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Abstract

The response of a cortical neuron to a motivationally salient visual stimulus can reflect a
prediction of the associated outcome, a sensitivity to low-level stimulus features, or a mix of both.
To distinguish between these alternatives, we monitored responses to visual stimuli in the same
lateral visual association cortex neurons across weeks, both prior to and after reassignment of the
outcome associated with each stimulus. We observed correlated ensembles of neurons with visual
responses that either tracked the same predicted outcome, the same stimulus orientation, or that
emerged only following new learning. Visual responses of outcome-tracking neurons encoded
“value,” as they demonstrated a response bias to salient, food-predicting cues and sensitivity to
reward history and hunger state. Strikingly, these attributes were not evident in neurons that
tracked stimulus orientation. Our findings suggest a division of labor between intermingled
ensembles in visual association cortex that encode predicted value or stimulus identity.
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Introduction

Our brains track not only the identity of sensory stimuli, but also the possible outcomes
associated with these stimuli. Due to a constantly changing environment, learned cue-
outcome associations are frequently made, broken, and re-made. Accordingly, the neural
representation of a given cue-outcome association must include both reliable encoding of the
stimulus identity and flexible, context-dependent encoding of the predicted outcome and its
motivational salience. However, representations of stimuli and of predicted outcomes are
often considered in separate studies focused on different brain regions. For example, studies
in early visual cortical areas have described correlated ensembles of neurons that encode
low-level information about stimulus identity (Cossell et al., 2015; Hofer et al., 2011; Ko et
al., 2011; Kohn and Smith, 2005; Lee et al., 2016), while studies in subcortical regions such
as the amygdala have identified ensembles that respond to those sensory cues that become
associated with a given salient outcome (Grewe et al., 2017; Paton et al., 2006; Schoenbaum
etal., 1999; Zhang et al., 2013). Within intervening brain areas, it remains unclear whether
representations of stimulus identity and of predicted outcome are largely encoded by a
common group of neurons or are separately encoded by different groups of neurons.

A natural region in which to address this question is the visual postrhinal cortex (POR;
Wang and Burkhalter, 2007) and neighboring regions of lateral visual association cortex
(LVAC). Behavioral studies suggest that lateral association cortex may play a key role in
linking representations of sensory stimuli and predicted outcomes (e.g., Parker and Gaffan,
1998; Sacco and Sacchetti, 2010). Anatomical evidence points to LVAC as a putative
integration site, as it receives feedforward projections from early visual cortex and visual
thalamus (Wang and Burkhalter, 2007; Zhou et al., 2018) and feedback projections from
lateral amygdala (Burgess et al., 2016). Evidence that LVAC contains a faithful
representation of the visual world comes from observations that some LVAC neurons are
retinotopically organized and can encode low-level stimulus features such as stimulus
orientation, even in naive mice (Burgess et al., 2016). Evidence that LVAC also contains a
representation of the value of predicted outcomes comes from observations that, following
training, LVAC neurons show a hunger-dependent response bias towards learned cues that
predict food delivery, as well as sensitivity to reward history (Burgess et al., 2016).

Neuron. Author manuscript; available in PMC 2019 November 21.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ramesh et al. Page 3

While the above study in mice and many neuroimaging studies in humans demonstrate
enhanced responses to salient cues in LVAC (reviewed in Burgess et al., 2017), these studies
were fundamentally limited in their ability to determine whether a given neuron is
responsive to a visual cue because it is sensitive to the low-level features of the stimulus, to
the outcome predicted by the stimulus, or to a combination of these factors. At one extreme,
the observed population-level sensitivity to food cues, hunger state, and reward history could
be a result of individual neurons that are tuned to low-level visual stimulus features but that
also demonstrate changes in response gain across behavioral contexts. At the other extreme,
one subset of neurons might track whichever cues predict a given salient outcome, while
another intermingled set of neurons might track low-level visual features and maintain the
same high-fidelity response tuning independent of context.

To address this question, we used two-photon calcium imaging to record in LVAC of mice
performing a Go-NoGo visual discrimination task. Critically, we tracked the same neurons
across days prior to, during, and following learning of a reassignment of cue-outcome
associations (similar to classic reversal learning paradigms; Paton et al., 2006). We identified
multiple ensembles of correlated LVVAC neurons, each of which tracked the identity of a
specific visual stimulus. Strikingly, we found that visual responses in these identity-coding
ensembles were not sensitive to motivational salience. Instead, we identified an additional
ensemble of correlated neurons that tracked predicted outcome and whose visual responses
were sensitive to cue saliency, reward history, and hunger state. Surprisingly, relatively few
neurons demonstrated appreciable joint tracking of stimulus identity and of predicted
outcome. We propose that intermingled ensembles encoding stimulus identity or predicted
outcome in visual association cortex may achieve dual goals of maintaining a faithful
representation of a visual stimulus while enabling flexible encoding of predicted outcomes
and their motivational salience.

Results

Mice learn changes in cue-outcome associations in a visual discrimination task

We trained food-restricted mice to perform a Go-NoGo visual discrimination task (Figure
1A-B). Mice were presented with visual cues for 3 s, followed by a 2-s response window
and a 6-s inter-trial interval. Mice were trained to discriminate between a food-predicting
cue (FC; 0° in Figure 1B; orientations were counterbalanced across animals), a quinine-
predicting cue (QC; 270°), and a neutral cue (NC; 135°). Licking during the response
window following the FC, QC, or NC resulted in delivery of liquid food (5 pL of Ensure), an
aversive bitter solution (5 pL of 0.1 mM quinine), or nothing, respectively.

Lateral visual association cortex (LVAC) was necessary for task performance, as bilateral
silencing (centered on visPOR) using the GABA p agonist muscimol (125 ng in 50 nl)
disrupted performance (p = 0.006, paired t-test; n = 3 mice; Figure 1C and S1A). Silencing
of LVAC did not result in general cessation of licking (as occurs when silencing insular
cortex during this task, Livneh et al., 2017). Instead, it caused mice to lick indiscriminately
in response to all cues (Figure S1A), suggesting a perceptual rather than a motivational
deficit.

Neuron. Author manuscript; available in PMC 2019 November 21.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ramesh et al. Page 4

Once mice stably performed the Go-NoGo task, we switched the three cue-outcome
contingencies via a clockwise rotation of the outcome associated with each stimulus (Figure
1D; e.g. FC: 0°—270°; QC: 270° —135°; NC: 135° —0°). Discrimination returned to high
levels in as few as 3 days following this “Reversal” (Figure 1E-F; d’ pre- vs. during- vs.
post-Reversal: p < 0.001, 1-way repeated measures ANOVA, Tukey-Kramer method). We
used a behavioral performance threshold (d” > 2 for = 2 consecutive days) to divide our
training paradigm into 3 epochs: (i) prior to switching of cue-outcome associations (pre-
Reversal), (ii) poor performance immediately after switching of cue-outcome associations
(during-Reversal), and (iii) following learning of the new associations (post-Reversal; Figure
1E-F). Following the switch, mice began licking indiscriminately to all cues, and then
gradually increased licking to the new food cue (Figures 1F and S1B; p < 0.05, 2-way
ANOVA, Tukey-Kramer method) and decreased licking to other cues. This switching of cue-
outcome associations also caused an increase in pre-stimulus licking. Food cue-evoked and
pre-stimulus licking gradually returned to pre-Reversal levels and became more stereotyped
(Figure S1C-D; Jurjut et al., 2017). The fraction of all trials with lick responses did not
change (Figure S1E), suggesting similar levels of task engagement throughout the Reversal.

Different subsets of LVAC neurons track stimulus identity or predicted outcome

Throughout daily imaging sessions (14 + 5 sessions/mouse in 4 mice), we tracked visual
responses in the same population of neurons in layer 2/3 of lateral visual association cortex
(LVAC) using two-photon calcium imaging. Recordings were from a region of LVAC
centered around visPOR (Figure 2A), which was delineated using widefield intrinsic
autofluorescence imaging of retinotopy, and subsequently injected with AAV1-hSyn-
GCaMPé6f (Burgess et al., 2016).

We tracked 731 neurons across multiple imaging sessions, of which 179 were significantly
visually responsive both pre- and post-Reversal. We hypothesized that some neurons would
respond selectively to the same low-level stimulus feature (orientation) regardless of changes
in associated outcome (e.g. Figure 2B, fop: neural response preference tracks the 270°
grating), while other neurons would respond selectively to visual cues predicting the same
outcome regardless of stimulus orientation (see hypothetical example neuron in Figure 2B,
bottom, which responds to the stimulus that predicts quinine, regardless of stimulus
orientation; Figure S2A).

Diverse tuning properties were observed across simultaneously recorded neurons, both in
single-trial visual responses (Figure 2C) and in mean responses (Figure 2D). Neuron #1
responded to the food-predicting cue (FC) both pre- and post-Reversal, regardless of
stimulus orientation (FC pre-Reversal: 0°; FC post-Reversal: 270°). Neuron #2 responded to
the same orientation (270°) across the Reversal. Neuron #3 r esponded to all 3 cues across
all sessions.

We assigned all neurons that were visually responsive both pre- and post-Reversal to one of
three categories (Figure 2E): “Predicted Outcome (PO)” neurons had visual responses that
predominantly tracked the same predicted outcome, “ldentity (ID)” neurons maintained
visual responses to the same preferred stimulus orientation, and “Broadly-tuned (BR)”
neurons had non-selective visual responses. To categorize a neuron, we constructed a 3-point
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tuning curve of its responses to the 3 stimuli pre-Reversal (Figure S2A, /eft panel, net cue
preference: black arrow). We then estimated how this tuning curve and net preference would
have “rotated” post-Reversal (Figure S2A, right panels), had the neuron been purely tuned to
stimulus identity (no rotation, as ID neurons respond consistently to the same orientation;
dashed purple arrow), or predicted outcome (clockwise rotation to match the rotation of
outcomes relative to the 3 stimuli; dashed orange arrow). Using this categorization, we
found 83 ID neurons and 43 PO neurons (Figure 2F; Figure S2A-E, right). We also found 53
BR neurons that showed similar responses to all cues, and thus equally poorly “tracked”
stimulus orientation, predicted outcome, and an artificial, counter-clockwise “null” rotation
across Reversal (Figure S2B). The tracking of predicted outcome did not occur due to noisy
estimates: while many LVAC neurons showed surprisingly pure tracking of the same
predicted outcome (Figure 2F, right dashed box) or the same stimulus orientation (Figure 2F,
left dashed box; Figure 2G), control analyses confirmed that almost no neurons showed
similarly pure tracking of the artificial null rotation (Figure S2C).

