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Abstract

The negative correlation between the rate of protein evolution and expression level of a gene has been recognized as a universal law

of the evolutionary biology (Koonin 2011). In our study, we apply a population-based approach to systematically investigate the

relative importance of unequal mutation rate, linkage, and selection in the origin of the expression-polymorphism anticorrelation.

We analyzed the DNA sequence of protein coding genes of 24 Saccharomyces cerevisiae and 58 Schizosaccharomyces pombe

strains. We found that highly expressed genes had a substantially decreased number of polymorphic sites when compared with

genes transcribed less extensively. This expression-dependent reduction was especially strong in the nonsynonymous sites, although

it was also present in the synonymous sites and untranslated regions, both up and down of a gene. Most importantly, no such trend

was found in introns. We used these observations, as well as analyses of site frequency spectra and data from mutation accumu-

lation experiments, to show that the purifying selection acting on nonsynonymous sites was the main, but not exclusive, factor

impeding molecular evolution within the coding sequences of highly expressed genes. Linkage could not fully explain the observed

pattern of polymorphism within the untranslated regions and synonymous sites, although the contribution of selection acting

directly on synonymous variants was extremely small. Finally, we found that the impact of mutational bias was rather negligible.

Key words: protein evolution, polymorphism, mutation bias, transcription, Saccharomyces cerevisiae, Schizosaccharomyces

pombe.

Introduction

The sequences of different proteins from the same species

evolve at different rates. Studies comparing homologous

sequences between species demonstrated that the best

known predictor of the protein divergence rate is its expres-

sion level (P�al et al. 2001; Rocha and Danchin 2004;

Drummond and Wilke 2008). This result counters some for-

mer expectations, especially those assuming that the func-

tional importance of a protein is a chief determinant of the

rate of evolution (Kimura and Ohta 1974). Several distinct

explanations have been proposed to clarify why abundant

proteins undergo slower evolution (for an extensive review

see Zhang and Yang 2015). These include selection against

erroneous translation and protein instability (Drummond et al.

2005; Yang et al. 2010), selection on protein synthesis effi-

ciency and speed (Akashi 2001; Plotkin and Kudla 2011), se-

lection on transcript stability (Park et al. 2013) and

preservation of proper physical interactions of proteins

(Vavouri et al. 2009; Yang et al. 2012). Thus, most of the

currently top ranked hypotheses assume stronger purifying

selection operating on final protein products of the highly

expressed genes. The explanations linked to translational ro-

bustness and mRNA folding energy put additional constraints

on transcripts.

The possible impact of an unequal mutation rate on

expression-divergence anticorrelation is usually not consid-

ered. This can be justified by the findings of genome-wild

studies of bacteria, yeast, and human (Park et al. 2012;

Chen and Zhang 2013, 2014). All of these studies reported

elevated mutation rates for intensively expressed genes. This

in turn, implies that mutation bias alone should generate pos-

itive, not negative, correlation between gene expression and

evolution rate. It should be noted though, that two of the

above studies used data obtained for mutants with defective

DNA repair system (Park et al. 2012; Chen and Zhang 2013).

Relations found for such mutants might not accurately reflect
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those existing in the wild-type organisms. Moreover, the neg-

ative correlation between transcription and mutation rate was

found in wild E. coli populations (Martincorena et al. 2012).

All things considered, although mutation bias is unlikely to be

the main evolutionary force leading to expression-divergence

anticorrelation, its impact may differ between species, and

thus its contribution is worth further investigation.

Here, we analyzed the distribution and frequencies of sin-

gle nucleotide variants in previously published whole genome

sequencing data sets for 24 Saccharomyces cerevisiae and 58

Schizosaccharomyces pombe strains isolated from their world-

wide/extant populations. We reasoned that focusing on the

genetic variation within populations could be a novel and

promising way to estimate the relative contribution of purify-

ing selection, linkage, and mutational pressure in creating the

observed pattern of expression-divergence anticorrelation. In

the case of S. cerevisiae, we assigned a total of 57,000 single

nucleotide variants to the coding sequences, introns, 30-UTR

and 50-UTR of �2,400 genes (for which the boundary of at

least one UTR region is known). Analogously, we investigated

�150,000 SNPs in 5,060 S. pombe genes. We applied two

types of tests for all variants. First, we analyzed the relation

between polymorphism density and gene expression level.

Similar tests, regarding nucleotide or amino acid substitutions,

had been previously used in comparisons between closely and

distantly related species (Wall et al. 2005; Zhou et al. 2010).

Nevertheless, their results are sensitive to background selec-

tion and their reliability critically depends on equal mutation

rates for compared genes and genes’ regions. Therefore, we

decided to extend our analyses to encompass the available

data on the distribution of mutations accumulating under the

laboratory propagation scheme, in which the operation of the

natural selection is minimal. This allowed us to estimate the

strength of the transcription driven mutational biases in both

species. For the second test, we calculated the fractions of

singletons within variants assigned to different genes and

their regions, and checked whether these fractions depend

on gene expression level and type of the mutated site.

