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Multi-OMICS analyses of frailty and chronic
widespread musculoskeletal pain suggest
involvement of shared neurological pathways
Gregory Livshitsa,b, Ida Malkina, Ruth C.E. Bowyerb, Serena Verdib, Jordana T. Bellb, Cristina Mennib,
Frances M.K. Williamsb, Claire J. Stevesc,*

Abstract
Chronic widespreadmusculoskeletal pain (CWP) and frailty are prevalent conditions in older people. We have shown previously that
interindividual variation in frailty and CWP is genetically determined. We also reported an association of frailty and CWP caused by
shared genetic and common environmental factors. The aim of this study was to use omic approaches to identify molecular genetic
factors underlying the heritability of frailty and its genetic correlation with CWP. Frailty was quantified through the Rockwood Frailty
Index (FI) as a proportion of deficits from 33 binary health deficit questions in 3626 female twins. Common widespread pain was
assessed using a screening questionnaire. OMICS analysis included 305 metabolites and whole-genome (.2.53 106 SNPs) and
epigenome (;1 3 106 MeDIP-seq regions) assessments performed on fasting blood samples. Using family-based statistical
analyses, including path analysis, we examined how FI scores were related to molecular genetic factors and to CWP, taking into
account known risk factors such as fat mass and smoking. Frailty Index was significantly correlated with 51 metabolites after
correction for multiple testing, with 20 metabolites having P-values between 2.1 3 1026 and 4.0 3 10216. Three metabolites
(uridine, C-glycosyl tryptophan, and N-acetyl glycine) were statistically independent and thought to exert a direct effect on FI.
Epiandrosterone sulphate, previously shown to be highly inversely associated with CWP, was found to exert an indirect influence on
FI. Bioinformatics analysis of genome-wide association study and EWAS showed that FI and its covariation with CWP was through
genomic regions involved in neurological pathways. Neurological pathway involvement accounts for the associated conditions of
aging CWP and FI.
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1. Introduction

Age-related loss of physiological function negatively affects
quality of life. This deterioration, defined in general as frailty,
leads to an increased risk of illness, dependency, and adverse
outcomes, including falls, delirium and disability, and death.5 UN
reports consistently suggest that populations around the world
are aging rapidly (http://www.un.org/en/development/desa/

population/publications/pdf/ageing/WPA2015_Report.pdf) and
that, between 2015 and 2030, the number of people in the world
aged 60 years and older is projected to grow by 56% (from 901
million to 1.4 billion). This situation represents one of the most
significant and unprecedented social transformations of the 21st
century, with implications for virtually all sectors of society and, in
particular, health care systems.

The biological mechanisms underlying frailty have been
extensively studied in recent years.15,26 We have shown that
interindividual variation of frailty scores significantly depends on
genetic factors, which explain 34% of their variation. We also
found that chronic widespread musculoskeletal pain (CWP)—
another prevalent age-related condition—is significantly associ-
ated with the Rockwood Frailty Index (FI), and that this
association is caused by shared genetic and common environ-
mental factors. Bivariate variance component analysis revealed
a strong and significant genetic correlation (RG 5 0.69 6 0.02)
between the 2 conditions, after adjustment for age, smoking, and
body composition (fat mass).

This raises the important question of the nature of the common
genetic factors underlying the 2 phenotypes. One approach to the
problem is the genome-wide association study (GWAS). Recent
history of GWAS, however, shows that although making a signif-
icant contribution to understanding the biological architecture of
many common complex traits, many studies of small sample size
demonstrated results having a very low level of replication,
containing extensive false-positive findings, and able to explain
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only a small proportion of the genetic variance (heritability).2,24,34

Modern molecular technologies allow for simultaneous measure-
ment of thousands of measures of biological molecules from DNA
polymorphisms (genomics), DNAmethylation often causing genes’
activation/deactivation (epigenomics), an array of endometabolites
(metabolomics), and others. This, in combination with the de-
velopment of bioinformatics tools, creates the basis for new Multi-
OMICS data analysis strategies of a complex phenotype.23,28

Wehave reportedpreviously that CWP is strongly associatedwith
steroid hormone metabolism, in particular with epiandrosterone
sulphate (EAS).12 Epigenome-wide association study (EWAS) of this
sample provided evidence of neurological pathway involvement
in CWP.14 Thus, the main aim of this study was 2-fold. First,
implementing complex genomic, epigenomic, and metabolomic
data analysis, we attempted to identify major molecular pathways
affecting FI score variation. Second, using comparative statistical
and bioinformatics study of the 2 Multi-OMICS outcomes, we
attempted to identify common molecular genetic factors involved in
the significant genetic correlation between these 2 conditions.