Enhanced sensitivity to food cues and reward history in Predicted Outcome but not
Identity neurons

Neural responses in LVAC of food-restricted mice were biased to food cues vs. other visual
cues (Figure 3A), consistent with previous work in humans and mice (Burgess et al., 2016;
Huerta et al., 2014; LaBar et al., 2001). Here, we asked whether this food cue response bias
is more prevalent in any one category of LVAC neurons. The set of 179 neurons responsive
to visual cues both pre- and post-Reversal showed a similar net food cue response
enhancement as the total population (i.e. neurons driven either pre- ana/or post-Reversal;
Figure 3A and Figure S3A). Surprisingly, this food cue response bias was absentin the
subset of neurons that preferentially tracked stimulus orientation (left half of Figure 3B; cf.
Figure 2F; food cue bias = FCresponse / [FCresponse + QCresponse * NCresponsel; no bias: 0.33).
This was true both for those neurons that purely tracked stimulus orientation (leftmost
datapoint) and for those neurons that weakly tracked stimulus orientation (2" and 3"
datapoints from left). Instead, the food cue bias only existed in those neurons that
predominantly tracked the predicted outcome (right half of Figure 3B; p < 0.001, Wilcoxon
Sign-Rank test against 0.33, Bonferroni corrected). Furthermore, those neurons that purely
tracked the predicted outcome demonstrated the strongest food cue response bias.

We confirmed that the group of PO neurons showed a response bias to the food cue (Figure
3C). This bias persisted both pre- and post-Reversal, and thus across associations of different
stimulus orientations with the food reward (Figure 3C; inset shows per animal; Figure S3A—
B; PO neurons pre- and post-Reversal: p < 0.0001, Wilcoxon Sign-Rank test against chance,
Bonferroni corrected within group). Critically, the group of ID neurons did not exhibit this
bias (p > 0.05). Thus, while on average there exists a food cue response bias when
considered across all neurons, a subgroup of neurons exists that faithfully encodes stimulus
identity irrespective of motivational salience. These data suggest the co-existence of largely
distinct sets of LVAC neurons that either faithfully represent the same low-level sensory
features across time, or that show more plastic representations that track whichever stimulus
predicts a given salient outcome.
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We previously showed that the magnitude of food cue responses in LVAC neurons varied in
their sensitivity to reward history (Burgess et al., 2016). We asked whether such short-
timescale variation in expected value of predictive cues differed across functional categories.
We estimated the magnitude of a neuron’s average response to its preferred stimulus, either
for trials preceded by a rewarded food cue (Rgc—pref) OF those preceded by one or more
non-rewarded cues (Rnonrc—pref), and calculated a reward history modulation index
(@bs[Rnonrc—pref-Rrc—prefl/Rpret; Se€ example cells in Figure 3D). We found that those
neurons that tracked the orientation of the stimulus across the Reversal were relatively
insensitive to recent reward history (left half of Figure 3E). In contrast, those neurons that
purely tracked the predicted outcome (darkest gray circle) were more sensitive to reward
history (bootstrap permutation test: p < 0.01; Figure 3E). Similarly, when analyzing neurons
by category, we found that PO neurons were more sensitive to recent reward history than ID
or BR neurons (Figure 3F and Figure S3C; PO vs. ID or BR neurons: p < 0.02; ID vs. BR
neurons: p > 0.05; Kruskal-Wallis, Bonferroni corrected). As response bias towards the
motivationally relevant food cue and sensitivity to reward history both reflect encoding of
the expected value of predicted outcomes, these findings further support the conclusion that
the subset of L\VAC neurons that encode low-level stimulus features do not additionally
encode expected value.

Dissecting sensory, motor, and reward-related responses in visual association cortex

We next used a generalized linear model (GLM; Figure 4A—C) to estimate the relative
contributions of visual cues, reward delivery, and other task-relevant events to the overall
responses of each group of neurons. Notably, visual cue coefficients, which captured activity
tightly locked to stimulus onsets, explained the largest proportion of task-modulated activity
in PO neurons as well as in ID and BR neurons (deviance explained using visual coefficients
vs. motor coefficients such as those locked to the first lick following cue onset: p < 0.01,
Wilcoxon Rank-Sum, Bonferroni corrected; Figure 4A-D; Figure S4A-B). We confirmed
that a selective bias to the food cue was present in PO neurons, but not in ID or BR neurons,
even when considering only the visual cue response coefficients from the GLM (p < 0.05,
Kruskal-Wallis, Bonferroni corrected; Figure 4E).

PO neurons did not show responses tightly locked to any visual cue in sessions during-
Reversal, when the animal was performing the task poorly (potentially due to decreased
confidence in cue predictions). We therefore quantified the likelihood of significant visual
responses in all three categories of neurons as previously assessed pre- and post-Reversal,
but now for during-Reversal sessions. We found that while ID and BR neurons were
consistently visually responsive during-Reversal, this was not the case for PO neurons
(Figure 4G and Figure S4C-D; POpyring VS. IDpyring OF BRpuring: P < 0.0001, 2-way
ANOVA with Tukey-Kramer method). This was true despite reliable activity prior to motor
initiation (Figure 4F and Figure S4A), implying that this pre-motor neural signal can be
decoupled from the visual component of responses in PO neurons. Thus, this GLM analysis
reveals that PO neurons lose their short-latency visual response to the stimulus previously
predictive of reward, and only display a short-latency response to the new visual stimulus
predicting reward after re-learning, once the mouse has developed confident predictions of
the new outcomes predicted by each cue.

Neuron. Author manuscript; available in PMC 2019 November 21.
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Taken together, the above results are consistent with a model in which LVAC neurons that
track the same outcome across a Reversal are differentially influenced by common top-down
inputs, such as amygdala feedback projections that exhibit strong food cue bias, sensitivity
to trial/reward history, and encoding of both learned visual cues and associated outcomes
(Burgess et al., 2016). In contrast, ID neurons may be differentially influenced by bottom-up
input from early visual cortex and thalamus.

Correlated ensembles of Predicted Outcome, Identity, and Broadly-tuned neurons

Previously, higher within- vs. across-group co-fluctuations in cue-evoked neural activity (i.e.
noise correlations) have been used to identify distinct functional “ensembles” that may
reflect increased common input (Figure 5A; Cumming and Nienborg, 2016; Shadlen and
Newsome, 1998) and/or increased local connectivity (Cossell et al., 2015; Ko et al., 2011).
Thus, we tested whether the largely distinct functional groups of neurons encoding stimulus
identity or predicted outcome showed increased within- vs. across-group functional
connectivity, thereby supporting the notion of distinct ensembles. To this end, we assessed
trial-to-trial co-fluctuations in cue-evoked responses across pairs of neurons during food cue
presentations (Figure 5A). Indeed, PO neurons showed higher noise correlations with other
PO neurons than with ID or BR neurons (Figure 5B; PO-PO vs. PO-Other: p < 0.001,
Wilcoxon Rank-Sum, Bonferroni corrected). BR neurons also demonstrated higher within-
VS. across-group noise correlations (p < 0.001). Similar results were observed when
separately considering neurons that either weakly or strongly tracked predicted outcome
(right half of Figure 5C, cf. Figure 2F). These elevated within- vs. across-group noise
correlations were not due to differences in response preferences across groups: restricting
analyses to those neurons in each group that preferred the orientation associated with food
reward yielded similar results (p < 0.0001; Figure 5D, Wilcoxon Rank-Sum, Bonferroni
corrected). Thus, even neurons that preferentially respond to the same stimulus can belong
to different ensembles based on whether they track stimulus orientation vs. predicted
outcome across a Reversal.

We additionally hypothesized that within the set of ID neurons in LVAC, there might exist
highly correlated sub-ensembles, each preferring a unique stimulus orientation, as in primary
visual cortex (Cossell et al., 2015; Ko et al., 2011). Indeed, we confirmed the presence of
different sub-ensembles of ID neurons preferring each of the three stimulus orientations,
with increased noise correlations within vs. across sub-ensemble (Figure 5E; FCqi-FCqri VS.
FCori- Othergyi: p = 0.009, NCqi-NCgyri VS. NCori-Othergsi: p = 0.004; QCopri-QCori VS. QCoqri-
Othergyi: p =0.27).

Analysis of spontaneous co-activity of neurons provided additional evidence for the
existence of distinct ensembles in LVAC. As with trial-to-trial noise correlations of stimulus-
evoked activity, we observed higher within-group vs. across-group correlations in
spontaneous activity, during moments in which no stimulus was present (Figure 5F and
Figure S5A-B; p < 0.001, Wilcoxon Rank-Sum, Bonferroni corrected). Pairs of ID neurons
with the same orientation preference also showed higher spontaneous co-activity than those
with different orientation preferences (Figure 5G; FCori-FCori Vs. FCorj-Othergi: p < 0.01,
QCori-QCqri VS. QCqi- Otherg;i: p < 0.0001, NCq;i-NCgi VS. NCq(i-Otherg,i: p = 0.17,
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Wilcoxon Rank-Sum, Bonferroni corrected). These results were evident even in individual
recording sessions (e.g. Figure S5CE). Altogether, these data suggest the existence of
multiple ID sub-ensembles of correlated neurons encoding distinct stimulus features in
LVAC (as in V1, Cossell et al., 2015; Ko et al., 2011), as well as at least one additional
intermingled ensemble that encodes predicted outcome.

