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Abstract. The purpose of this study is to (1) develop metrics to characterize the regional anatomical complexity
of the lungs, and (2) relate these metrics with lung nodule detection in chest CT. A free-scrolling reader-study
with virtually inserted nodules (13 radiologists × 157 total nodules = 2041 responses) is used to characterize
human detection performance. Metrics of complexity based on the local density and orientation of distracting
vasculature are developed for two-dimensional (2-D) and three-dimensional (3-D) considerations of the image
volume. Assessed characteristics included the distribution of 2-D/3-D vessel structures of differing orientation
(dubbed “2-D/3-D and dot-like/line-like distractor indices”), contiguity of inserted nodules with local vasculature,
mean local gray-level surrounding each nodule, the proportion of lung voxels to total voxels in each section, and
3-D distance of each nodule from the trachea bifurcation. A generalized linear mixed-effects statistical model is
used to determine the influence of each these metrics on nodule detectability. In order of decreasing effect size:
3-D line-like distractor index, 2-D line-like distractor index, 2-D dot-like distractor index, local mean gray-level,
contiguity with 2-D dots, lung area, and contiguity with 3-D lines all significantly affect detectability (P < 0.05).
These data demonstrate that local lung complexity degrades detection of lung nodules. © 2018 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.5.4.045502]
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1 Introduction
Accounting for nearly 160,000 deaths in 2013, lung cancer
kills more people in the US than any other type of cancer.1

Commonly, lung nodules appear as incidental findings on
thoracic CT scans.2–4 In the case that a nodule is detected,
the patient is managed according to the size, multiplicity, and
composition of the nodules (i.e., solid versus semisolid versus
ground-glass). These factors, along with patient risk-level,
determine the course of diagnosis and treatment of an individual
patient.3–5 In this way, the detection of lung nodules in
CT scans is often the first step in the management of lung
cancer. The detection of lung nodules presents a challenge to
radiologists.6,7 At our institution, ∼1000 images are generated
for each thoracic study in the form of (1) thin-section images,
(2) sagittal and coronal multiplanar reformatted sections, and
(3) thick (>5 mm) axial maximum intensity projection sections.
This large amount of data, which needs to be read and inter-
preted by radiologists, coupled with the low prevalence of the
disease but the potentially high cost of misdiagnosis makes
nodule detection a challenging imaging task.

Literature suggests that sensitivity in detecting lung nodules
is around 50% to 63%, despite the high inherent conspicuity of
most solid nodules.8 This high conspicuity suggests that

nodule detection is not a task limited by quantum noise.
In fact, studies investigating the effect that lowering dose
has on detection have found that dramatically lowering dose
(to CTDIVol values <50% of low-dose chest CTs) may still
yield similar nodule detection performance.9,10 These results
suggest that the quantum noise is not the largest limitation
of detection accuracy for lung nodules. Rather, detection is
likely limited by the complexity of the normal lung structures.
In a cross-sectional CT image, the tree-like structure of
the lung’s vasculature presents many nodule-like features
(Fig. 1), which may have a masking effect on lung nodules.
There is a need to understand the psychophysical and image
perceptual processes that govern the interpretation of lung
CT images. In particular, the relationship between lung nodule
detectability and anatomical complexity is not well under-
stood. A solid understanding of this image interpretation proc-
ess could help in developing better technologies and search and
interpretation strategies for human and computational readers.

Quantum-noise limited tasks are mostly well understood
from the perspective of signal detection theory because the
statistical distributions of quantum noise fields in medical
images are typically well modeled by classic distributions
(e.g., Poisson or multivariate Gaussian) whose statistics are
mathematically tractable through observer model calculations.11

However, such an approach is not well suited for some

*Address all correspondence to: Taylor Brunton Smith, E-mail: taylor.smith@
duke.edu 2329-4302/2018/$25.00 © 2018 SPIE

Journal of Medical Imaging 045502-1 Oct–Dec 2018 • Vol. 5(4)