2. Materials and methods

2.1. Study design

Figure 1 illustrates the major steps undertaken in this study.
Further description of the material and methods follows this flow
chart.

2.2. Sample and study phenotypes

We compared simultaneously metabolomics and genomic
factors affecting CWP (assessed by us previously12,14) and FI
(examined in this article). We described the study sample and the

methods of FI assessment in detail elsewhere.15 Briefly,
participants of this study were 3626 UK female volunteers (with
age ranging from 17 to 93 years, with mean 60.5 6 13.9 years)
from the NIHR BRC TwinsUK BioResource. The sample included
1696 monozygotic (MZ) and 1152 dizygotic twins, and 778
singletons ascertained from the general population. Subjects in
TwinsUK are sent regular questionnaires for completing and are
invited intermittently to attend for a clinical visit. Each participant
was assessed for study of primary phenotypes and potential
covariates, including age, smoking, basic anthropometric meas-
urements, and body composition as assessed by dual-energy X-
ray absorptiometry (DXA) technology. All participants provided
written informed consent. The St. Thomas’ Hospital research
ethics committee approved the project.

Frailty was quantified through the Rockwood FI and was
created as a proportion of deficits from 33 binary health deficit
domains.15,22 Originally, assessment of frailty contained a pain
component. In this study, the pain component was omitted, and
individual FI scores were recalculated correspondingly, to avoid
possible duplication with the CWP assessment. Common
widespread pain was assessed using the London Fibromyalgia
Epidemiology Study Screening Questionnaire that had been sent
to twins for self-completion, without reference to the cotwin,31

and has been described by us previously.12

2.3. Genomics

Genotyping was performed in 3 batches on the Illumina Human
Hap300 and Human Hap610-Quad arrays, the results were
collated, and quality control was performed. Only single
nucleotide polymorphisms (SNP) with genotyping rate $95%
and nonsignificantly deviating H-W equilibrium, with P $
0.0001, were retained in the analysis. The 2.5 mln SNP

Figure 1. General outline of the study design. CWP, common widespread pain; FI, Frailty Index.
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genotype data were available for 2286 individuals. Details of
genotyping and quality control were repeatedly previously
reported elsewhere.32

2.4. Epigenomics

DNA methylation was profiled across the genome using MeDIP-
sequencing followed by DNA methylation quantifications to
assess epigenome variation, as previously described in these
data.13 Briefly, the MeDIP-sequencing protocol resulted in an
average of 15,684,723 high-quality uniquely mapping reads
(Burrows-Wheeler aligner) that were subsequently extended to
350 bp to represent the average MeDIP fragment size. Fragments
per kilobase per million were quantified in bins (methylation sites) of
500 bp (250 bp overlap) genome-wide using MEDIPS v1.6.4

Methylation levels were finally assessed at 11,524,145 genomic
regions of size 500 bp (bins) genome-wide in each individual in the
sample (N 5 1820). In the epigenome-wide association analysis
(EWAS), we only considered bins that displayed significant
correlation between longitudinal samples available for each in-
dividual, where methylation levels were measured at least 3 years
apart; and we denoted these bins as lsBINs.13 After quality control,
723,029 lsBINs remained and were considered in the downstream
analyses in the study.