While PO, BR, and ID neurons were generally intermingled, PO and BR neurons did show
weak spatial clustering relative to ID neurons (Figure S6A). However, functional properties
did not differ between neurons in the center or in the periphery of our fields of view (Figure
S6BF): both demonstrated selective food cue response enhancement in PO neurons (Figure
S6D) and higher correlations within vs. across functional categories (Figure S6E—F). This
suggests that our findings are not limited to the retinotopically-defined area in the center of
our field of view — visual postrhinal cortex (visPOR) — but instead may generalize to
neighboring regions of LVAC, possibly due to innervation by common sources of input
(Burgess et al., 2016).

Joint tracking of stimulus identity and predicted outcome in single neurons

We sought to distinguish neurons that might exhibit true ‘joint tracking” (i.e. those
demonstrating a visual cue-evoked response both to a specific stimulus orientation and'to
whichever stimulus predicts the same outcome pre- and post-Reversal) from those that were
simply broadly responsive to all stimuli. An example joint tracking neuron is shown in
Figure 6B. To assess the strength of joint tracking, we used an index that equals 0 for those
neurons that purely track the stimulus orientation (Figure 6C; x-axis value of —1) or the
predicted outcome (Figure 6C; x-axis value of 1) across the Reversal, and that is positive for
those neurons that partially track both stimulus orientation and predicted outcome (Figure
6C; small black circles: neurons with significant joint tracking; large circles: averages for
each category; dashed gray lines: 95% confidence intervals). Only a minority of neurons
showed significant joint tracking (Figure 6D). PO and BR neurons with significant joint
tracking demonstrated enhanced food cue responses post- vs. pre-Reversal (p < 0.01,
Wilcoxon Sign-Rank test against 0, Bonferroni corrected; Figure 6E). This suggests that, in
addition to encoding stimulus orientation, these neurons shifted their tuning curves post-
Reversal to also encode the new food cue. In contrast, the small minority of ID neurons
exhibiting joint tracking showed ro significant enhancement in food cue responses post-
Reversal, further supporting the notion that visual responses of ID neurons are largely
insensitive to predicted value (p > 0.05, Wilcoxon Sign-Rank test against 0, Bonferroni
corrected; Figure 6E).

Neurons recruited during new learning encode predicted value

During Reversal, Predicted Outcome neurons lose their short-latency response to the visual
stimulus that previously predicted food reward, and subsequently develop a response to the
new visual stimulus now predicting reward (Figure 4F-G). We therefore hypothesized that
an additional subset of neurons might exist that develop a similar response to the new visual
stimulus now predicting reward, yet that were unresponsive to any visual stimulus pre-
Reversal. Further, we predicted that such “Recruited” neurons would exhibit similar
functional properties as PO neurons. We identified 472 neurons that were either not visually
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responsive or that were not identifiable pre-Reversal, but that became visually responsive
post-Reversal (Figure 7A-C). Visual responses in these neurons showed a similar bias to the
food cue as in PO neurons (Figure 7D; p < 0.025 for all comparisons, Kruskal-Wallis,
Bonferroni corrected) and a similarly strong sensitivity to reward history (Figure 7E; p >
0.05, Wilcoxon Rank-Sum).

We found that Recruited neurons were integrated with the correlated ensemble of PO
neurons. Specifically, both Recruited neurons and PO neurons showed higher post-Reversal
noise correlations with PO neurons than with ID or BR neurons (Figure 5C; p < 0.002,
Kruskal-Wallis, Bonferroni corrected). Recruited neurons also showed higher post-Reversal
spontaneous event cross-correlations with PO neurons than with 1D or BR neurons (Figure
7G; post-Reversal: p < 0.01, 2-way ANOVA, Tukey-Kramer method). Overall, when
combining noise and spontaneous correlations together post-Reversal, Recruited neurons
were generally more co-active with PO neurons than with 1D or BR neurons (Figure 7H).
Remarkably, in those Recruited neurons for which we could measure spontaneous activity
pre-Reversal, we also observed a significantly higher pre-Reversal correlation in
spontaneous activity with PO neurons than with other groups (right of Figure 7G; p < 0.05,
2-way ANOVA, Tukey-Kramer method), even though Recruited neurons were not
significantly visual driven by any cue during this pre-Reversal epoch. These data suggest
that Recruited neurons become integrated into the PO ensemble and may be predisposed to
this integration even priorto the emergence of visual responses during new learning.

These Recruited neurons were mirrored by a population of neurons that ceased to be visually
responsive when cue-outcome contingencies were reassigned (“Offline” neurons; n = 232
neurons; Figure S7A-B). Pre-Reversal, these Offline neurons were also biased to the food
cue (Figure S7C; FC vs. QC and NC: p < 0.001, Kruskal-Wallis, Bonferroni corrected) and
showed similar sensitivity to reward history as PO neurons (p > 0.05, Wilcoxon Rank-Sum
test). However, Offline neurons did not demonstrate the same pattern of functional
connectivity as the Recruited population (Figure S7TF-G), as they did not show higher noise
correlations or spontaneous correlations with PO than with ID or BR neurons. Thus, while
Offline neurons exhibit similar properties to PO neurons, they may be predisposed to go
‘offline’ due to a lack of strong functional connectivity with PO neurons.

Single-session visual response dynamics can predict which neurons will track stimulus
identity or predicted outcome across Reversal

The above findings regarding Recruited and Offline neurons led us to conduct a more
comprehensive assessment of the functional similarity and correlations between the small set
of neurons driven pre- and post-Reversal and thus classifiable as PO, ID, or BR neurons (h =
179) and the larger group of transiently visually responsive neurons driven on at least 2
sessions pre-or post-Reversal, but not both (n = 543 neurons; Figure 8A). To this end, we
tested whether response dynamics measured during a sing/e recording session were
sufficient to correctly classify neurons responsive pre- and post-Reversal as PO, ID, or BR
(i.e. whether single-session responses could predict if a neuron would track stimulus
orientation or predicted outcome across Reversal). If successful, this same classifier could
then be applied to the larger pool of transiently responsive neurons, and thus serve as a
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useful tool for relating our across-day findings to single-session measurements from both
current and previous studies. Initial observations suggested that low-level response features
might indeed be predictive of membership in an across-Reversal category. For example,
certain neurons showed a temporally locked response to the 2 Hz temporal frequency of the
drifting gratings (Figure 8B; p < 0.05; see STAR methods), and these neurons were all ID
neurons that tracked the same stimulus orientation across the Reversal (note that 2 Hz
locking was not used during initial categorization in Figure S2A-B).

To attempt to distinguish PO, 1D, and BR neurons using single-session data, we extracted a
large set of basic visual response features collected from a single imaging session (2 Hz
locking, trial-to-trial response variability, mean response latency, response selectivity,
response magnitude, response latency variability, ramp index, and time to peak). We trained
a Random Forests classifier to label neurons as PO, ID or BR based on these sensory
response features. Strikingly, this approach showed that within-session data was sufficient to
classify neurons as PO, ID, and BR at well above chance levels (Figure 8C; Figure S8B-D;
PO-, Identity-, and Broadly-tuned vs. Shuffle: p < 0.0001, Wilcoxon Rank-Sum; Breiman,
2001; Geng et al., 2004).

Having validated the classifier, we applied it to transiently visually responsive neurons. We
defined “PO-like,” “ID-like,” or “BR-like” neurons as those that demonstrated a high level
of classifier confidence (> 0.6) that their response characteristics were similar to those of
PO, ID, or BR neurons, respectively (Figure S8F). We found that, as with PO neurons, PO-
like neurons showed a stronger food cue response bias than ID-like or BR-like neurons
(Figure 8D; PO-like vs. ID-like or BR-like: p < 0.0001; Kruskal-Wallis, Bonferroni
corrected).

We then tested if these transiently visually responsive neurons were integrated into
previously defined PO, ID, or BR ensembles. Indeed, PO-like neurons showed higher noise
correlations and spontaneous correlations with PO neurons than with ID or BR neurons
(Figure 8E—F; noise correlations with PO vs. ID neurons: p = 0.001; spontaneous cross-
correlations with PO vs. ID or BR neurons: p < 0.01, Kruskal-Wallis, Bonferroni corrected).
Thus, neurons that are transiently visually responsive and share single-session visual
response properties with PO neurons appear to be integrated with the PO ensemble.

Predicted Outcome-like neurons in both LVAC and V1 are differentially sensitive to hunger

State

We next applied this classifier to imaging datasets from a previous study of neurons in
VisPOR (an area within lateral visual association cortex, L\VAC) and in primary visual cortex
(V1; n =8 mice; Burgess et al., 2016). In previous studies, neurons in both V1 and LVAC of
naive mice often responded to specific oriented gratings (Burgess et al., 2016; Niell and
Stryker, 2008) and maintained stable orientation tuning curves across multiple days (Burgess
etal., 2016; Mank et al., 2008). Further, in trained mice, we previously found that satiety
abolished the population-wide average food cue response bias across visPOR neurons, while
a similar response bias and hunger sensitivity was not observed in V1 (Burgess et al., 2016).
These previous analyses averaged across a// responsive neurons, due to our previous
inability to define ID, PO, and BR categories in the absence of Reversal learning. Now, by

Neuron. Author manuscript; available in PMC 2019 November 21.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ramesh et al.

Page 11

training the classifier on our current dataset and classifying neurons from this previous
dataset into functional categories, we could test (i) if PO-like neurons were also present in
V1, and (ii) if the selective reduction in food cue responses in visPOR neurons following
satiation occurred predominantly in PO-like neurons, consistent with their proposed role in
encoding motivationally-salient predicted outcomes.

The Random Forests classifier identified PO-like neurons as well as ID-like neurons in our
previous recordings in visPOR and, surprisingly, in V1. Consistent with the findings from
PO and PO-like LVVAC neurons in the current dataset, PO-like neurons in this previous
dataset also showed a response bias to the food cue and enhanced sensitivity to reward
history relative to ID-like neurons in visPOR and, surprisingly, in V1 (Figure 8G; p < 0.05,
Wilcoxon Sign-Rank test against 0.33 and Wilcoxon Rank-Sum test, PO-like vs. ID-like).
Nevertheless, the fraction of PO-like neurons was significantly higher in visPOR than in V1
(Figure 8H; p < 0.05, Tukey’s HSD method).