Although this test has lower power to detect negative selec-

tion, as it loses information about the most severe and thus

not present in populations variants, its results are unaffected

by background selection and mutation biases. Therefore, this

test seems to be especially relevant to the analysis of polymor-

phism within untranslated regions and synonymous sites.

We found that in the natural populations the level of poly-

morphism was negatively correlated with gene expression

only in the functional regions of protein coding genes. It is

significant to note that such pattern was not found for the

laboratory mutation accumulation lines. Notably, fraction of

singletons within variants assigned to functional regions of

genes increased with gene expression, although this trend

was rather weak. Thus, we show that in populations of

both yeast species the decline in the genetic variation within

extensively expressed genes was most likely produced by the

purifying selection operating on gene protein products and

transcripts.

Materials and Methods

Saccharomyces cerevisiae Polymorphism

We analyzed the sequences of 23 Saccharomyces cerevisiae

strains from Skelly et al. (2013) (http://www.yeastrc.org/g2p-

data/raw-data/genome-sequences). The sequenced strains

were haploids derived from natural diploidal isolates. Raw

reads were aligned to the reference sequence (S288C, ge-

nome assembly: R64-1-1) using bowtie2. BAM files were ma-

nipulated with samtools programs (version 0.1.19). Variants

were called separately for each strain with samtools mpileup

and filtered with grep and custom python script. First, we

removed all indels. For further analysis, we used only SNPs

with minimal QUAL value of 30, with coverage >5 and with

at least 80% of reads supporting the altered nucleotide. The

mapping and filtering scripts (mapping.sh; readVCF.py) can

be found in the supplementary file S1, Supplementary

Material online.

The filtered variants were assigned to the coding sequen-

ces, introns, 50-UTR and 30-UTR regions of 2,432 protein cod-

ing Saccharomyces cerevisiae genes. In order to be analyzed

further, genes were required to fulfill two criteria:

1. Known location of at least one UTR region (retrieved from

the SGD YeastMine page https://yeastmine.yeastgenome.

org/yeastmine): The UTRs locations were compiled from

former studies (Zhang et al. 2005; Miura et al. 2006;

Nagalakshmi et al. 2008; Xu et al. 2009; Yassour et al.

2009). In cases where boundaries of the UTR regions dif-

fered between studies, we decided to use ones involving

the longest stretches of DNA.

2. Coding sequence nonoverlapping with any other gene

First, we assigned variants to the coding sequences and

introns of the analyzed genes. The remaining SNPs were

then assigned to the UTR regions. The very short (<9bp)

and nonpolymorphic UTR regions were excluded from further

analysis. Variants in the coding sequence were split into syn-

onymous and nonsynonymous groups based on the results

from the Variant Effect Predictor tool (http://www.ensembl.

org/index.html). In sum, we analyzed 56,939 SNPs. Next, we

calculated the number of polymorphic sites for each gene and

gene region (divided by the length of respective regions). In

addition, the fraction of singletons was determined. The

expected number of potential synonymous and nonsynony-

mous sites was calculated for the coding sequences of the

reference strain. We used the Nei–Gojobori method under the

assumption of equal mutation probabilities for all types of

substitutions (Nei and Gojobori 1986). Obtained values were

then used as the lengths of synonymous and nonsynonymous

regions.
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Data on the mRNA level (mRNA molecules per haploid cell)

were adopted from Cs�ardi et al. (2015). Data on gene indis-

pensability was retrieved from SGD YeastMine page https://

yeastmine.yeastgenome.org/yeastmine). The compiled data is

available in the supplementary file S2, Supplementary

Material online.

The fraction of singletons expected in neutrality for the

folded site frequency spectrum was based on one million sim-

ulated samples of size 24. For the coalescent simulations, we

used program ms (Hudson 2002), with the command: ms 24

1000000 -s 1. Then, we counted cases where the derived

allele was present in only one or in 23 copies per sample.

Schizosaccharomyces pombe Polymorphism

Data on S. pombe variants were downloaded from the web

page: https://figshare.com/articles/SNP_calls_for_all_161_

strains_/3978303. These data were originally published by

Jeffares et al. (2015) and represent single nucleotide polymor-

phism found in 161 natural isolates of Schizosaccharomyces

pombe. The downloaded vcf file was already annotated. For

the purpose of further analyses, we extracted from the orig-

inal file information on variants present in 57 strains, de-

scribed by authors of the original research paper as

“nonredundant.” We filtered these variants using the same

criteria as for S. cerevisiae. SNPs that passed the filters were

then assigned to the different gene regions (synonymous cod-

ing, nonsynonymous coding, intron, 30-UTR, 50-UTR) on the

basis of annotations provided in the original vcf file. In sum,

we assigned 153,407 SNPs to 5,069 protein coding genes;

out of those 2,496 contained introns. Data on gene expres-

sion was taken from Marguerat et al. (2012) (number of

mRNA molecules per haploid cell). A list of essential genes

was retrieved from PomBase (https://www.pombase.org/).