2.5. Metabolomics

Metabolon Inc performed nontargeted ultrahigh-performance
liquid chromatography andmass spectrometry on fasting plasma
samples of TwinsUK participants.27 Raw data were median-
normalized for daily fluctuations of the method and then inverse-
normalized. In our sample, 2530 individuals had metabolic traits.
Finally, 305 metabolites having complete data in more than 2000
participants were used in this study. However, of them, 103
metabolites represented unknown biochemical compounds and
were excluded from the following analyses, despite highly
significant correlations in some instances. Further details are
given in our previous study.12

2.6. Statistical analysis and bioinformatics

Statistical analysis was conducted in the following major steps
(Fig. 1). First, a series of linear regression analyses was
conducted to test for the association between the each of the
available metabolites and FI scores, with simultaneous adjust-
ment for age. Metabolites found to be significantly correlated
with FI scores, after correction for multiple testing by false
discovery rate ([FDR] 5 5.0E-041), were selected for further
analysis. To establish the independent effect of eachmetabolite,
they were simultaneously examined in multiple regression
analysis with FI scores as dependent variable. In addition, we
examined the effect of age and relative fat mass (as covariates),
taking into account familial structure of the sample using MAN
statistical package (http://www.tau.ac.il/;idak/hid_MAN.htm).
Next, implementing GenABLE package (http://www.genabel.
org/packages/GenABEL), GWAS of the FI and metabolites
significantly associated with it were conducted using the entire
sample. Because the analysis discovered a number of
significant associations between FI and CWP, we implemented
path analysis (http://people.exeter.ac.uk/SEGLea/multvar2/
pathanal.html) to determine direction of effects. Further
explanation is given below.

An EWAS was conducted. The sample was divided into 2
groups: Gr1, including 50 pairs of frailty discordant MZ twins, and

Gr2, including all the remaining individuals (N 5 1720). Twin
discordance was determined by intrapair difference in FI scores,
weighted to pair mean FI score, ie, Dj5 (FIj12 FIj2)/0.5 (FIj11 FIj2).
The 50 most discordant twin pairs were selected, and methyl-
ation levels compared by a paired t test. Per binmethylation levels
were correlated with FI scores in the Gr2 sample, or compared by
paired t test between the affected and unaffected on CWP
discordant twins and in the remaining sample (N 5 1720). P-
values for the results obtained in 2 nonoverlapping samples were
combined using the Fisher method.8

Genome-wide association study and EWAS results were
subjected to bioinformatic and annotation analyses, for example,
implementing gene ontology (GO) methods (Fig. 1). In the
epigenome analysis, we first assigned lsBINs to the nearest
ENSEMBL gene using MEDIPS package for R.11 For genes with
multiple bins assigned, we retained the lsBIN with the lowest
P-value for association with CWP. Using the Fisher approach, we
took the combined P-values and conducted GO analysis using
the weight01 algorithm implemented in the topGOpackage for R
(https://bioconductor.org/packages/release/bioc/html/topGO.
html). The statistical significance of overrepresentation of GO
terms was estimated using the Fisher exact test. To make the
study comparable with our CWP results,12 2 GO domains have
been analyzed: biological process and cellular component (CC).
QIAGEN’s Ingenuity Pathway Analysis (www.qiagen.com/in-
genuity) was used for pathway analysis. A similar approach was
implemented to summarize and interpret the GWAS data
obtained for both FI and CWP.

3. Results

3.1. Descriptive statistics

Present study characteristics of the phenotypes are given in
Table 1 with a detailed description of FI given recently
elsewhere.15 The preliminary analysis showed that FI scores
were significantly correlated with age (r 5 0.446), body mass
index (r 5 0.326), and relative fat mass, FAT/H2 (r 5 0.330), all
having P , 0.0001. Frailty Index also strongly depended on
smoking habits increasing almost linearly between nonsmokers,
previous smokers, and current smokers, respectively: 0.216 (SD
5 0.133), 0.242 (SD5 0.138), 0.254 (SD5 0.149), F(2d.f.)5 21.8,
P 5 4.1 3 10210, adjusted for age. In the following analysis, the
effect of these covariates was taken into account. Only
association with FAT/H2 remained significant if tested simulta-
neously with body mass index.

3.2. Metabolomics analysis with Frailty Index

There were 305 chemical compounds for analysis after excluding
metabolites that had .20% missing values10 and with unknown
identity. Table 2 shows the 20 most significantly correlated

Table 1

Basic descriptive statistics of the study sample from

TwinsUK.