Predicted Outcome (PO)-like neurons in V1 and visPOR were strongly biased to the food
cue, and this bias was abolished by satiation in both regions of cortex (Figure 8l). In
contrast, ID-like neurons in V1 and visPOR from this previous dataset did r70t show a food
cue response bias, regardless of hunger state (Figure 81; p > 0.05 Wilcoxon Rank-Sum).
Moreover, even the subset of ID-like neurons that preferred the stimulus associated with
food reward was not modulated by changes in hunger state or reward history (Figure S8G—
H). These data further support our finding that the encoding of either stimulus identity or
predicted value is carried out by largely distinct, intermingled ensembles of cortical neurons.
More generally, these findings illustrate the utility of training a classifier to use single-
session data to predict a neuron’s response plasticity and dynamics during longitudinal
recordings, as a means to bridge chronic functional imaging datasets with single-session
recordings across studies and brain areas.

Discussion

Using two-photon calcium imaging, we tracked visual responses in the same layer 2/3
neurons of mouse lateral visual association cortex (LVAC) across sessions prior to, during
and after a reassignment of cue-outcome associations. We identified intermingled ensembles
of neurons that mostly tracked either stimulus identity or predicted outcome. Neurons that
tracked stimulus identity (ID neurons) encoded a low-level stimulus feature — stimulus
orientation — across a switch in cue-outcome associations. Strikingly, ID neurons did not
encode stimulus value, as they showed no response bias to the salient food cue and little
sensitivity to reward history or hunger state. In this way, these neurons maintained a faithful
representation of stimulus identity. In contrast, neurons that tracked the same predicted
outcome irrespective of the stimulus orientation (PO neurons) exhibited short-latency visual
responses that were biased to the motivationally relevant food cue and sensitive to reward
history. Both PO and ID groups of neurons showed higher within- vs. across-group noise
correlations and spontaneous correlations, suggesting that these groups represent largely
distinct functional ensembles. Other neurons in LVAC were initially unresponsive to visual
cues but developed cue-evoked responses after new learning. These recruited neurons had
visual responses that were strongly biased to the food cue and were selectively correlated
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with those of the PO ensemble. Together, these findings suggest that lateral visual
association cortex maintains a faithful neuronal representation of visual stimuli, together
with a largely separate, motivation-dependent representation of salient predicted outcomes.

Ensembles encoding visual stimulus identity or predicted value in other brain regions

Historically, sensory representations of stimulus identity and predicted value have most
commonly been considered in separate studies in different brain areas (but see Paton et al.,
2006; Schoenbaum et al., 1998). For example, the existence of ensembles of excitatory
neurons preferring distinct stimulus features has been extensively documented in primary
visual cortex (V1; Ko et al., 2011; Kohn and Smith, 2005; Lee et al., 2016). Groups of V1
neurons with common stimulus preferences and with high pairwise trial-to-trial noise
correlations (Cossell et al., 2015; Ko et al., 2011) and/or high correlations in spontaneous
activity (Ch’ng and Reid, 2010; Okun et al., 2015; Tsodyks et al., 1999) are often defined as
belonging to the same ensemble. Such ensembles may be activated together due to increased
probability of within-ensemble connections (Cossell et al., 2015; Ko et al., 2011; Lee et al.,
2016), and/or due to common sources of feedforward or feedback input (Cohen and
Maunsell, 2009; Cumming and Nienborg, 2016; Shadlen and Newsome, 1998; Smith and
Kohn, 2008). Due to their robust responses even during passive viewing of visual stimuli,
these ensembles in primary visual cortex are thought to encode low-level features of the
visual stimulus.

In contrast to the important role of V1 ensembles in encoding the identity of visual stimuli,
regions such as lateral and basolateral amygdala have been shown to strongly encode cues
predicting salient outcomes (Grewe et al., 2017; Morrison and Salzman, 2010; Paton et al.,
2006). Intermingled neurons in the rodent and primate amygdala encode cues associated
with positive or negative outcomes (Beyeler et al., 2018; Morrison and Salzman, 2010;
O’Neill et al., 2018; Schoenbaum et al., 1998), and silencing or lesioning the amygdala
affects behavioral responses to learned cues (Baxter and Murray, 2002; Sparta et al., 2014).
Furthermore, recent studies using cross-correlation analyses show that positive value-coding
and negative value-coding amygdala neurons form distinct ensembles (Zhang et al., 2013).
Our findings show that, in a region of cortex between early visual areas and amygdala, there
exists intermingled ensembles of functionally distinct neurons whose visual responses
mostly track either stimulus orientation or predicted outcome, thereby separately encoding
stimulus identity and stimulus value.

Different afferent inputs may target ensembles encoding stimulus identity or predicted

outcome

How might these largely distinct functional ensembles come about in lateral visual
association cortex? We hypothesize that different afferent inputs target PO vs. ID ensembles,
and that these inputs could contribute to the higher within-ensemble vs. across-ensemble
correlations (Figure 8J). Previous studies have shown that visPOR receives feedforward
input from areas important for basic visual processing, including V1 (V1; Niell and Stryker,
2008; Wang et al., 2012), secondary visual cortex (LM; Wang et al., 2012), and the lateral
posterior nucleus in the thalamus (LP; Zhou et al., 2018). We predict that these inputs more
strongly target the ID ensemble and provide information predominantly regarding low-level
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stimulus features (Figure 8J). In contrast, PO neurons could receive stronger input from
brain regions that exhibit sensitivity to motivational context (e.g. hunger-dependent food cue
biases and sensitivity to reward history) such as the lateral amygdala (LA; Burgess et al.,
2016; Saez et al., 2017). Supporting this, amygdala silencing impairs neuronal responses to
salient learned cues in many cortical areas (Livneh et al., 2017; Samuelsen et al., 2012;
Schoenbaum et al., 2003; Yang et al., 2016). PO neurons may also receive input from areas
conveying information about decision making and motor planning that varies with task
context (e.g. PFC: Otis et al. 2017; OFC: Schoenbaum et al. 2003; PPC: Pho et al. 2018).

We found a minority of neurons whose visual responses significantly tracked both stimulus
identity and predicted outcome across a Reversal. These “joint tracking” neurons could
potentially arise locally due to cross-talk between PO and ID neurons, as we observed lower
but non-zero noise and spontaneous correlations between these groups. Alternatively, joint
tracking neurons could inherit their tuning (e.g. from LP or LM inputs; Wang et al., 2012;
Zhou et al., 2018). Critically, only a small fraction of ID neurons demonstrated significant
joint tracking, and those that did showed no response enhancement to the motivationally
relevant food cue (Figure 6). These findings further suggest largely separate LVAC
populations representing stimulus identity or predicted value.

The hierarchical organization of value representations in the visual system

Human neuroimaging studies consistently report strong hunger-dependent enhancement of
neural responses to food cues in lateral visual association cortex (LVAC), but not in V1 (V1;
Huerta et al., 2014; LaBar et al., 2001). Similarly, our previous study in mice showed
stronger hunger modulation in LVAC than in V1 (Burgess et al., 2016). Here, we identified a
small number of neurons in V1 that had similar stimulus response features to PO neurons in
LVAC. Visual responses in these “PO-like” V1 neurons were strongly biased to the food cue
and sensitive to hunger state, similar to previous studies showing increased coding of cues
predicting rewards in rodent V1 (Poort et al., 2015; Shuler and Bear, 2006). Value-related
activity in PO-like V1 neurons may arise from top-down feedback projections from PO
neurons in LVAC (Gilbert and Li, 2013; Wang et al., 2012), from other higher visual areas
and non-visual inputs (Buffalo et al., 2010; Burgess et al., 2016; Makino and Komiyama,
2015; Zhang et al., 2014).

The overall increase in food cue response enhancement in LVAC vs. V1 appears mainly due
to a larger fraction of LVAC neurons with short-latency visual responses that encode
predicted value vs. identity. Consistent with these findings, a recent study found that many
neurons in mouse parietal association cortex (PPC) tracked sensorimotor contingencies
associated with the “Go” response across a reversal in cue-outcome contingencies, while
only a few PPC neurons tracked stimulus identity, whereas the converse was observed in V1
(Pho et al., 2018).

What might be the purpose of identity-coding neurons in lateral visual association cortex? A
recent study found that while visual and non-visual information is present in rostral visual
association cortex, neurons in this area that project to secondary motor cortex preferentially
deliver “pure” visual information, while reciprocal feedback to this area delivers “pure”
motor information (Itokazu et al., 2018). Delivery of low-level visual information to
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downstream brain areas may guide motor performance or provide prediction error signals
during learning. We speculate that a similar loop exists between LVAC and lateral amygdala
(LA), in which inputs from LVAC to LA encode low-level stimulus features, while inputs
from LA to LVAC carry information regarding motivational context (Burgess et al., 2016)
and target PO neurons. Thus, LVAC may deliver high-fidelity sensory information to limbic
regions important for encoding of motivational salience, while providing context-dependent
estimates of the motivational salience of a stimulus to earlier visual areas, thereby biasing
bottom-up processing.

At first blush, the finding that ID neurons in mouse LVAC do not demonstrate sensitivity to
cue saliency might appear inconsistent with studies of attentional gain modulation of
orientation-tuned neurons in macaque higher visual cortical areas (McAdams and Maunsell,
1999; Reynolds and Chelazzi, 2004). However, the magnitude of attentional modulation in
these studies is often reduced when using high contrast and easily discriminable visual
stimuli (see Reynolds and Chelazzi, 2004) similar to those employed in our task.

Visual responses emerge with learning in a subset of cortical neurons

We additionally identified a subset of neurons that were not initially visually responsive in
well-trained mice, but that subsequently developed cue-evoked visual responses and hence
were “recruited” with new learning. Previous work in the amygdala, hippocampus, and
cortex has shown that neurons with increased excitability are more likely to be incorporated
into the memory representation of a salient experience (Cai et al., 2016; Josselyn et al.,
2015; Sano et al., 2014). We suggest that Recruited neurons may be more excitable at the
time of new learning, and thus predisposed to integrate into newly formed cue-outcome
associative representations. In support of this, Recruited neurons showed a strong response
bias to the new food cue, and became increasingly integrated into the PO ensemble, as they
showed stronger correlations with PO neurons post- and even pre-Reversal.