Number of potential synonymous and nonsynonymous sites

was obtained as described for S. cerevisiae. The compiled data

set is available in the supplementary file S2, Supplementary

Material online.

The expected fraction of singletons was determined anal-

ogously as described for S. cerevisiae, but the size of the sim-

ulated samples was set to 58.

Analysis of the S. cerevisiae Mutation Accumulation
Experiment

We used results of the study by Zhu et al. (2014). The study

describes 873 single nucleotide mutations that occurred in

145 yeast lines during the mutation accumulation experiment.

Out of these, 636 were assigned to 577 Saccharomyces cer-

evisiae genes with mRNA level given in Cs�ardi et al. (2015). In

this procedure, we used the Variant Effect Predictor tool.

Next, we calculated EMA statistic: EMA¼Rni�ln(mRNAi)/Rni,

where ni stands for the number of mutations that were

assigned to the i gene and mRNAi is the i gene mRNA level.

Thus, the EMA statistic is the weighted average of the natural

logarithms of the mRNA level, calculated for the genes that

were found mutated in the mutation accumulation experi-

ment. Compiled data can be found in the supplementary

file S2, Supplementary Material online.

Simulation of Mutagenesis in S. cerevisiae

We used the genomic data on the mRNA expression (Cs�ardi

et al. 2015) and gene GC content (Ensembl) to create two

lists. The LAT list was composed of the ln(mRNAi) values for

5,850 Saccharomyces cerevisiae genes. Individual ln(mRNAi)

values were represented in numbers equal to the numbers of

AT pairs in respective genes (in sum 5,349,347 entries). The

LGC list was composed according to the same pattern for GC

pairs (3,484,611 entries in total). Then, we randomly chose

636 values from the above lists. To take account for the higher

mutation probability of the GC nucleotides, 68% the

ln(mRNAi) values were taken from the LGC list and 32%

from the LAT list (as suggested by Zhu et al. 2014). The arith-

metic mean of each random sample, ES was then calculated.

The procedure was repeated 10,000 times. We considered

the above procedure to simulate the mutational process in

which the probability of mutation within any gene sequence is

proportional to gene length and depends on gene GC con-

tent (simulated_data1). In another simulation, we proceeded

in the same way, with the exception that the ln(mRNAi) values

were drawn from the merged LAT and LGC lists. Thus, the

second simulation represented the situation where the prob-

ability of any gene mutating depends only on its length and

not on its individual GC content (simulated_data2). The script

used to generate data is in the supplementary file S1,

Supplementary Material online.

Analysis of the S. pombe Mutation Accumulation
Experiments

We merged results from two mutation accumulation experi-

ments: Behringer and Hall (2015) (422 single nucleotide

mutations) and Farlow et al. (2015) (326 single nucleotide

mutations). We annotated 615 of these mutations to 533

different S. pombe genes with mRNA level given in

Marguerat et al. (2012) (http://fungi.ensembl.org/

Schizosaccharomyces_pombe/Tools/VEP). The EMA statistic

was calculated as described for S. cerevisiae. The correspond-

ing data set is in the supplementary file S2, Supplementary

Material online.

Simulation of Mutagenesis in Schizosaccharomyces pombe

Simulated data sets were created analogously as described for

S. cerevisiae. We used the expression data from Marguerat

et al. (2012) (5,059 protein coding genes) and data on gene

GC content from the Ensembl fungi web page. The S. pombe

LAT and LGC lists contained 6,907,927 and 4,071,402 entries

accordingly. To obtain the simulated data dependent on both
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gene length and its GC content, 73.6% of values was taken

from the LGC list because 457 of the 748 mutations found in

both experiments related to the GC nucleotides. The whole S.

pombe genome contains 4,538,978 GC and 8,052,273 AT

base pairs. Thus, the probability of being mutated is 2.786

times higher for the GC nucleotides than for the AT nucleo-

tides. This gives the relative mutation frequencies of 0.736

and 0.264 for the GC and AT nucleotides accordingly. At

every of 10,000 iterations, an average of 615 randomly se-

lected ln(mRNAi) values was calculated. The script used to

generate data is in the supplementary file S1,

Supplementary Material online.

Analysis of Codon Usage

We counted codons present within the coding sequences of

all analyzed genes (for the reference strains of S. cerevisiae

and S. pombe). These counts were then correlated

(Spearman’s rank correlation) with the numbers of the match-

ing tRNA genes present in the genomes of both species (mul-

tiplied by their wobble parameters). Correlation coefficients

obtained for each gene constituted the rhotai statistics. In case

of S. cerevisiae, tRNA gene copy numbers and wobble param-

eters were adopted from Weinberg et al. (2016). The gene

copy numbers of tRNA genes present in S. pombe genome

were taken from GtRNAdb (http://gtrnadb.ucsc.edu/). The

wobble parameters were set as described in Curran and

Yarus (1989) and Lim and Curran (2001). Correlation coeffi-

cients obtained for each gene along with tRNA copy numbers

and wobble parameters used are given in the supplementary

file S2, Supplementary Material online.