Journal of Medical Imaging 5(4), 045502 (Oct–Dec 2018)

https://doi.org/10.1117/1.JMI.5.4.045502
https://doi.org/10.1117/1.JMI.5.4.045502
https://doi.org/10.1117/1.JMI.5.4.045502
https://doi.org/10.1117/1.JMI.5.4.045502
https://doi.org/10.1117/1.JMI.5.4.045502
https://doi.org/10.1117/1.JMI.5.4.045502
mailto:taylor.smith@duke.edu
mailto:taylor.smith@duke.edu
mailto:taylor.smith@duke.edu
mailto:taylor.smith@duke.edu


anatomical noise fields (such as the lungs) that are not easily
modeled by mathematically tractable distributions. Although
the relevance of anatomical noise is well-recognized,12 there
is little literature quantitatively examining the effect of ana-
tomical noise [caused by both two-dimensional (2-D) and
three-dimensional (3-D) structures in the lungs] on detectabil-
ity when the reader has to search through the entire image
volume. The central hypothesis of this work is that nodules
located in “anatomically complex” regions are more difficult
to detect than nodules that are isolated and located in anatomi-
cally simpler regions. We proffer that this masking effect
(which we refer to as “anatomical noise”) partially explains
why detection rates of lung nodules are lower than expected
despite their high contrast-to-noise ratio. The mechanism of
this effect is inherently linked to the nature of this anatomical
noise, necessitating the development of metrics of local ana-
tomical complexity beyond what are currently common prac-
tices for quantum-noise limited tasks. This paper represents a
step toward that goal. The purpose of this study was to develop
2-D and 3-D metrics of local anatomical complexity and com-
pare them with the detectability of lung nodules in real CT
images read by expert human observers.

2 Methods

2.1 Human Detectability

The data for this study were drawn retrospectively from
a published perception experiment in which detectability was
assessed in cases enriched with virtual nodules.13 In that
study, 13 radiologists were presented with 40 chest CT scans
(1-mm contiguous reconstruction) and were asked to identify
all lung nodules in each case. 157 solid, 30 HU nodule insertions
(each one with diameter between 4.8 and 5 mm, depending on
a measurement axis) were present across the 40 cases and the
binary reader responses (i.e., detection or nondetection) were
recorded for each individual nodule and reader (13 radiologists
× 157 total nodules = 2041 binary responses). The readers
were allowed to adjust the window and level settings;
however, none of them changed the settings from the default
(L ¼ −500 HU, W ¼ 1500 HU).

2.2 Complexity Measures

Metrics of complexity were developed to capture visually per-
ceptible characteristics of the CT sections presented to readers.
These selected metrics were driven by interviewing radiologists
and collecting expert intuition of anatomical aspects that hinder
the detection of nodules.14

Based on these observations, an ensemble of metrics was
developed to quantify the magnitude of local anatomical com-
plexity. Each of the metrics seeks to characterize an aspect that
contributes to the “complexity” of a localized region. Values for
each of the metrics were recorded for every virtually-inserted
nodule and compared via a statistical model with the nodule’s
rate of detection. The metrics under scrutiny were (1) local lung
distractor index, (2) contiguity of inserted nodule with local vas-
culature, (3) number of local blood vessels, and (4) mean gray-
value in neighborhood of nodule. All measures were calculated
on the nodule-free substrate images before nodule insertion.

2.2.1 Local lung distractor indices

The first measures of local lung complexity were quantified
“distractor indices,” which are defined as the weighted propor-
tion of different types of distracting voxels within a local region
of interest (ROI) (Fig. 2). The ROI was selected to be within an
in-plane radius of 25 pixels (to capture the foveal gaze cone)13

and up to two slices in either direction from the central slab to
incorporate some 3-D visual effects of through-slab scrolling.
The distractor indices were calculated for four separate, distinct
types of distracting structures: combinations of 2-D or 3-D
structures of dots or lines. In total, these represented four indi-
vidual terms recorded for each nodule: a 2-D line-like distractor
index, a 2-D dot-like distractor index, a 3-D line-like distractor
index, and a 3-D dot-like distractor index.

This measurement involved three main steps such as the clas-
sification of each voxel as distracting versus nondistracting, the
classification of each distracting voxel as dot-like or line-like,
and the performing a 3-D weighted average of the number of
distracting voxels in a local ROI around the voxel of interest.
The first classification step was done by first converting the
raw voxel HU values into an eight-bit gray-scale according
to the window and level settings used in the reader study to

