detectable 

conclusions. Only clinicians at the extremes who demonstrate substantial deviation from 

expected norms are stratified into low- and high-mortality cohorts.
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Figure 3. Mean AUROC, precision, and recall metrics from evaluating predicted personalized 
order lists against real-world practice patterns reflected in patient cases with better-than-
expected mortality outcomes (n=426 order set usage instances).
Predictions were generated each time a manually-authored hospital order set was used 

within 24 hours of a hospitalization. Each chart compares the performance of low-mortality, 

high-mortality, and crowd association models and corresponding hospital order set 

benchmarks in emulating the “successful” orders actually placed 24 hours post-order set 

usage. Mean values are plotted alongside 95% confidence interval bands empirically 

estimated by bootstrap resampling with replacement 1000 times. The crowd model emulates 

better-than-expected, real-world practice patterns as well as, or better than, the low-mortality 

model, high-mortality model, and order set benchmarks. K=the number of items in the 

corresponding hospital order set denoting the usage instance. AUROC: area under the 

receiver operating characteristic curve.
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Figure 4. ROC plots evaluating predicted order lists against practice guideline reference 
standards for six example diagnoses.
Each plot compares an order set authored by the hospital and automated predictions from 

low-mortality, high-mortality, and crowd association models. Pre-authored order sets have 

no inherent ranking or scoring system to convey relative importance and are thus depicted as 

a single discrete point on the ROC curve. Area-under-curve (AUROC) is reported as c-

statistics with 95% confidence intervals empirically estimated by bootstrap resampling with 

replacement 1000 times. The unfiltered crowd of clinicians generates predictions that align 

with clinical practice guidelines as much as or more robustly than a cherry-picked subset of 

clinicians or manually-authored order sets. ROC: receiver operating characteristic.
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Table 1.

Example clinician performance scores. An observed vs. expected 30-day morality contingency table was 

constructed for each clinician based on the set of patients they were responsible for in 2010–2013. A patient 

was counted as “dead” if their death occurred within 30 days of their last recorded admission order. The 

observed dead (DO) and alive (AO) counts can be deduced directly from admission order and mortality 

timestamps. The expected dead (DE) and alive (AE) counts are predicted using 30-day mortality probabilities 

generated by a L1-regularized logistic regression model trained on 2008–2009 patient data. In these examples, 

Clinician A has a lower O-to-E ratio than Clinician B, but a larger quantity of data that yields more confidence 

and thus an equivalent final score. Clinicians B and C have the same observed-to-expected mortality ratio, but 

their scores differ due to varying confidence in the estimate. Higher magnitude scores thus reflect a greater 

effect size or certainty of deviation from the expected mortality rate.

Observed to Expected Ratio =
DO/DE

Clinician Example A
O-to-E Ratio = 1.5

Score = −0.22

Clinician Example B
O-to-E Ratio = 3

Score = −0.22

Clinician Example C
O-to-E Ratio = 3

Score = −2.89

Observed
Dead (DO)

Observed
Alive (AO) 9 70 3 17 30 170

Expected
Dead (DE)

Expected
Alive (AE) 6 73 1 19 10 190
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