Data analysis

Data was analyzed in R (R Core Team 2015). We used the

following functions: cor.test, glm, pcor.test from the ppcor

package (Kim 2015). Correlation coefficients were compared

with concor (http://comparingcorrelations.org/) (Diedenhofen

and Musch 2015).

Results

We studied single nucleotide polymorphism within dozens of

yeast strains isolated from extant populations of

Saccharomyces cerevisiae and Schizosaccharomyces pombe.

We found that the density of polymorphic sites within genes

correlates negatively with the expression level measured as

the number of mRNA molecules per haploid cell. In both yeast

species, the relationship is especially clear for the nonsynon-

ymous variants (fig. 1). A possible interpretation is that the

purifying selection against changes in protein sequence oper-

ates and is more intense in the highly expressed genes.

Indeed, the ratio of nonsynonymous to synonymous polymor-

phic sites densities (pN/pS) also correlates with the gene ex-

pression (S. cerevisiae: Spearman’s rank correlation

rho¼�0.35, P< 2.2�10�16, n¼ 2,373; S. pombe:

Spearman’s rank correlation rho¼�0.28, P< 2.2�10�16,

n¼ 4,882).

In the next step, we analyzed minor site frequency spectra

for both populations to test whether highly expressed genes

have elevated fraction of singletons. We reasoned that dele-

terious mutations could be still present in populations if they

were recent. Such mutations would be chiefly found among

singletons, as they are removed from the population before

reaching higher frequencies. This should lead to the elevated

fraction of singletons within all variants. Indeed, we found

higher than expected (for neutral polymorphism) fractions of

nonsynonymous singletons in the analyzed data set: 0.40

versus expected 0.29 for S. cerevisiae and 0.40 versus 0.23

for S. pombe. Moreover, these fractions were also higher

than fractions found for intronic variants (0.29 and 0.26 for

S. cerevisiae and S. pombe accordingly), what indicates that

the high percentage of nonsynonymous singletons cannot be

entirely explained neither by the demographic process (e.g.,

population growth) nor by insufficient variant filtering proce-

dure (fig. 2). More importantly, the fraction of nonsynony-

mous singletons correlates positively with gene expression

level for both species (S. cerevisiae: rho¼ 0.06, P¼ 0.004,

n¼ 2,133; S. pombe: rho¼ 0.11, P¼ 1.75�10�13,

n¼ 4,593). Thus, the nonsynonymous site frequency spectra

show clear signs of the negative selection in S. cerevisiae and

S. pombe populations. Above all, higher fraction of newly

arriving amino acid altering mutations is present in sequences

coding for abundant proteins indicating stronger selection.

We also asked whether the observed low polymorphism in

highly expressed genes could be ascribed to some specific

forces, such as selection acting on transcripts or codon com-

position. In both yeast species, the negative correlation be-

tween gene expression and variant density is visible not only

for nonsynonymous but also for synonymous sites and the

UTR regions. In the two latter regions, however, the correla-

tion is much weaker (fig. 1). Such pattern may indicate that

abundant transcripts are also more constrained. An alterna-

tive, but not mutually exclusive explanation, is that the regions

of highly expressed genes are depleted of polymorphism be-

cause they are linked to more constrained nonsynonymous

sites. We addressed this issue using three distinct approaches

described below.

First, we performed partial correlations (mRNA vs variant

density) while controlling for the nonsynonymous variant den-

sities. The purifying selection acting on nonsynonymous var-

iant causes a reduction in the effective population sizes of the

adjacent regions. Therefore, if the drop in variant densities in

UTR regions and synonymous sites results exclusively from

linkage, then the partial correlations should turn insignificant.

This is not the case, as most of the correlations remain valid

(table 1). Interestingly, the partial correlation between synon-

ymous polymorphism density and gene expression (control-

ling for nonsynonymous polymorphism) remains significant
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for S. cerevisiae but disappears for S. pombe. This may suggest

that the selection on codon usage is present only in the former

species. However, even in S. cerevisiae the observed correla-

tion is restricted to a small subset of genes expressed at a very

high level. The partial correlation is no longer significant,

when removing 118 genes with the highest expression (i.e.,

>40 mRNA molecules per cell) (Spearman’s rank correlation

rho¼�0.035, P¼ 0.09, n¼ 2,314). It should be also noted

here, that partial correlations performed on noisy data may

produce spuriously significant results (Drummond et al. 2006).