In summary, we have identified separate but intermingled ensembles in lateral visual
association cortex that predominantly encode stimulus identity or predicted outcome across
a switch of cue-outcome associations. Our chronic imaging approach sets the stage for
testing the circuit and synaptic mechanisms by which this brain region maintains a faithful
representation of the visual features of the external world as well as a flexible representation
of the predicted value of learned cues.

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be
fulfilled by the Lead Contact, Mark Andermann (manderma@bidmc.harvard.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal care and experimental procedures were approved by the Beth Israel Deaconess
Medical Center Institutional Animal Care and Use Committee. Mice (n=15, male C57BL/6)
were housed with standard mouse chow and water provided ad /ibitum, unless specified
otherwise. Mice used for /7 vivo two-photon imaging (age at surgery: 9-15 weeks) were

Neuron. Author manuscript; available in PMC 2019 November 21.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ramesh et al.

Page 15

instrumented with a headpost and a 3 mm cranial window, centered over lateral visual
association cortex including postrhinal cortex (window centered at 4.5 mm lateral and 1 mm
anterior to lambda; the exact retinotopic location of visual postrhinal association cortex
(visPOR) was determined via intrinsic signal mapping; see below and Goldey et al., 2014).
Portions of the data in Figure 8 involve new analyses of a previous dataset (n=8 mice;
Burgess et al., 2016).

METHOD DETAILS

Behavioral training

After at least one week of recovery post-surgery, animals were food-restricted to 85-90% of
their free-feeding body weight. Animals were head-fixed on a 3D printed running wheel for
habituation prior to any behavioral training (10 minutes to 1 hour over 3—4 days). If mice
displayed any signs of stress, they were immediately removed from head-fixation, and
additional habituation days were added until mice tolerated head-fixation without visible
signs of stress. On the final day of habituation to head-fixation, mice were delivered Ensure
(a high calorie liquid meal replacement) by hand via a syringe as part of the acclimation
process. Subsequently, we trained the animals to associate licking a lickspout with delivery
of Ensure, by initially triggering delivery of Ensure (5 pL, 0.0075 calories) to occur with
every lick (with a minimum inter-reward-interval of 2.5 s). We tracked licking behavior via a
custom 3D-printed, capacitance-based lickspout positioned directly in front of the animal’s
mouth. All behavioral training was performed using MonkeyL ogic (Asaad and Eskandar,
2008; Burgess et al., 2016).

For the Go-NoGo visual discrimination task, food-restricted mice were trained to
discriminate square-wave drifting gratings of different orientations (2 Hz and 0.04 cycles/
degree, full-screen square-wave gratings at 80% contrast; the same 3 orientations were used
for all mice; for example: food cue (FC): 0°, quinine cue (QC): 270°, neutral cue (NC):
135°; grating orientations were counterbalanced across mice). All visual stimuli were
designed in Matlab and presented in pseudorandom order on a calibrated LCD monitor
positioned 20 cm from the mouse’s right eye. All stimuli were presented for 3 s, followed by
a 2-s window in which the mouse could respond with a lick and a 6-s inter-trial-interval
(ITI). The first lick occurring during the response window triggered delivery of Ensure or
quinine during FC or QC trials, respectively. Licking during the visual stimulus presentation
was not punished, but also did not trigger delivery of the Ensure/quinine. The lickspout was
designed with two lick tubes (one for quinine and one for Ensure) positioned such that the
tongue contacted both tubes on each lick.

Training in the Go-NoGo visual discrimination task progressed through multiple stages. The
first stage was Pavlovian FC introduction, followed by FC trials in which reward delivery
depended on licking during the response window (‘go’ trials in which licking during the
response window led to delivery of 5 uL of Ensure), and finally by the introduction of QC
and NC trials (‘no-go’ trials in which licking during the response window led to delivery of
5 uL of 0.1 mM quinine and nothing, respectively) as described in Burgess et al. (2016).
Mice were deemed well-trained (d’ > 2; loglinear approach, Stanislaw and Todorov, 1999)
following “2—3 weeks of training. Performance in well-trained mice involved sessions
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including equal numbers of FC, QC, and NC trials. We began all imaging and behavior
sessions with presentation of 2-5 Pavlovian FC trials involving automatic delivery of Ensure
reward, as a behavioral reminder. Pavlovian FC trials also occurred sporadically during
imaging (0-15% of trials) to help maintain engagement. None of these Pavlovian FC
presentations were included in subsequent data analyses, unless specifically mentioned.

Pharmacological silencing experiments proceeded as follows: experiments took place once
mice were fully trained, and only for mice weighing "85% of free-feeding weight. We
removed the dummy cannulae and inserted stainless steel cannulae to target visual
association cortex centered on POR (internal: 33-gauge; Plastics One). Each day, mice were
tested on 100 trials of the task to ensure good performance. We then injected 50 nL of
muscimol solution (2.5 ng/nL) or saline at a rate of 50 nL/min. After infusion, the injection
cannulae were replaced with the dummy cannulae, and behavioral testing started 20 min
later. Mice performed 400 trials post-injection. Each run started with 5 Pavlovian food cue
trials, then 10 operant food cue trials. Pavlovian food cue trials also occurred sporadically
(5% of trials) throughout training. None of these Pavlovian food cue presentations were
included in the behavioral or neural data analyses. We verified cannula location for every
animal and included in subsequent analyses all animals with verified locations of cannulae
in POR.

‘Reversal’ training paradigm involving a switch in cue-outcome contingencies

Once mice stably performed the Go-NoGo visual discrimination task with high behavioral
performance (d’ > 2) for at least two days, we switched the cue-outcome associations. The
switching of cue-outcome associations consisted of a clockwise rotation of the outcome
associated with each of the three visual oriented drifting gratings (Figure 1D). If the initial
cue-outcome associations were: FC: 0°, QC: 270°, and NC: 135°, then switching the cue-
outc ome associations would involve switching the FC from 0° — 270°, the QC from 270°
— 135°, and the NC from 135° — 0°.

As mentioned above, we classified sessions as containing high behavioral performance when
the discriminability, d’, had a value greater than 2. To calculate d’, we pooled false-alarm
trials containing a QC or a NC. Separately, we pooled correct-reject trials containing a QC
or a NC. This metric allowed us to divide up the behavioral performance across sessions into
3 different epochs: (i) “pre-Reversal” — before the cue-outcome associations have been
changed and while the mice exhibit high behavioral performance (d” > 2); (ii) “during-
Reversal” — after the cue-outcome associations have been switched and while the mice
exhibit poor behavioral performance (d’ < 2), and (iii) “post-Reversal” — an epoch in which
the mice again exhibit high behavioral performance (d’ > 2). We use the term “Reversal” to
refer to the switch in cue-outcome associations, even though it is a rotation of the outcome
associated with each stimulus orientation, rather than a strict Reversal of the food-associated
stimulus and the quinine-associated stimulus. The Reversal could take as little as 3 days and
as long as 2 weeks.

During initial training following Reversal, more FC trials were given in order to facilitate
learning and maintain task engagement. Over the subsequent days of the during-Reversal
epoch, we increased the number of QC and NC trials until equal numbers of FC, QC, and
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NC trials were presented (all pre-Reversal and post-Reversal sessions contained equal
numbers of each trial type).

Intrinsic signal mapping

Two-photon

To delineate visual cortical areas, we used epifluorescence imaging to measure stimulus-
evoked changes in the intrinsic autofluorescence signal (Andermann et al., 2011) in awake
mice. Autofluorescence produced by blue excitation (470 nm center, 40 nm band, Chroma)
was measured through a longpass emission filter (500 nm cutoff). Images were collected
using an EMCCD camera (Rolera EM-C2 QImaging, 251 x 250 pixels spanning 3 x 3 mm;
4 Hz acquisition rate) through a 4x air objective (0.28 NA, Olympus) using the Matlab
Image Acquisition toolbox. For retinotopic mapping, we presented Gabor-like patches at 6-9
retinotopic locations for 8 s each (20 degree disc, 2 Hz, 0.04 cycles/degree, 45° or noise
patch), with an 8 s int er-stimulus interval. Analysis was performed in ImageJ and Matlab
(as in Andermann et al., 2011; Burgess et al., 2016). We isolated POR from LI/LM most
easily using stimuli centered at varying vertical locations (from high-to-low stimulus
elevation) in the medial/nasal visual field, which translated to medial-to-lateral locations of
peak neuronal responses, respectively. We isolated area POR from area P by comparing
responses to stimuli positioned at nasal vs. lateral locations in visual space, corresponding to
posterior-to-anterior locations of peak neuronal responses in POR but not in P, as expected
from Wang and Burkhalter (2007). Following retinotopic mapping for identification of POR,
the cranial window was removed, AAV1-Syn-GCaMP6f was injected into POR (100-150 nL
into layer 2/3; UPenn Vector Core), and the window was replaced (Goldey et al., 2014). We
centered our imaging field of view on POR (visPOR, Allen Brain Atlas), as opposed to
cytoarchitectonic POR (Beaudin et al., 2013).

calcium imaging

Two-photon calcium imaging was performed using a resonant-scanning two-photon
microscope (Neurolabware; 31 frames/second; 787x512 pixels/frame). All imaging was
performed with a 16x 0.8 NA objective (Nikon) at 1x zoom (*1200 x 800 um?). All imaged
fields of view (FOV) were at a depth of 110-250 pum below the pial surface. Laser power
measured below the objective was 25-60 mW using a Mai Tai DeepSee laser at 960 nm
(Newport Corp.). Neurons were confirmed to be within a particular cortical area by
comparison of two-photon images of surface vasculature above the imaging site with surface
vasculature in widefield intrinsic autofluorescence maps, aligned to widefield retinotopic
maps (Andermann et al., 2011; Burgess et al., 2016).