Variable N Mean SD Min Max Skew 6 SE

FI-scores 3626 0.23 0.14 0.01 0.81 1.010 6 0.041

Age, y 3613 60.50 13.87 16.37 93.01 20.700 6 0.041

BMI, kg/m2 2863 26.04 4.90 15.88 52.71 1.096 6 0.046

FAT, kg 2276 25.08 8.53 5.67 63.77 0.814 6 0.051

BMI, body mass index; FI, Frailty Index.
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metabolites with FI (P 5 2.1206 to P 5 4.0216), which were all
significant at P, 0.001, after FDR correction for multiple testing.1

Variations of these metabolites were not independent and many
showed significant intercorrelation with one another. We tested
them simultaneously in multivariable regression analysis
(Table 3), finding 5 metabolites showing statistically independent
effect (P-values ranged between 3.6203 and 2.4207). These were
EAS, uridine, C-glycosyl tryptophan (C-GT), N-acetyl glycine (N-
AG), and indolepropionate. Except C-GT, all metabolite levels
decreased with increasing FI scores, especially EAS (P5 3.3206).

C-GT, indolepropionate, and N-AG are related to protein
metabolism, and the first 2 molecules are involved in tryptophan
metabolic pathway. However, when the data were examined
taking into account familial structure and potential effect of
heritability, the results changed slightly (Table 3, 2 right-hand
columns), although the general pattern remained the same. The
main difference was that indolepropionate was no longer
statistically significant.

We conductedmetabolic pathway analysis focusing on pathway
enrichment analysis (http://www.metaboanalyst.ca/faces/home.

Table 2

Association of frailty with metabolites.

# Metabolite R P N Brief description

1 Glutamate 0.16115 4.0E-16 2529 Amino acid. Glutamate metabolism

2 Urate 0.137 4.1E-12 2530 Nucleotide. Purine metabolism, urate metabolism

3 N-acetyl glycine* 20.137 2.4E-11 2358 Amino acid. Glycine, serine, and threonine metabolism

4 C-glycosyl tryptophan* 0.130 4.9E-11 2525 Amino acid. Tryptophan metabolism

5 Pseudouridine 0.123 6.3E-10 2526 Nucleotide. Pyrimidine metabolism, uracil containing

6 Docosahexaenoate (DHA; 22:6n3) 20.119 2.0E-09 2530 Lipid. Essential fatty acid

7 Mannose 0.116 5.2E-09 2530 Carbohydrate. Fructose, mannose, galactose, starch,

and sucrose metabolism

8 HWESASXX 0.111 2.7E-08 2512 Peptide. Polypeptide

9 Uridine* 20.109 3.6E-08 2530 Nucleotide. Pyrimidine metabolism, uracil containing

10 Epiandrosterone sulphate* 20.107 7.8E-08 2512 Lipid. Sterol/Steroid

11 Proline 0.107 7.8E-08 2530 Amino acid. Urea cycle; arginine and proline metabolism

12 Indolepropionate* 20.106 8.5E-08 2529 Amino acid. Tryptophan metabolism

13 1-docosahexaenoyl-glycerophosphocholine* 20.105 1.2E-07 2521 Lipid. Lysolipid

14 Gamma-glutamylvaline 0.105 1.3E-07 2518 Peptide, gamma-glutamyl

15 Gamma-glutamylleucine 0.102 2.7E-07 2529 Peptide, gamma-glutamyl

16 Gamma-glutamylphenylalanine 0.102 3.2E-07 2506 Peptide, gamma-glutamyl

17 N-acetylalanine 0.099 7.0E-07 2526 Amino acid. Alanine and aspartate metabolism

18 Butyrylcarnitine 0.095 1.6E-06 2530 Lipid. Fatty acid metabolism (also BCAA metabolism)

19 Glycerol 0.094 2.0E-06 2530 Lipid. Glycerolipid metabolism

20 2-linoleoylglycero-phosphocholine 20.104 2.1E-06 2074 Lipid. Lysolipid

Correlation of Frailty Index adjusted for age with the 20 selected metabolite circulating levels in total available sample.