Our second test uses the observation that background se-

lection should remove polymorphism not only from functional

regions of genes but also from introns. Therefore, if correla-

tions between SNPs density and mRNA level, visible for UTRs

and synonymous sites, were only byproducts of selection act-

ing on nonsynonymous variants, then similarly strong corre-

lations should be seen in introns, when taking into account

smaller sample size (i.e., smaller number of genes with

introns). To this end, we randomly drew sample of 162 genes

for S. cerevisiae and 2,496 genes for S. pombe from the orig-

inally analyzed data sets. These numbers equal numbers of

genes with introns used in our analyses. Next, we performed

Spearman’s rank correlations between mRNA level and vari-

ant densities for the restricted data. This procedure was
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Fig. 1.—Relationship between gene expression (mRNA molecules per cell) and polymorphism (number of variants per region length).
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Fig. 2.—Fraction of singletons within all analyzed variants (minor

allele frequency spectra). Parts of the bars corresponding to singletons

are filled with the opaque colors. Numbers inside bars indicate number

of sites within each category (singletons/more frequent SNPs). Green line

shows fraction of singletons found in introns—used as an approximation

of the neutral value (S. cerevisiae: 0.29; S. pombe: 0.26). Yellow line

indicates fraction of singletons expected for Wright–Fisher population (S.

cerevisiae: 0.29; S. pombe: 0.23). Significance of v2 tests comparing frac-

tion of singletons within SNPs in a given region with fraction recorded for

introns are given above the bars.

Table 1

Results of the Spearman’s Rank Partial Correlations between mRNA Level

and Number of Polymorphic Sites (per region length), Controlling for

Nonsynonymous SNPs Density

Region Rho P value n

Saccharomyces cerevisiae

Synonymous sites �0.0795 8.76e-05 2,432

50-UTR �0.0299 0.14 2,398

30-UTR �0.0634 0.0018 2,425

Schizosaccharomyces pombe

Synonymous sites 0.0085 0.55 5,069

50-UTR �0.1275 2.39e-18 4,664

30-UTR �0.1251 6.26e-18 4,718
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repeated 500 times. The distributions of obtained correlation

coefficients for all functional regions are shown in figure 3A

and in supplementary file S2, Supplementary Material online.

Notably, these distributions are shifted toward negative values

and, with the exception of synonymous variants in S. pombe,

their 95 confidence intervals lie below the value obtained for

introns (supplementary file S2, Supplementary Material on-

line). Thus, results of these tests seem to indicate that purify-

ing selection acts directly on variants that do not change

amino acid sequence and that such selection is more impor-

tant for highly expressed genes. It is important to note, how-

ever, that this test may not be stringent enough in case of the

synonymous polymorphism, as on an average, the selected

nonsynonymous variants lie in closer proximity to the synon-

ymous sites than to introns.

For the third analysis, we divided all considered genes into

two groups according to their expression. The “high” group

contained � 10% of genes with the highest mRNA level

(S. cerevisiae: 244 genes having >22 mRNA molecules per

cell; S. pombe: 515 genes with >12 mRNA molecules per

cell). The remaining genes formed the “lower” groups. We

used v2 tests to compare the frequency of singletons within

variants found in these groups of genes. The results of these

comparisons are summarized in figure 3B. Clearly, SNPs local-

ized within sequences of genes from the “high” group are

more likely to be singletons. This trend holds for all functional

regions of genes, however, the differences are not always

significant and are extremely small in case of the synonymous

sites. Moreover, the frequencies of singletons calculated for

the synonymous variants present in all analyzed genes do not

differ from the frequencies obtained for introns (fig. 2). To

summarize, the results of the three different tests point to the

hypothesis that both untranslated regions of genes are under

weak purifying and expression-dependent selection, distinct

from the selection on protein products. On the contrary, we

found little (for S. cerevisiae) or no (in case of S. pombe)

evidence for the purifying selection acting directly on the syn-

onymous sites. Even if such selection does contribute to the

drop of polymorphism in highly expressed genes, its effect is

rather weak and restricted to very abundant transcripts.

Finally, we asked whether the negative correlation be-

tween expression level and polymorphism density can be, at

least partially, caused by unequal mutation rates. We started

with introns, as we reasoned that variants in introns should

not be influenced by the purifying selection. We found that

introns of highly expressed genes in Saccharomyces cerevisiae

may have an elevated number of variants per one nucleotide

(rho¼ 0.19, P¼ 0.015, n¼ 162) (fig. 1). However, only a

small portion of genes in this species has introns (162 in our

data set). Moreover, these genes are generally highly

expressed and may not appropriately represent all genes pre-

sent in this species (Skelly et al. 2009). An analogous analysis

involving almost 2,500 S. pombe genes provided contradic-

tory results. In this species, the expression level of the gene did

not influence the number of variants present in the intronic

sequences (rho¼�0.033, P¼ 0.097, n¼ 2,496) (fig. 1).

As the above results might appear insufficiently conclusive,

we turned to studies on mutation accumulation experiments.