Fig. 1 Three orthogonal sections of a patient’s lungs. A structure that is presented as a 2-D dot in
the axial plane is shown to be a blood vessel running perpendicular to the axial plane. For the axial scan,
this structure would have a high 2-D dot-like distractor index, and a high 3-D line-like distractor index.
It would have a low 2-D line-like distractor index, and a low 3-D dot-like distractor index.
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correspond to the volumes that were visually presented to each
reader. Next, two feature selective filters (dot and line enhanc-
ing) were applied in parallel to each image section and the
outputs (using an enhancement scale range of 10 to 15 pixels,
with N ¼ 5 scales—chosen to reflect the size of interesting
vasculature structures) were recorded.15 These resulted in a
dot-enhanced and line-enhanced image for each section in a
volume. These filters were tuned to enhance image features in
2-D and 3-D, which were believed to be nodule-like and/or
distracting. The enhanced images were then binarized with a
global threshold (6% and 2% above the lowest gray value for
2-D and 3-D, respectively) to identify pixels that were visually
considered “distracting.” These thresholds were determined
empirically to strike the balance between maintaining sensitivity
to distracting voxels and while managing oversensitivity to
noise. Both 2-D and 3-D versions of these line- and dot-enhanc-
ing filters were used. The 2-D version of the filters selectively
enhanced structures that are presented as dot-like or line-like
within the section to which it is applied, whereas the 3-D version
also enhanced structures with orientation perpendicular to
the viewed section. That is, vessels that run through the plane
of the section and are presented as round structures would
likely be enhanced by both a 2-D dot-enhancing and 3-D
line-enhancing filters, but not by a 2-D line-enhancing or 3-D
dot-enhancing filter. Conversely, vessels that run parallel to
the image plane would be enhanced by both 2-D and 3-D line-
enhancing filters. Results will specify whether 2-D or 3-D

versions of the line/dot-enhancing filters were used by denoting
the type of distractor as 2-D or 3-D and line or dot.

To ensure the mutual exclusivity of a pixel as belonging to
a dot-like or line-like structure, a secondary classification was
performed. The distracting dot-like masks were dilated (using a
diamond-shaped structuring element with axis length of three
pixels) and filled, then subtracted from line-like masks and sub-
sequently eroded. This process corrected for a known issue in
the dot-enhancing and line-enhancing filters—namely that the
edges of even the most visually circular and “dot-like” structures
appear “line-like” mathematically (and are thus enhanced by
the filter). By removing the distracting dot-like structures from
the distracting line-like masks, the issue was corrected, and
the classification of line-like and dot-like was ensured to be
mutually exclusive.

In parallel to these two processes of distractor classification,
a binary mask of the lung was computed using an open-source
automated segmentation program (Pulmonary Toolkit).16,17 The
final classified distractor masks were defined as the intersection
of the lung mask and the respective binarized dot-like or line-
like images. To compute the weighted average for each voxel
location, a 3-D Gaussian filter (51 × 51 × 5 kernel size with
STD of 12.5, 12.5, and 1.25, respectively, selected to match
the size of the foveal gaze cone, with STD equal to half the
cone’s radius) was convolved with the binary distractor mask,
resulting in a weighted proportion of local voxels that were clas-
sified as distracting with their dot-like or line-like classification.

Image volume

Transform to
luminance scale

(i.e., apply window
and level)

2-D (or 3-D)  Dot-
enhance filter

2-D (or 3-D) Line-
enhance filter

Threshold

Binary, dot-enhanced
distractor mask

Binary, line-enhanced
Distractor Mask

Linelike distractor
 mask

Dotlike distractor 
mask

Dilate mask, fill holes,
erode mask

Segment lungs

Linelike distractor 
mask  Lung mask

Dotlike distractor
 mask  lung mask

3-D Gaussian filter
(i.e., 3-D weighted

average)
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Dotlike distractor

 index
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Linelike distractor

 index

Binary lung mask

Fig. 2 Flowchart demonstrating the computation of the distractor index.
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These distractor indices were computed for each nodule location
using the nodule-free images. This was possible because
the nodules from the observer study were inserted virtually.
Examples of the dot-like and line-like distractor indices in
2-D and 3-D are shown in Fig. 3.

2.2.2 Contiguity with local vasculature

Contiguity with local vasculature (recorded for both 2-D and
3-D, dot-like and line-like classification—representing four
individual terms) was assessed on a nodule-by-nodule basis.
Nodules were determined to be contiguous with local 2-D/3-D,
dot-like/line-like anatomy if they intersected with pixels that
were included in the 2-D/3-D, dot-like/line-like distracting
masks.

2.2.3 Number of local vessels

The quantity of local vessels was recorded as the number of
connected components in the 2-D dot-like distractor map on the
central section of the nodule. We expected that the detectability
would decrease as a function of this quantity.

2.2.4 Local mean gray value

In an effort to determine the importance of the brightness of the
local background into which the nodules were inserted, the local
mean gray value in an ROI around each nodule’s insertion point

was recorded. As the inserted nodules were hyperattenuating
nodules, a larger mean gray value would denote a smaller differ-
ence between the inserted nodule and its area of insertion.
We would expect detectability to decrease as local mean gray
value increases.