* The compounds were independently significantly associated with Frailty Index scores.

Table 3

Risk factors for frailty.

Covariate Beta1 6 SEBeta T-test P Beta2 6 SEBeta LRT

Epiandrosterone sulfate 20.092 6 0.019 24.744 2.23E-06 20.112 6 0.019 7.7E-09

C-glycosyl tryptophan 0.092 6 0.021 4.420 1.04E-05 0.077 6 0.021 2.0E-04

N-acetyl glycine 20.072 6 0.019 23.774 1.65E-04 20.077 6 0.020 1.5E-04

Uridine 20.070 6 0.019 23.712 2.11E-04 20.062 6 0.020 2.45E-03

Indolepropionate 20.042 6 0.019 22.223 3.6E-03 20.015 6 0.021 4.8E-01 (ns)

Age 0.299 6 0.021 14.338 1.40E-44 0.340 6 0.027 1.6E-34

Fat/HT2 0.218 6 0.020 10.655 7.17E-26 0.236 6 0.020 4.2E-31

Smoking 0.081 6 0.019 4.379 1.25E-05 0.083 6 0.018 6.6E-06

Heritability, h2 N/A N/A N/A 0.379 6 0.125 2.4E-03

Multivariable regression of Frailty Index scores on the most highly associated metabolites, with adjustment for age, relative fat mass, and smoking.

Adjusted R2 5 0.260, F(8,2153) 5 96.08, P , 0.00001; N 5 2162. Beta, T, and P describe the effect of each variable on Frailty Index-score variation adjusted for all the others.

Beta1—regression estimates obtained in preliminary multiple regression analysis.

Beta2—regression estimates obtained in final multiple regression analysis, taking into account familial composition of the sample, and estimating heritability of the Frailty Index scores, adjusted for all tested covariates.

LRT—P-value, likelihood ratio test assuming no effect of the selected covariate, ns 5 P . 0.05.
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xhtml). This analysis was conducted twice: first, the top 20
metabolites (Table 2) were tested. Next, 51 metabolites with
P-value#0.0002 (corrected for multiple testing) were examined. In
the first analysis, galactose, pyrimidine, arginine and proline, and
D-glutamine and D-glutamate metabolism pathways were sug-
gested, with P-values 0.014 to 0.046. In the second analysis,
metabolic pathways of gluconeogenesis, galactose, taurine and
hypotaurine, alanine, and some others were suggested, with P-
values 0.002 to 0.033. After FDR correction, however, no significant
metabolic pathways were identified.

3.3. Genome-wide association study of metabolites
associated with Frailty Index

A multiple linear regression model with additive genetic effect
was applied to test for FI score–genotype association using
;2.5 million genotyped and/or imputed autosomal SNPs.
Other covariates adjusted in the model included age and
relative fat mass. In addition, we similarly tested each of the
metabolites associated with frailty phenotype. The results are
presented as series of Manhattan plots (Figure S1 and Table
S1, supplementary material 1, available at http://links.lww.
com/PAIN/A639). Frailty Index showed no genome-wide
significant associations, with top P-values ranging between
the 1023 and 1024. Genome-wide association study of the 4
significantly associated metabolites showed a different pat-
tern. Three of them, specifically uridine, N-AG, and EAS,
displayed strong association with the single genomic region,
with the top P-values correspondingly: ,10212 (Chr#22,
mapped to 49304328-49318618bp, rs131794), ,10274

(Chr#2 mapped to 27596107-27584444bp, rs1260326) and
,10276 (Chr#7 mapped to 98994442-99024762bp,

rs1581492). For variation of C-GT, we found no genome-
wide significant associations.