Mutations found in these kind of studies are likely to represent

the mutational spectrum largely unaffected by selection. We

used simulations to test available empirical data for the pres-

ence of mutational bias. Simulations represented the situa-

tions in which the chance of occurring of new mutation

within any gene depended on both the gene length and its

GC content (fig. 4, upper panel: simulated_data1) or on the

gene length only (fig. 4, lower panel: simulated_data2). Then,

we compared the simulated distribution of possible results

with the EMA statistic calculated for the actual data (in brief:

EMA represents the average expression of genes that were
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Fig. 3.—(A) Distribution of the Spearman’s rank correlation coeffi-

cients (mRNA level vs variant density) obtained in the subsampling analyses

(mean 6 95ci). Green line shows value of the correlation coefficient

obtained for all introns; (B) Fractions of singletons within variants present

in highly and less extensively expressed genes (see Results for the more

detailed description of the used expression categories). Singletons—opa-

que colors, more frequent variants—transient colors. Numbers of variants

within each group are given inside bars. Green line shows fraction of

singletons found in introns, yellow line indicates fraction of singletons

expected for ideal Wright–Fisher population. Significance of v2 tests com-

paring fractions of singletons within variants found in genes belonging to

the two expression categories are shown above the bars.
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found mutated in the mutation accumulation experiment; see

Materials and Methods for full description). We found that in

S. cerevisiae mutations are not less but more likely to occur in

highly transcribed genes (EMA¼1.1916, P¼ 0.0006; fig. 4). In

this species, expression is likely to be mutagenic itself as the

observed effect did not depend on the gene’s GC content

(fig. 4). However, in S. pombe, the actual mutation spectrum

appeared shifted toward genes of low expression

(EMA¼0.801, P¼ 0.036), but not when neglecting the GC

content of the gene (P¼ 0.094, fig. 4). Thus, transcription

does not influence the mutation rate in this yeast species,

although the highly expressed genes may have slightly lower

mutation rates due to their nucleotide composition. As the

results of the mutation accumulation, data analyses differ be-

tween the two considered yeast species, we confirmed our

conclusions by building several Poisson regression models

(supplementary file S2, Supplementary Material online).

Taken together, both the analysis of polymorphism in introns

of extant populations and the test of distribution of mutations

in accumulation lines provide results consistent with each

other. They indicate that mutational process itself is unlikely

to produce (S. pombe) or even acts against (S. cerevisiae) the

observed decline in the polymorphism level associated with

gene expression.

Discussion

Studies involving comparisons between close and distant taxa

showed that the rate of molecular evolution of a protein

depends on the intensity of its expression with the abundant

proteins being more conserved. We asked whether the pre-

dicted negative relationship between the level of gene expres-

sion and its genetic polymorphism can be observed also in

current populations of a single species. We chose S. cerevisiae

and S. pombe due to the fact that populations of these two

yeast species are large enough, Ne�107 (Skelly et al. 2009;

Farlow et al. 2015), to enable accumulation of a sufficient

number of mutations so that their distribution within a ge-

nome could be used to detect the work of an even relatively

weak selection. Indeed, we observed lower variant densities in

regions coding for highly expressed genes. Relevant correla-

tion coefficients turned out to roughly match those reported

for the between species comparisons (Zhang and Yang 2015).

We believe that the observed pattern of mutation accumu-

lation could not result from the different rate of mutation at

the compared sites. Firstly, we focused on isolates from extant

populations and found no correlation (S. pombe), or possibly a

positive correlation (S. cerevisiae), between the expression

level and variant density within introns. This result suggests

that the frequently transcribed genes have a mutation rate

that is equal or even higher than those transcribed rarely. We

then analyzed the distribution of new mutations accumulated

in experimental populations and found further support for our

claim. The probability of being mutated was higher for genes

with high mRNA level in S. cerevisiae. In S. pombe, we

detected a weak trend in the opposite direction which prob-

ably resulted from a bias in the GC content. We are aware

that our analyses of mutation accumulation experiments are

indirect in the sense that we used simulated data to form the

null distribution. In this simulated data set, a gene underwent
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data2: probability of mutation proportional to gene length and equal for all nucleotides (See Materials and Methods for details).
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a mutation at the rate proportional to its length and GC con-

tent, neglecting a possible role of gene location, chromatin

status, or other factors. What is important, we additionally

confirmed these conclusions using general linear modelling.

One could also argue that although introns are generally not

exposed to selection, they may, nevertheless, mutate at a rate

different than they do in exons due to the fact that different

repair systems are thought to operate along the coding and

noncoding sequences (Frigola et al. 2017). Regardless of the

above, we are reassured by the fact that our analyses involv-

ing two completely different approaches gave consistent

results. An overall pattern, a roughly equal or even higher

polymorphism within introns of strongly expressed genes

appears robust and therefore the reduction of polymorphism

known for highly expressed exons is unlikely to result from the

differences in mutation rate.