QUANTIFICATION AND STATISTICAL ANALYSIS

For analysis of behavior, n refers to the number of mice, and for comparisons of neural
activity n refers to the number of neurons. Where appropriate statistical tests were performed
across mice in addition to across neurons. These n values are reported in the results and in
the figure legends.

Statistical analyses are described in the results, figure legends, and below in this section. In
general, we used non-parametric statistical analyses (Wilcoxon sign-rank test, rank-sum test,

Neuron. Author manuscript; available in PMC 2019 November 21.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ramesh et al.

Page 18

Kruskal-Wallis tests) or permutation tests so that we would make no assumptions about the
distributions of the data. All statistical analyses were performed in Matlab and p < 0.05 was
considered significant (with Bonferroni correction for the number of tests where applicable).
Quantitative approaches were not used to determine if the data met the assumptions of the
parametric tests.

Lick behavior analysis

We additionally quantified behavioral performance by assessing the fraction of trials in
which the animal licked to each cue (Figure 1F; Figure S1B). Following the change in cue-
outcome associations, we observed a decrease in cue-evoked licking and an increase in
levels of “baseline” or non-specific licking. We quantified this by using a lick-learning index
(Jurjut et al., 2017) that compares the number of licks in the one-second period prior to cue
presentation (Licksprecye) and the number of licks in the last second of cue presentation
(Lickscye; Figure S1C; lick-learning index = [LickScye — LickSprecyel/[LickScye +
Licksprecuel; @ value of 1 means that, for every trial, there were zero licks prior to cue onset
and there is anticipatory licking before cue offset). We also quantified how stereotyped the
licking behavior was at various stages prior to and following Reversal. We smoothed the lick
raster plot with a Gaussian filter (o: 1 second) and then calculated the correlation of each
trial’s smoothed lick timecourse with the mean across all smoothed lick timecourses for all
trials of a given type. Importantly, we only included the timecourse on each trial up to
delivery of the outcome, so that we would not be correlating periods with consummatory
licking. The value plotted is the mean correlation value across trials. A value of 1 would
indicate that the animal demonstrated identical lick dynamics in every trial that included a
behavioral response (Figure S1D).

Image registration and timecourse extraction

To correct for motion along the imaged plane (x-y motion), each frame was cropped to
account for edge effects (cropping removed outer “10% of image) and registered to an
average field-of-view (cropped) using efficient subpixel registration methods (Bonin et al.,
2011). Within each imaging session (one session/day), each 30-minute run (4-6 runs/
session) was registered to the first run of the day. Slow drifts of the image along the z-axis
were typically < 5 pm within a 30-minute run, and z-plane was adjusted between runs by eye
or by comparing a running average field-of-view to an imaged volume £ 10 um above and
below our target field-of-view. Cell region-of-interest (ROI) masks and calcium activity
timecourses (F(t)) were extracted using custom implementation of common methods
(Burgess et al., 2016; Mukamel et al., 2009). To avoid use of cell masks with overlapping
pixels, we only included the top 75% of pixel weights generated by the algorithm for a given
mask (Ziv et al., 2013) and excluded any remaining pixels identified in multiple cell masks.

Fluorescence timecourses were extracted by (non-weighted) averaging of fluorescence
values across pixels within each ROl mask. Fluorescence timecourses for neuropil within an
annulus surrounding each ROI (outer diameter: 50 um; not including pixels belonging to
adjacent ROIs) were also extracted (Fneuropil(t): median value from the neuropil ring on each
frame). Fluorescence timecourses were calculated as Freyropil_corrected(t) = Froi(t) —w *
Fneuropil(t). The neuropil weight was calculated by maximizing the skewness of the
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difference between the raw fluorescence and the neuropil per day (Bonin et al., 2011),
imposing a minimum of 0 and a maximum of 1.5. Most neuropil weights ranged between
0.4 - 1.4. A running estimate of fractional change in fluorescence timecourses was
calculated by subtracting a running estimate of baseline fluorescence (Fq(t)) from
Freuropil_corrected(t), then dividing by Fq (t): AF/F(t) = (Fneuropil_corrected(t) - Fo(t))/ Fo(t).
Fo(t) was estimated as the 10th percentile of a trailing 32-s sliding window (Burgess et al.,
2016; Petreanu et al., 2012). For visualization purposes, all example cue-evoked timecourses
shown were re-zeroed by subtracting the mean activity in the 1 s prior to visual stimulus
onset.

Normalization of traces

For all traces shown in Figure 2D and Figure 6B, we normalized within day to the largest
overall mean response from 0-1 seconds post-stimulus onset. This was done in order to
illustrate the dynamics of the neuron’s response to all 3 cues, and to control for differences
in response magnitude and/or in z-sectioning of the cell across sessions. For the across-day
response plots in Figure 2D, bottom, and the timecourses in Figure 2G, we normalized the
mean response for each cue by the sum of all three responses, thereby focusing on the
relative magnitude of each response. For all mean timecourse plots, we smoothed individual
trials by 3 frames. For the single trial heatmaps (Figure 2C), we smoothed each trial by 500
ms.

To plot the timecourses of all visually driven neurons on a single day (Figure S5C), we used
an auROC (area under the receiver operating characteristic) timecourse (Burgess et al.,
2016). We calculated this timecourse each day by binning (93 ms bins) the AF/F response of
single trials and comparing each bin with a baseline distribution (binned data in the 1 s prior
to stimulus onset, for all trials of a given cue type within a session) using an ROC analysis.
For this analysis, we included all trials regardless of behavioral performance. This analysis
quantifies how discriminable the distribution of activity in a given bin is relative to the
baseline activity distribution. For example, if the two distributions are completely non-
overlapping, the auROC yields an estimate of 1 (clear increase in activity on every trial; all
post-baseline firing rate values are larger than all baseline firing rate values; gold) or O (clear
decrease in activity; all post-baseline firing rate values are smaller than all baseline firing
rate values; light blue), while an auROC estimate of 0.5 indicates that the distributions of
baseline activity and of post-baseline activity are indistinguishable (white).

Alignment of cell masks across days

For imaging of cell bodies in POR, we chose one set of cell masks for each day. All analyses
for the alignment of cell masks across days were semi-automated with the aid of custom
Matlab GUIs. To align masks across any pair of daily sessions, we first aligned the mean
image from each day by estimating the displacement field using the Demon’s algorithm
(Thirion; Vercauteren et al., 2009). This was done for all pairwise combinations of days.
This displacement field was then applied to each individual mask for each pair of days. If at
least a single pixel overlap existed between 2 cell masks, we calculated a local 2D
correlation coefficient to obtain candidate masks of the same cell across multiple days. We
then used a custom Matlab GUI to edit these suggestions, and another GUI to confirm each
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cell across days (Figures 2D & 6B). Thus, each cell aligned across days was manually
observed by eye two times for confirmation. Note that the image registration and warping
techniques were applied only to masks for alignment suggestion purposes and were never
applied to cell masks for fluorescence timecourse estimation. To visualize neurons tracked
across days for Figure 2 and 6, we took the mean image of the 200 frames where that neuron
had the highest activity (from extracted timecourses).

Criteria for visually responsive neurons

To determine if a cell was visually driven, we independently tested its cue-evoked response
to each cue (FC, QC, or NC) for each day the cell was identified, using conservative criteria.
For each cell and each visual cue, we calculated the cue-evoked response up to 100 ms prior
to the first lick post-stimulus onset, on every trial (to protect against behaviorally-modulated
activity). To ensure fair comparisons across all cues, we excluded all neural activity for all
cues after the median lick latency to the FC on that particular imaging session. This criterion
ensured that responses were not integrated over a longer duration for QC or NC trials vs. FC
trials, particularly during sessions with high behavioral performance in which licking was
largely limited to FC trials). We also eliminated any trials with licking in the 1 s prior to the
cue presentation or in the first 250 ms following cue presentation. Unless otherwise
specified, these steps were used to obtain mean single-trial responses from ‘clean’ single
trials in all subsequent analyses. We binned the peri-stimulus fractional change in
fluorescence (AF/F) timecourse into 3-frame bins (793 ms/bin) and performed a Wilcoxon
Sign-Rank test for each bin (as compared to a 1 s baseline period prior to stimulus onset)
with Bonferroni correction for comparison across multiple bins. We tested each bin (starting
at cue onset), advancing in time until there were fewer than 10 trials (of a given cue type)
contributing to a given bin (with increasing time following cue onset, a decreasing number
of trials existed for which a lick response had not yet occurred). For a cell to be considered
visually responsive, we required 3 consecutive significant bins (i.e. "279 ms of significantly
elevated activity above baseline, using the Wilcoxon Sign-Rank test described above). Cells
were deemed to be visually responsive on a given day if there was a significant increase in
activity to at least one visual cue. A cell’s “preferred’ visual cue on each day that the cell
was driven was determined as the cue evoking the largest mean response from 0-1 s post
stimulus onset.

Identification of functional groups of neurons

Neurons were only included in Predicted Outcome (PO), Identity, or Broadly-tuned
categories if they were visually driven both pre- and post-Reversal (a total of 179 neurons
met this criterion). We compared each neuron’s post-Reversal response to all 3 cues to its
pre-Reversal response to all 3 cues. Using three different circular shifts of the cue-outcome
contingencies (i.e. rotation of the outcomes associated with each cue, as in Figure 1D), we
could estimate three hypothetical response tuning curves of a neuron post-Reversal based on
its pre-Reversal tuning, under the three hypotheses that the neuron was either perfectly
Identity, Predicted Outcome, or Broadly-tuned. If a neuron was an ldentity neuron, we
would expect it to respond similarly to the same orientation, regardless of the predicted
outcome (dashed purple arrow post-Reversal vs. black arrow pre-Reversal; Figure S2A).
This would be represented by a tuning curve that underwent no circular shift following
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Reversal. If the neuron was a Predicted Outcome neuron, we would expect it to circularly
shift in a clockwise manner to match the clockwise shift in predicted outcome (dashed
orange arrow post-Reversal vs. black arrow pre-Reversal; Figure S2A). The third ‘control’
circular shift of the pre-Reversal tuning curve was in the counterclockwise direction (i.e. a
shift in an unexpected “null” direction; dashed green arrow post-Reversal vs. black arrow
pre-Reversal; Figure S2A). See Supplemental Table 1 for an example response of a given
neuron pre-Reversal, and the predicted response tuning post-Reversal under these three
hypothetical rotations.