2.3 Confounding Factors

Preliminary observations of detectability results also inspired
the consideration of three confounding variables. The first
observation was that peripheral nodules seemed to be easier
to detect. Second, nodules were more easily detected in sections
where only a small portion of the lung was visible. Third, there
was considerable interreader variability in the detectability
results. As the focus of this study was to isolate the effects of
local lung complexity on nodule detectability, the three afore-
mentioned effects were considered confounding factors. These
confounding factors were controlled by three corresponding
variables, namely (1) distance of nodule to the tracheal carina,
(2) target region, and (3) reader. In the first of these, each nodule
was characterized by its 3-D distance from the bifurcation of
the trachea to control for confounding effects in the statistical
analysis.

Additionally, using the lung masks developed and utilized in
Sec. 2.2.1, the fraction of voxels in a section corresponding to
lung tissue was recorded for each section. This term was referred
to as the “target region.” A section with a larger target region
corresponds to one in which lung makes up a greater portion
of the image and therefore presents an area that a physician
must search, potentially to the detriment of detection accuracy
for nodules in that section.

The final confounding factor considered was the interreader
variability. This considerable interreader variability was con-
trolled by including a random effect for reader into the statistical
analysis.

2.4 Statistical analysis

The metrics (2-D and 3-D dot-like distractor indices, 2-D and
3-D line-like distractor indices, number of local vessels, local
mean pixel value, binary contiguity terms for 2-D/3-D, and
dot-like/line-like structures) and confounders (target region,
distance to trachea) were normalized to have a range of 0 to 1,
and all nonbinary regressors were compared individually to
detection accuracy (percent detected across all readers) with
linear regression. Collectively, the metrics were fit to the binary
reader responses with a generalized linear mixed-effects model
(probit link function, no interaction terms, and random effect for
readers). The magnitude of the model’s terms and corresponding
p-values was used to assess each metric’s effect strength and
statistical significance. In addition to the model trained on all
binary reader responses for each of the 157 nodules, a fivefold
cross validation strategy was employed to yield less-biased
estimates of the Pearson and Spearman coefficients, and the
standard error of the estimate sest. To report the variability of
the correlation coefficients and the standard error of the estimate
due to training/testing partition differences, both five-fold cross
validation and calculation of the statistics was repeated 1000
times, and the means and standard deviations of these values
were reported.

2-D Dot-like 2-D Line-like

3-D Dot-like 3-D Line-like

Fig. 3 Examples of the dot-like and line-like distractor indices in 2-D
and 3-D for one nodule-free image substrate show which anatomy is
preferentially highlighted by which distractor indices. The 2-D dot-like
distractor index highlights structures that are circular and within the
predetermined size range. The 2-D line-like distractor index highlights
vessels that are parallel to the image section plane. As shown in Fig. 1
both of these vessels are “line-like” when considered in a 3-D space,
thus they both appear to have higher 3-D line-like distractor index
values. As nothing in this slice is a 3-D dot, the distractor index for
3-D dots is small for the whole slice. The yellow circle shows the loca-
tion where the nodule was inserted for the reader study.
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3 Results
Examples of nodule-free images with 3-D line-like distractor
index overlays is shown in Fig. 4. The linear regression plots
are shown in Fig. 5, demonstrating how detection accuracy
related to each of the continuous predictors.

The output of the generalized linear regression using all
the data is shown in Table 1. A pairwise scatter plot between
the model-predicted detection accuracy, and the measured
detection accuracy (averaged across all readers) for each of
the 157 nodules is shown in Fig. 6 for the model fit using
all the data.

In order of decreasing effect size, 3-D line-like distractor
index, 2-D line-like distractor index, 2-D dot-like distractor
index, local mean gray-level, contiguity with 2-D dots, target
region and contiguity with 3-D lines all significantly affected
detectability (P < 0.05). The predictors corresponding to the
3-D dot-like distractor index, distance to the trachea, contiguity
with 2-D lines, contiguity with 3-D dots, and number of local
vessels did not have a significant effect (P > 0.05). Estimates
of the Pearson and Spearman correlations between the multivari-
ate model and the human reader data using a fivefold cross-
validation scheme repeated 1000 times were 0.73� 0.01 and
0.74� 0.01, respectively (reported as mean� STD). Reported
likewise, the standard error of the estimate was 0.21� 0.01.