Some previous results appear to accord with our finding

that polymorphism is not lower but higher in introns of highly

expressed genes in Saccharomyces cerevisiae. One study used

mutation-accumulation lines within a DNA repair defective

(ung1D) strain and found an elevated mutation rate in inten-

sively transcribed genes (Park et al. 2012). Data from the mu-

tation accumulation experiments carried out with a wild-type

S. cerevisiae strain and reanalyzed here (Zhu et al. 2014) had

been already examined for the dependence between expres-

sion and mutation probability (Chen and Zhang 2014; Zhu

et al. 2014). While authors of the original study found no such

relation, conclusions similar to ours were reached by Chen

and Zhang (2014). Thus, our analyses provided additional ev-

idence that intensive transcription is associated with elevated

mutation in S. cerevisiae. What is important, we applied dif-

ferent analytical methods to those used in the above stud-

ies. An analogous analysis based on both mutation

accumulation data sets published for S. pombe, failed to

detect any relation between mutation rate and expression

level. The same conclusions were reached in one of the

original mutation accumulation studies carried out for

this species (Behringer and Hall 2015). Thus, while it is

tempting to conclude that in S. cerevisiae the purifying se-

lection in exons is strong enough to revert the mutational

bias, in S. pombe transcription does not lead to elevated

mutation probability. Transcription affects mutation rates

through the processes of transcription associated muta-

genesis and transcription-coupled DNA repair (Hanawalt

and Spivak 2008; Kim and Jinks-Robertson 2012). It is pos-

sible that the final outcome of these antagonistic processes

is not the same for all species. However, more intensive

work on the experimental estimation of mutation rate in

different genome regions is needed before its results can

be used in quantitative tests of evolutionary hypotheses.

Apart from the clear difference in the distribution of poly-

morphism between introns and exons, there are other, more

direct, arguments that selection operates most efficiently in

highly expressed coding regions. First, the negative correlation

between gene mRNA level and the density of polymorphism

in exons was stronger for the nonsynonymous polymorphism.

It is remarkable that this result was statistically significant

given that the density of variants recorded for nonsynony-

mous sites in both species was generally low. Second, the

fraction of rare nonsynonymous variants tended to increase

with gene expression. Which is why, new mutations are most

likely to be deleterious if they change the final protein prod-

ucts of an intensively transcribed gene. It is also worth noting

that in both species the expression–divergence correlations

for essential and nonessential genes have similar strength (S.

cerevisiae: Fisher’s z¼�1.42, P¼ 0.16; S. pombe: Fisher’s

z¼�0.71, P¼ 0.48) (supplementary file S2, Supplementary

Material online). Thus, the functional importance of proteins

is unlikely to be an important factor underlying the considered

relation.

The negative correlation between gene expression level

and polymorphism density appears to be considerably stron-

ger for the surveyed populations of S. cerevisiae. This finding

might suggest that the purifying selection is more effective in

this species. However, gene expression, one of the analyzed

factors, may have been estimated with different accuracy in

the two species. The data set for S. cerevisiae is possibly more

reliable as based on a vast number of independent RNA ex-

pression studies (Cs�ardi et al. 2015). Moreover, it is imagin-

able that in this species the expression data gathered under

laboratory conditions are more indicative of “natural” gene

expression. Regarding the polymorphism data, the effect of

selection can be much more difficult to detect in the case of S.

pombe because of the stronger linkage disequilibrium

reported for this species (Jeffares et al. 2015). Therefore, al-

though the correlation coefficients relating the fraction of

nonsynonymous sites and expression level differ significantly

between S. cerevisiae and S. pombe (Fisher’s z¼ 5.0179,

P< 10�6) this result does not necessarily reflect differences

in the selection pressure.

With regards to the synonymous polymorphism, it was also

negatively correlated with the mRNA level in both yeast spe-

cies. These correlations, however, were much weaker that

those found for the nonsynonymous sites. Moreover, results

of three distinct and independent tests (see Results) indicated

that these correlations were generated mainly by the back-

ground selection. This interpretation is straightforward in the

case of S. pombe, as all three tests failed to detect signatures

of negative selection acting directly on the synonymous var-

iants in this species. The results obtained for Saccharomyces

cerevisiae are more challenging to explain. Both tests utilizing

information on variant densities (i.e., subsampling analysis

and partial correlation controlling for nonsynonymous poly-

morphism density) gave results that supported the role of the

direct purifying selection. On the other hand, the fraction of

singletons within the synonymous sites was not any higher

than fraction expected for neutrally evolving sites. This frac-

tion was elevated for the 10% of genes having the highest
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expression, however, the effect was not substantial. One pos-

sible explanation is that synonymous variants are effectively

neutral also in S. cerevisiae population (with the exception of

sites within the small number of very intensively transcribed

genes) and that two out of three applied tests were too per-

missive. The other explanation is that synonymous variants may

be either very deleterious and rapidly selected against or neu-

tral. The paucity of synonymous variants with low/moderate

selection coefficients may explain the neutral-like shape of

the frequency spectrum. Interestingly enough, such dichoto-

mous fitness effects of the synonymous mutations were de-

scribed for Drosophila melanogaster (Lawrie et al. 2013).