3.4. Epigenome-wide association study of Frailty Index

Testing 723,029 lsBINs in 50 FI discordant MZ twin pairs (Gr1)
implementing paired t tests revealed overall ND 5 27,485 bins
that showed nominally significant associations (P , 0.05), and
of these, the top 20 association signals were ranged P5 7.0125

to 2.1726. Correlation analysis of lsBINs with FI scores in our
main sample (Gr2) identified NM 5 31,430 nominally significant
correlations, with top 20 associations in a range between P 5
3.7625 and 4.0226. The results of both analyses were combined
by the Fisher test, which detected 27,781 nominally significant
results showing the same direction of association in both study
subsamples. The 20 top combined results are shown in Table
S2 (supplementary material 1, available at http://links.lww.com/
PAIN/A639). These data, as well as the GWAS data, were
subjected to GO analysis (Tables S3–S5, in supplementary
material, available at http://links.lww.com/PAIN/A639).

Comparing GO results obtained in GWAS and EWAS, we
observed a few common functional genomic regions, defined as
“neuron recognition” in biological process category with shared
genes: CNTNAP2, ROBO2; in CC classification in the category
“neuron projection,” the shared genes were CNTNAP2, ROBO2,
CDH13, and GRM7. In addition, in CC classification, the
categories “excitatory synapse” and “actin cytoskeleton” were
also identified in both GWAS and EWAS analyses. Thus, the
genomic/epigenome analyses suggested that the genomic
regions associated with functions of nervous system dominate
the list of the potential candidate genes.

3.5. Comparison of Frailty Index with CWP

Because CWP and FI are highly associated with common shared
genetic factors, we were interested whether and to what extent
they shared multi-omic characteristics. We have reported the
results of the OMICS analyses of the CWP elsewhere.12,14 They
were compared with the present results. Of 4 metabolites
significantly associated with FI score (Table 3), EAS and uridine
were also significantly (P5 1.0529 and P5 5.8203, respectively,
after adjustment for covariates) associatedwith CWP.Comparing
the nominal significant results identified in a similar analysis
design, we observed 2 potential common pathways: D-glutamine
and D-glutamate metabolism and galactose metabolism path-
ways. However, they were not significant after FDR correction.

Comparing results of GWAS and EWAS implementing GO
analysis for both phenotypes, we identified the 2 common groups
of genes: (1) “Neuron recognition,” with P-values ranging from
2.122 (EWAS of CWP) to P5 3.023 (GWAS of FI scores), and (2)
“Neuron projection (terminus),” with P-values ranging from 2.422

(GWAS of FI scores) to P 5 1.822 (EWAS of CWP).

3.6. Path analysis of Frailty Index and CWP

We examined a model including the direct and indirect effect of
covariates on FI scores through CWP. In other words, we
hypothesized that CWP manifestation could be an independent
risk factor for worsening FI status of an individual and several
studies suggest this sequence of relations between CWP and
FI.29,30 First, using modified variance decomposition analysis
testing the liability-threshold model of dichotomous variables,16

we examined the contribution of potential covariates (age,
smoking, relative fat mass, EAS levels, and leading SNPs), on
CWP. Next, implementing variance decomposition analysis, we
estimated all possible direct and indirect effects of CWP
manifestation and other covariates on FI scores variation. At this
stage, the epigenome signals were not included in the analysis.
Figure 2 summarizes the main results of path analysis showing
that all tested covariates affect the CWP liability scores
significantly. Although age, fat mass, and smoking increase the
risk of CWP, EAS circulating levels decrease with raising of the
CWP scores.

Evaluating all possible direct and indirect effects on FI scores,
we observed that again almost all tested covariates (CWP, age,
smoking, and relative fat mass but not EAS levels) exerted
a significant effect on FI scores, with clear dominance of the CWP
manifestation. Remarkably, when we added C-glycosyl trypto-
phan, N-acetyl glycine, and uridine to the analysis (identified as
independently associated with FI scores (Table 3)), they
contributed their independent association to FI (Fig. 2) while not
altering other parameter estimates, and their own regression
coefficients were virtually the same as reported in Table 3.

4. Discussion

As the modern human population is ageing, the prevalence of
frailty is increasing. Yet, the specific manifestation of frailty in any
individual at a particular age varies tremendously, as does
prevalence of frailty among different communities.25 It is therefore
imperative to clarify the main risk factors for incident frailty as well
as its deterioration. Previous studies, including ours, have shown
a significant contribution of genetic factors to FI,6,15,33 along with
other strong risk factors, specifically CWP.28,29 Chronic wide-
spread pain in turn has a significant genetic component, which
exerts a pleiotropic genetic effect on FI.15 The main aim of this
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study was to clarify the molecular-genetic nature of FI heritability
and its correlation with CWP.