4 Discussion
This study represents a first-order attempt to quantify the effect
that local lung complexity has on detectability of pulmonary
nodules. Despite the sparse assumptions of the model, relatively
good correlations (Pearson and Spearman, 0.73� 0.01 and
0.74� 0.01, respectively) and a low standard error of the
estimate (sest ¼ 0.21� 0.01) were shown between the model
predictions based on metrics investigated and human-based
detectability.

The simplest approach at capturing the effects that influence
detection inspired the inclusion of both 2-D and 3-D distractor
metrics. This is because, when reading a patient’s chest CT in
search of lung nodules, it is common practice to scroll longitu-
dinally through the volume more than once, investigating
smaller, more local, areas using a forward–backward scrolling
motion.18,19 By searching with this scrolling motion, a physician
can differentiate structures that appear as 2-D dots—that is,
between vessels running perpendicular to the image plane
(which track back and forth under scrolling) and nodules
(which pop out and disappear).19 This difference in anatomical
presentation (based on view method) inspired us to incorporate
terms for both 2-D and 3-D distractors in our consideration.
While both 2-D and 3-D perspectives incorporate some informa-
tion about local complexity in the nearest surrounding voxel
(through the Gaussian), they represent two different visual

Small target regionLarge target region

High distractor index Low distractor index

Fig. 4 Example images of nodules that were easily detected (right column) and not detected by any
readers (left column). The images are overlaid with semi-transparent heat map of 3-D line-like distractor
index values. Although these images are nodule-free, the yellow cross marks the corresponding nodule
location for the nodule-enriched images that were shown to the readers. The blue outline denotes
the segmented lung boundaries.
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phenomena of vascular presentation. The utility of each of these
metrics is shown in their relative greatest effect size amongst
all regressors. Conversely, the 3-D dot-like distractor index
did not have a significant effect on detectability. This is likely
because the distractor index measurements were made on the
substrate images that were nodule-free. As these scans were
determined not to have lung nodules within them prior to
insertion, the 3-D dot-like distractor index would vary very little
from minimum value of 0 (which is seen in Fig. 5), as it is
only nonzero for 3-D dots and nodule-like structures, which
were intentionally absent from the substrate images. In total,
the 2-D dot-like and line-like and 3-D line-like distractor indices
were successful at characterizing one aspect of the local lung
complexity. However, it was not solely this component of
distracting “anatomical noise” in the area surrounding a nodule
that influenced its detection.

In addition to the distractor indices, the local mean gray level
in the area surrounding the nodule had a statistically significant
effect on the detectability of the lung nodules. This pointed to
the role of a nodule’s conspicuity in the ultimate rate of its detec-
tion. Higher conspicuities among nodules were seen in those
that are present in backgrounds with lower mean gray values
(as the inserted nodules themselves are hyper attenuating). This
expected relationship was, therefore, confirmed here. However,
no matter the conspicuity from background, sometimes the
structure of nearby anatomy served to mask nodules.

This was likely why binary contiguity terms for 2-D dot-like
structures and 3-D line-like structures both had statistically
significant impact on lesion detection rates. The impact of
these specific terms is of interest because they may both
indicate contiguity to similar structures. As vessels that run

longitudinally through an image plane presented as 2-D dot-
like within that plane but 3-D line-like when the imaging volume
as a whole is considered, contiguity with such structures would
be indicated by both of these binary contiguity terms. In
contrast, contiguity with 2-D lines and 3-D dots do not have
statistically significant impact on detectability outcomes. The
significance of the former pair of terms served to echo the heu-
ristic that the structure of locally distracting tissues was particu-
larly important.

The target region had a significant impact on lesion
detection. This—combined with the resulting significances of
the 2-D dot-like, 2-D line-like, and 3-D line-like distractor
indices—suggested that the regional lung anatomy may be
intimately intertwined with detection performance. As an
example of this, despite expected trends between the number
of local vessels and the detection shown in Fig. 5, the number
of local vessels did not have a statistically significant impact on
the detection of nodules. This suggested that the number of
nearby 2-D dot-like structures was not enough to explain
success of nodule detection or lack thereof. Rather, perhaps a
more refined version of this metric, which takes into consider-
ation the spacing and grouped structures and geometry of these
simple structures, is merited.