After estimating all three candidate post-Reversal response tuning profiles, we normalized
all candidate 3-cue post-Reversal response vectors to unit vectors and calculated the angle
between the actual post-Reversal response vector (also converted to a unit vector) and the
three candidate post-Reversal response vectors (dotted orange, purple, and green angle:
Ostimulus feature (SF) = actual angle post reversal relative to predicted rotation for an Identity
(D) neuron; Opregicted outcome (PO) = actual angle post reversal relative to predicted rotation
for a Predicted Outcome (PO) neuron; Oy = actual angle post reversal relative to predicted
rotation for neuron that tracks the null rotation; Figure S2A-B). Because all vectors were
unit vectors, this was proportional to taking the Euclidean distance between the two vectors.

For each neuron tracked across the Reversal, three angles were calculated (Figure S2B). We
assigned each neuron to one of three groups. PO neurons were selected as those that tracked
predicted outcome, in that they had a post-Reversal unit vector that most resembled the
hypothetical rotation tracking predicted outcome (Opregicted outcome (PO) < Ostimulus feature (SF)»
Onut)- 1D neurons were selected as those that tracked the same visual stimulus feature across
Reversal (Bsk < ©pg, Onyir)- The smaller the angle, the higher the precision of tracking
(Figure S2B).

A subset of neurons initially classified as PO or ID neurons had similarly small angles to all
three candidate rotations (B ® Osg * Bpg). As described below, these neurons behaved
similarly to those neurons for which the post-Reversal rotation best matched a rotation in the
unexpected ‘null’ direction (Bnyi < Osg, Opp). We identified these PO and ID neurons using
agglomerative hierarchical clustering and moved them to a Broadly-tuned category (together
with the null-preferring neurons in which Oy < sk, Opp). For all of these neurons, Oy
was quite similar to ©pg and 6sg (Figure S2B, right, < 2% of these neurons had a
substantially smaller angle to the null rotation vs. to other candidate rotations, Oy << 6sg
or Bpp, and this small subset was excluded from all further analyses). In effect, all neurons
in the Broadly-tuned category had similar angular distances to all three candidate rotations
post-Reversal because they were broadly and similarly responsive to all three visual cues,
hence the name “Broadly-tuned neurons”. Thus, regardless of the circular shift, the
calculated Bsg, Opg, and By for these neurons would always be similar. Importantly, the
actual breadth of tuning was not used for classification, this label simply reflects whay all
three angles were of comparable magnitude. All three angular distances for each neuron are
shown in Figure S2B.

We calculated a metric of confidence that a given neuron could be decisively categorized as
belonging to a given group. To this end, we normalized all angular distances by dividing
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each angle by the largest angle pooled across all neurons and subtracting this from 1 (to put
all neurons in a range of 0-1 with 0 being low confidence and 1 being high confidence; C; =
1-[6i/6 anmax] Where i is Stimulus Feature (SF), Null, or Predicted Outcome (PO)) such that
a Predicted Outcome neuron categorized with the highest confidence would have confidence
metrics (C) [Cpo, Csg, Cnunl = [1,0,0], while an Identity neuron categorized with the
highest confidence would have confidence metrics [Cpo, Csr, Cnunl = [0,1,0] (Figure S2D).
We additionally plotted all pairwise distributions of confidence values for all PO, ID, and
BR neurons (Figures S2C; x axes calculated as the projection of all 3 confidence metrics
onto the relevant axis; for 3D plot that we don’t collapse along any particular axis, see
Figure S2D; all histograms in Figures S2C and 2F represent the projection of all neurons
onto a particular axis). For the heatmap showing the precision of tracking at the bottom of
Figure 2F, which corresponds to the precision for cells at the corresponding bin in the
histogram above the heatmap, we used a rolling bin size of 0.3 arbitrary units. We plotted the
response of each experimentally tracked neuron to its preferred cue pre-Reversal (Figure 2G
left), and the post-Reversal response of the same neuron to the same predicted outcome (i.e.
pre-Reversal FC — post-Reversal FC), or to the same orientation (i.e. pre-Reversal 0° —
post-Reversal 0°; Figure 2G right). As expected, we found that PO neurons responded to the
same predicted outcome and ID neurons responded more to the same orientation.

In order to plot results across cells without using pre-defined categories such as Predicted
Outcome, Identity, or Broadly-tuned, we additionally plotted results against the stimulus
orientation / predicted outcome axis used in Figure 2F (see e.g. Figure 3b). We used bins of
0.33 arbitrary units (on a scale from -1 to 1; —1: purely tracks stimulus identity, +1: purely
tracks predicted outcome). Regardless of a neuron’s category, we assigned each of the 179
neurons that were visually responsive pre- and post-Reversal to one of these 6 bins. We used
this as a way to plot food cue response bias, reward history, and correlation effects without
lumping neurons into discrete functional categories (i.e. into ID, PO or BR categories).

Noise correlations

To calculate noise correlations, we sub-selected those neurons within each mouse on each
day that were driven to the FC and calculated the pairwise correlation of trial-by-trial FC
responses between pairs of neurons (single-trial responses were estimated using the mean of
all timepoints from 0-2 s post-stimulus onset, or from 0 s up to 100 ms before the first lick,
whichever came first). For each pair of neurons, we obtained a single correlation value per
day. From this value, we subtracted the mean of 500 bootstrapped correlations in which we
shuffled the trial order among cues of the same type and recalculated the correlation. This
controls for differences in Fano factor between neurons, and accounts for contributions of
the tuning curve of mean evoked responses (i.e. shared stimulus-evoked response tuning).
We computed noise correlations for all pairs of FC visually driven neurons on days when the
animal exhibited high task performance (d’ > 2). The noise correlations estimated from a
single session are shown in Figure S5E (left: correlation matrix; right: pooled bar plot).
Additionally, we sub-divided ID neurons into those neurons that prefer the FC orientation,
the QC orientation, or the NC orientation, and performed the same noise correlation analysis
described above on each subset. Importantly, we only included those neurons that were also
significantly responsive to the FC, regardless of their stimulus preference.
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Spontaneous event cross-correlations

To estimate spontaneous event cross-correlations between pairs of neurons (Figure 5F-G,
7G, 8F, S5B,D), we performed deconvolution on the raw calcium activity traces
(Pnevmatikakis et al., 2016) and only calculated cross-correlation coefficients during
moments of time in which a stimulus was not on the screen (all activity during stimulus
presentation was excised). We then calculated the spontaneous event cross-correlation for
these concatenated inter-trial-interval (ITI) periods. From this, we subtracted the mean of 50
bootstrapped cross-correlations where we shuffled the ITI periods prior to concatenating, in
part to account for differences in baseline activity. For comparisons across groups, we
focused on the cross-correlation values at a lag of 0 s. The spontaneous cross correlation
values from a single session are shown in Figure S5D (left: correlation matrix; right: bar plot
of mean correlations for different sets of neuron pairs). We additionally sub-divided ID
neurons into those neurons that prefer the FC orientation, the QC orientation, or the NC
orientation, and performed the same analysis (Figure 5G).

Quantification of response bias

We quantified the bias in average population response towards a given cue, as follows. For
each visually-driven neuron, we calculated the mean response to all three visual cues from
0-1 s post-stimulus onset. We only included activity up to 100 ms before the first lick on any
given trial or up to the median lick time for all FC trials (applied to FC, QC, and NC trials).
We then set any negative responses to zero and normalized the resulting 3-point tuning curve
by the largest cue response (responses to each cue could range from 0-1). To calculate the
cue response bias, we then took the response of each visually-driven neuron to a given cue
and divided it by the summed response to all 3 cues (bias = 1 if a neuron responded to only
one cue, bias = 0.33 if a neuron responded equally to all 3 cues). We calculated the response
bias of the population by averaging across all visually driven neurons.

Quantification of reward history modulation

To quantify the effects of reward history on neural responses, we asked how the magnitude
of the response to a given cue was affected by whether the previous trial was rewarded. We
compared the response magnitude of each neuron’s preferred stimulus when the previous
trial was a rewarded FC (Rrc—pref) VS. the response magnitude when the previous trial was
a non-rewarded cue (Rnonrc—pref)- Note that licking to a reward ceased well before the
onset of the following trial, and that the 6-8-s inter-trial interval ensured that earlier
increases in GCaMP6f fluorescence could return to baseline levels. To quantify modulation
by previous reward history, we created a reward history modulation index (RHMI) by
normalizing the difference between these two history-dependent responses by the mean
overall response: (Rnonrc—pref - RFc—pref)/Rpref- A RHMI value of 0 means that the
response to the preferred stimulus is not modulated by whether or not the last trial was
rewarded, a positive RHMI value means the response to the preferred stimulus is greater
when the previous trial was an unrewarded trial, and a negative RHMI value means the
response to the preferred stimulus is greater when the previous trial was a rewarded FC. To
quantify the overall magnitude of recent reward history effects, we calculated the absolute
value of RHMIs across all cells (Figure 3F).
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Generalized linear model (GLM)

For each session, we fit a Poisson Generalized Linear Model (Driscoll et al., 2017; Friedman
et al., 2010) to the estimated event rates of each cell, when taking into account behavioral
and task variables. First, we downsampled deconvolved neural data (Pnevmatikakis et al.,
2016) and all corresponding behavioral/task variables to 10 Hz. Our variables consisted of
the times of lick onset of the animal following each trial onset, all individual licks
(excluding lick onsets), Ensure delivery, quinine delivery, stimulus presentation (separated
by cue type and behavioral response — hit, miss, correct reject, and false alarm), stimulus
offsets (for all 3 cues), and the x-y shifts obtained during image registration (to represent
brain motion). The downsampled, deconvolved neural activity was smoothed using a
Gaussian filter (see below). Behavioral/task variables provided the input for basis functions.
For each behavioral variable, we implemented a vector of Gaussian filters (all filters had a
standard deviation of 1 second, overlapping and evenly distributed, 1 Gaussian/3 frames, 100
ms/frame). For lick onsets, our filters extended 1 second prior to lick onset and 2 seconds
post lick onset, to account for ramping activity before the animal licks and activity following
the initial lick. For all other licks, we replaced every lick (other than lick onsets) with a
single filter. Ensure and quinine filters had the same structure as lick onset filters. For all
stimulus presentations, the filters spanned the duration of the stimulus and after stimulus
offset by 1 sec. For stimulus offset, the filters extended 4 seconds following the offset of a
FC, QC, or NC. We convolved the derivative of the x-y shifts (to look at changes in activity
due to brain motion) with the same kernel used for the neural activity.