In light of the above findings, it is interesting to note, that

in both yeast species strong codon bias exists, where the

sequences of highly expressed genes are enriched in the major

codons (Kurland 1991; Hiraoka et al. 2009). Such codon pat-

tern is usually explained as a result of the selection for trans-

lation efficiency and accuracy, which should be more

significant for more abundant mRNAs and proteins (Rocha

2004; Plotkin and Kudla 2011). Such selection should lead

to adjustments between abundance of tRNA molecules and

the usage of appropriate codons (Tuller et al. 2010). To esti-

mate this adjustment, we calculated Spearman’s rank corre-

lations coefficients relating these two quantities for the

coding sequences of all analyzed genes—rhotai statistics (see

Materials and Methods). As expected, obtained rhotai coeffi-

cients are positively correlated with gene’s expression (S. cer-

evisiae: r¼ 0.696, P< 2.2�10�16, n¼ 2,432; S. pombe:

r¼ 0.653, P< 2.2�10�16, n¼ 5,069; supplementary fig. S1,

Supplementary Material online). Later, we checked if they

correlate with the density of the synonymous variants.

While we found negative correlation for the S. cerevisiae

data (rho¼�0.11, P¼ 6.30�10�8, n¼ 2,432), which turned

insignificant after controlling for the mRNA level (rho¼ 0.022,

P¼ 0.27, n¼ 2,432), no relation was visible for S. pombe

(rho¼ 0.04, P¼ 0.06, n¼ 5,069). Thus, also this analysis fails

to detect clear signals of selection related to tRNA abundance

within the synonymous sites. It should be noted that, much

stronger correlations were visible for the nonsynonymous

SNPs for both species (S. cerevisiae: rho¼�0.38,

P< 2.2�10�16, n¼ 2,432; S. pombe: rho¼�0.30,

P< 2.2�10�16, n¼ 5,069). Partial correlations controlling for

gene expression were also highly significant in this case (S.

cerevisiae: rho¼�0.13, P¼ 4.38�10�11, n¼ 2,432; S. pombe:

rho¼�0.12, P¼ 2.91�10�18, n¼ 5,069). This may imply that

the nonsynonymous changes have greater impact on our

measure of translation optimization. Indeed, many of the co-

don pairs that are separated by one synonymous change are

decoded by the same tRNA species. Moreover, the correla-

tions between gene’s codon composition and tRNA gene

copy numbers may be also affected by differences in amino

acid usage. Taken together, our analyses show that the con-

tribution of the negative selection acting directly on synony-

mous sites to the investigated expression–divergence

anticorrelation may be extremely small or even nonexistent.

Our results also imply that in both analyzed populations such

selection may be very weak, with the selection coefficients

around 1/Ne or less. Notably, even such a very weak selection

might be sufficient to generate the codon usage bias

(McVean and Charlesworth 1999; Charlesworth 2009).

Weak correlations between polymorphism density and ex-

pression were also found for the 50-UTR and 30-UTR regions.

Moreover, analyses performed to decipher the impact of the

background and direct selection confirmed the attribution of

the latter. Therefore, it is possible that some additional selec-

tion pressures, acting directly on transcripts, contribute to the

decline in polymorphism observed for the highly expressed

genes. One possible factor could be the stability of mRNA

(Park et al. 2013), while another the rate of translation initia-

tion and elongation (Kudla et al. 2009; Shah et al. 2013; Yang

et al. 2014). Thus, in populations of both yeast species, the

untranslated regions of the most abundant transcripts would

be under more intense purifying selection.

Our analyses of the genomic data of S. cerevisiae and S.

pombe show that the differences in the purifying selection

strength underlie the negative correlation between gene ex-

pression and its evolution rate. Notably, these differences are

big enough to be easily noticeable even in populations of a

single species. In both examined populations, the expression-

dependent negative selection affects mainly amino acid alter-

ing variants. Although to much weaker extent, it also acts

directly on polymorphism within untranslated regions of

highly expressed genes. This result may imply that the evolu-

tionary constraint is related not only to biophysical/functional

properties of proteins but also to some features of transcripts

or translation initiation. Interestingly, we found that back-

ground selection can almost entirely explain the observed pat-

tern of synonymous polymorphism. The strength of the

purifying selection acting directly on silent sites seems to be

just on the edge of what can be detected in both analyzed

populations. Finally, the relation between expression and mu-

tation rate differs between S. pombe and S. cerevisiae, as

strong mutagenic effect of transcription is visible only in the

latter species. Nevertheless, transcription associated mutation

bias does not significantly contribute to the considered corre-

lation in any of the analyzed yeasts.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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