5 Limitations
In addition to these considerations it is important to note some
limitations of the study. One key limitation to the study is the
virtually-inserted nature of the nodules. As the nodules were
inserted virtually into the substrate images, they do not interact
in the way that a real, grown nodule would with its anatomical
surroundings (i.e., pulling and pushing neighboring tissues, or
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Fig. 5 Univariate regressions normalized, nonbinary, complexity metrics for each nodule against the
fraction of readers who detected that nodule.
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altering local blood supply). Although work is being done to
account for these subtler effects in future studies using virtual
insertion, it is worthwhile to note that the virtual insertion strat-
egy used in this first study neglects these finer points.

Additionally, despite its successes, there are many factors in
the model that could be optimized and also other metrics that
could be considered to further explain the complex psychophys-
ics of image interpretation in chest CT imaging. Improvements
in the methodology could be made in one of two ways: either
by improving the metric presented here, or by adding new ones
that capture other confounding effects.

For an example of the former type of improvement, consider
the distractor indices. The first primary step of computing the
distractor indices was to classify each lung voxel as distracting
or nondistracting, and further as line-like or dot-like (in both 2-D
and 3-D sense). As presented, this was achieved by using shape-
selective filters corresponding to features (lines and dots) that
were presumed to be distracting. In reality though, distracting
structures are likely neither perfectly dot-like nor perfectly
line-like but rather somewhere in between. In this spirit, future
analysis may avoid such binary classification altogether, instead
considering a continuous variable capturing the “dotliness” or

Table 1 Output of the multivariate generalized linear mixed effects statistical model fit to all responses.

A: Model information

Link function Fixed effects Random effects AIC BIC

Probit 13 1 7325.5 7404.2

Name Estimate SE tStat P value

Intercept 1.05 0.20 5.2552 1.63 × 10−07

B: Continuous predictors

Name Estimate SE tStat P value

2-D line-like distractor index* 0.89 0.37 2.40 0.017

2-D Dot-like distractor index* −0.84 0.35 −2.40 0.016

3-D Line-like distractor Index* −2.37 0.36 −6.55 7.23 × 10−11

3-D Dot-like distractor index −0.49 0.32 −1.54 0.12

Mean gray-level* −0.61 0.26 −2.38 0.02

C: Ordinal predictors

Name Estimate SE tStat P value

Number of nearby vessels −0.09 0.22 −0.43 0.66

D: Binary predictors

Name Estimate SE tStat P value

Contiguity with 2-D lines 0.28 0.14 1.92 0.06

Contiguity with 2-D dots* −0.53 0.14 −3.87 1.1 × 10−4

Contiguity with 3-D lines* −0.26 0.12 −2.22 0.03

Contiguity with 3-D dots 0.25 0.39 0.65 0.51

E: Confounders

Name Estimate SE tStat P value

Target region* −0.31 0.15 −2.04 0.04

Distance to trachea 0.28 0.17 1.62 0.10

*An asterisk (*) denotes predictors which had a statistically significant effect (P < 0.05).
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“lineliness” of local regions in the aid of calculating distractor
indices. Metrics may also be improved in the focus of the struc-
ture of local complexity. Our analysis highlighted the impor-
tance of structure and of presentation and search. One such
improvement could be made to augment the metric quantifying
the number of local vessels. To this end, higher order “particle
analysis” could be used to locally classify these vessels as
discrete units of different structures (e.g., linear arrangement
versus clustered).

Improvements in the modeling could also be achieved
through the addition of terms that supply auxiliary information.
One straightforward model augmentation would be the inclu-
sion of information about the readers’ gaze and visual search.
Such dynamic information when coupled with the static
information about local complexity would undoubtedly improve
the concordance of model-predicted detection accuracies and
human-detection rates, and our understanding of nodule detec-
tion as a whole. Likewise, further analysis of individual reader-
specific models—ones that could identify and capture aspects
that may affect different readers’ search differentially—would
serve to add additional nuance to the study of the impact of
anatomical noise. Such analyses are reserved as the focus of
a following study. However, despite their simplicity, the metrics
of local complexity developed here result in a model that
accounts for nodule detection rates in humans with considerable
success.

6 Conclusion
This study represents a successful first attempt at studying the
effect of local anatomical complexity on the detection of lung
nodules. These data demonstrate that increased local lung com-
plexity degrades the detection of lung nodules and that the dis-
tractor indices, along with local mean gray level and contiguity
terms, could serve as reasonable surrogate metrics of such
complexity. This initial study builds toward future work that
will compare more metrics of complexity and also incorporate

other confounding factors such as the lesion characteristics and
reader gaze patterns.
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Fig. 6 Comparison between the predicted detection accuracy from
the multivariate generalized linear regression model and human
detection accuracy for model fit using all data.
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