OMICS analyses identified 20 top metabolites associated with
FI after correction for multiple testing (P , 0.0002, Table 2).
However, the metabolites themselves are highly correlated and
final multiple regression analysis revealed only 4 independently
associated metabolites: EAS, C-glycosyl tryptophan, N-acetyl
glycine, and uridine (Table 3). Although they represent different
facets of human physiology, they seem to be relevant in view of
the results obtained in present GWAS and EWAS of this sample,
which also suggest involvement of genomic regions associated
with the nervous system. Path analysis showed that the latter 3
metabolites were independently associated with frailty, whereas
the effect of EAS seemed to be mediated through CWP.
Epiandrosterone sulphate circulating levels showed no direct
path correlation with FI (Fig. 2), but was highly significantly
associated with CWP, which in turn was strongly related to FI.

Epiandrosterone sulphate is a major precursor of testoster-
one and estradiol and a potential neurosteroid (https://
pubchem.ncbi.nlm.nih.gov/compound/epiandrosterone). In
addition, EAS is involved in blood pressure regulation (through
inhibition of the pentose phosphate pathway) and several other
components of blood biochemistry, thus affecting blood
circulation in the microvasculature. In our data set, unpub-
lished analysis has also identified this metabolite to be
associated with depression and anxiety. A causal role of
CWP for FI has been suggested repeatedly in the literature in
samples of diverse ethnicity;29,30 however, no clear potential
mechanism of association was proposed. Our previous studies
suggested involvement of neurological pathways in aetiology of
CWP,14 and showed that its appearance significantly corre-
lates with neuropathic pain features,20 and with fatigue and
depression.3,9 This study further suggests that steroid path-
ways are involved in the mechanism of interaction between
frailty and pain.

The other metabolites that were related to frailty
independently of CWP also point to the importance of
neuroendocrine mechanisms in frailty. Thus, tryptophan me-
tabolism is critical to the biosynthetic pathway generating

serotonin (5-hydroxytryptamine) (Ref. 17; http://themedicalbio-
chemistrypage.org/nerves.html#5ht), a major neurotransmitter
in autonomic nervous system as well as in the CNS. Its function
relates to mood, cognition (memory and learning), the regulation
of appetite, sleep, and others. In an earlier study from our group,
C-gly Trp was also associated with age,18 which is correlated
with frailty. It is likely that uridine, a component of RNA,may have
a synergistic effect with serotonin on brain function by
modulating serotonin release.10 Some reports have indicated
that uridine modulates sleeping patterns, and its administration
may affect the course of mental disorder as well as improve
memory function and pain.7 We have previously found uridine to
associate with arterial stiffness in TwinsUK,19 and with milk
intake.21 Also, circulating uridine correlates significantly with the
gene-expression levels of the purinergic receptor P2RY2.19 N-
acetyl glycine also fits the hypothesis of FI worsening
association with possible deterioration of nervous system
functioning. This enzyme is involved in the degradation of N-
acylated proteins, and individuals with N-acetyl glycine de-
ficiency will experience multiple neurological phenomena, eg,
convulsions, hearing loss, and difficulty feeding (Human Metab-
olome www.hmdb.ca/metabolites/HMDB0000532). Thus, all 3
molecules seem to be relevant as potential molecular risk
factors for FI development and progression. This conclusion is in
agreement with our genomic and epigenome analysis. Although
association results observed in both analyses did not reach
genome-wide significance, the enrichment analysis of the
nominally significant results clearly suggest prevalent associa-
tion with genomic regions involved in NS functions, such as
“neuron recognition,” “neuron projection,” and “excitatory
synapse.”

Overall, our data consistently point to the association of
neurological pathway markers with progression of FI scores. The
association between chronic pain and frailty may be mediated by
alterations in sex hormone metabolism.
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