We used the glmnet package to fit GLMSs. Each imaging session consisted of 4-5 30-minute
imaging runs. We trained on the first 75% of each run and tested on the remaining 25%. This
allowed us to control for slow changes that might happen with time. Parameters were fit for
each cell separately with elastic net regularization consisting of 99% L2 and 1% L1
methods. Deviance explained was used as the metric of model fit (Driscoll et al., 2017). It
was calculated by comparing the activity predicted by the model to the actual activity (for
single frames) calculated using data not used during the fitting procedure. This was
compared to the null model in which the predicted event rate was 1. We tested if the model
prediction significantly described test data above chance by recalculating the deviance
explained using circularly shifted neuronal activity (by at least 15 s; bootstrapped 50 times).
For all experimentally identified neurons (tracked pre- and post-Reversal), we only accepted
models whose deviance explained on non-circularly shifted data was significantly greater
than the shuffled distribution of deviance explained values from circularly-shifted neuronal
activity.

To examine the contribution of each behavioral variable towards explaining variability in
neural activity, we recalculated the deviance explained using each individual behavioral
variable alone. We then plotted the deviance explained by each behavioral variable,
normalized to the total deviance explained by all variables (Figure 4D for just visual and
motor pre- and post-reversal; Figure S4B for all behavioral variables used pre-, during-, and
post-Reversal). We additionally confirmed the food cue response bias result by exclusively
including those basis sets that were locked to the visual stimulus onset and not to licking or
reward events in the absence of licking or motor confounds. The response coefficient
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instability metric was calculated by grouping all visual response components and calculating
the Euclidean distance between (i) the coefficients on a single session and (ii) the mean
coefficients across all daily sessions (Figure S4D). Larger distances suggest higher
instability across days.

Joint tracking index

In order to quantify the degree of joint tracking by individual neurons, we asked if a neuron
could partially track boththe predicted outcome and a particular stimulus orientation across
the Reversal (see example neuron in Figure 6B). Importantly, to distinguish such “joint
tracking” neurons from those neurons that broadened their response tuning indiscriminately
post-Reversal, we compared the post-Reversal response profile across the three stimulus
orientations with what we would expect given the pre-Reversal response profile for neurons
tracking the same stimulus orientation, the same predicted outcome, or a mix of both (see
below). We designed an index that allowed us to distinguish between those neurons that
purely tracked stimulus orientation or predicted outcome, those that were broadly tuned, and
those that were “joint tracking:”

Joint tracking index = [POresiduall * [1 - SFresiduall * [1 — BROADLY resiguall

This index equals zero in the absence of any joint tracking and is greater than zero for
neurons that demonstrate a mix of stimulus tracking and predicted-outcome tracking. More
positive values of this index indicate a higher level of joint tracking.

To illustrate how this index works, we describe the three-point tuning curves of a given
neuron pre- and post-Reversal. The pre-Reversal tuning curve is normalized to the peak
response. For the example in the upper portion of the following table, the peak response pre-
Reversal is to the FC, and the maximum response pre- and post-Reversal of a neuron is 1
(see Supplemental Table 2 for details).

For the sake of simplicity, we will consider the scenario where pre-Reversal the preferred
cue is the FC and therefore the response to the FC is 1:

I:’Oresidual

. Specifically, POyesiqual = 0 for purely ID neurons; > 0 for neurons that
additionally track the predicted outcome

. We define POyesiqual = (Response post-Reversal to an orientation associated with
the outcome that the neuron preferred pre-Reversal) — (Response pre-Reversal to
this same orientation)

. For the example neuron in the above table: POyesiqual = [y — a], because the
neuron initially preferred the FC; post-Reversal, the FC orientation is 270°, so
the calculation is (post-Reversal response to the FC) — (pre-Reversal response to
the same orientation as the orientation of the post-Reversal FC).

[1 - SI:residual]
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. This component ensures that purely outcome-tracking neurons do not have a
positive joint tracking index.

. For the example neuron in the above table: SFyegiqual = [1-X]. This is because the
neuron initially preferred 0°; post-Reversal, 0° is the NC, so the calculation is (1-
X) = (pre-Reversal response to the same orientation of the orientation of the post-
Reversal NC) - (post-Reversal response to the NC); the order has to be flipped
because it is 1 - SFresiqual t0 ensure purely outcome-tracking neurons = 0 (see
below).

. For example, if this neuron only responded to the FC both pre-Reversal ([1,a,b] =
[1,0,0]) and post-Reversal ([x,y,z] = [0,1,0]), then for this purely FC-tracking
neuron, [1-SFesiquat 1 = [1-[1-x]] = 0, ensuring that the joint tracking index
equals zero for this example neuron.

[1 - BROADLY residuall

. This component ensures that neurons that are not tracking either SF or PO but
are instead broadening their response following Reversal do not have a positive
joint tracking index.

. For the example neuron above: BROADLY (gsiqual = [2 — b] because a neuron that
jointly tracks stimulus features and predicted outcome in the above example
should change its responses to the FC and to the orientation of the pre-Reversal
FC, but should not change its response to an orientation that was not the
orientation of the FC pre-Reversal orpost-Reversal, and thus an increase in
response to this orientation (135° in the above example) affects the
BROADLY (¢sigual = [z — b], and correspondingly would indicate a broadening of
tuning. In this way, a neuron with no broadening of tuning (BROADLY rgsiqual =
0) would lead to [1- BROADLY (esiquall = 1, and thus this component would not
attenuate the joint tracking index.

. For example, if this neuron only responded to the FC pre-Reversal ([1,a,b] =
[1,0,0]) but post-Reversal still prefers the same orientation but now broadens its
tuning curve without any actual joint tracking of predicted outcome (e.g. post-
Reversal tuning of [x,y,z] =[1,1,1]), then for this broadening neuron, [1-
BRyesidual 1 = [1-[z-b]] = 0, ensuring that the joint tracking index equals zero for
this example neuron.

To determine if a neuron demonstrated significant joint tracking, we tested whether it
exceeded the 95% confidence intervals of a Normal distribution. We estimated this Normal
distribution using all neurons with negative joint tracking index values, as we assumed these
were aphysiological and thus due to “noise.” 95% confidence intervals are shown as dashed
gray lines in Figure 6C. Those neurons that were significantly above or below these
confidence intervals were deemed significant. To quantify food cue enhancement in joint
tracking neurons, we asked how much larger the FC response of a given neuron post-
Reversal was compared to what we would expect from the FC response predicted by rotation
of the set of pre-Reversal responses to the three cues. In the example above, this would be
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calculated as (y-a) (i.e. the FC response post-Reversal minus the response predicted from the
pre-Reversal response to 270°, which is the FC orientat ion post-Reversal).

Spatial organization of the three functional categories

In order to quantify the spatial organization of our three functional categories, we calculated
all pairwise distances between neurons within group and across group within our field of
view (e.g. the distribution of distances between PO and PO neurons vs. the distribution of
distances between PO and ID neurons). Our imaging field-of-view also spanned an area
larger than retinotopically identified postrhinal cortex. In order to quantify if our results
were true specifically in retinotopically identified postrhinal cortex or were also more
broadly true in neighboring regions of lateral visual association cortex, we sub-selected the
inner 65% of our field-of-view and labeled neurons in this area as being inside the “Center”
and those neurons that weren’t as being “Outside.” We repeated the cue response bias
analysis and pairwise correlation analyses with these distinct subsets of neurons.

Random Forests classifier

We trained a network of Random Forests classifiers (Breiman, 2001; Geng et al., 2004) to
distinguish experimentally identified PO, ID, or BR neurons. A Random Forests classifier
contains many classification trees, each of which “votes” for a specific class. The classifier
pools over all trees for the final classification. Due to the uneven numbers of neurons in each
category (PO neurons: 43; ID neurons: 83; BR neurons: 53), we trained 500 instances of a
Random Forests classifier, each using a random sample of 32 neurons from each group for
training. This left out at least 25% of the neurons in each group, and we used these neurons
for cross-validation (PO neurons: 11; ID neurons: 51; BR neurons:21). Theoretically, the set-
aside test data set for cross-validation should be unnecessary, and as expected, the “out-of-
bag’ (those cases not used in the construction of each tree) classification accuracy matched
our test set prediction accuracy (Figure S8B—C). Each Random Forests classifier had 100
decision trees. We additionally examined how the number of features sampled at each
decision split would affect classification performance. We found minimal effects of the
number of features sampled at each decision split on either the test set or the out-of-bag
prediction accuracy (Figure SBB—C). For all further analyses, we used the default number of
features sampled (3) which is derived based on the number of total features (8 features; the
default is the square root the number of features used). We also performed a control where,
prior to building each classifier, we randomly shuffled the labels of PO, ID, or BR neurons
to train the classifier but did not shuffle labels on the test set. We found that performance on
the test set and the out-of-bag performance both dropped to chance levels (chance = 0.33 due
to the use of 3 different groups of neurons; Figure S8B-C).

The metrics used for classification were as follows. The cue response selectivity was
calculated as the median (across all pre- and post-Reversal recording sessions) of the
response to the preferred cue (during that session) divided by the sum of responses to all
cues. The response magnitude was calculated as the median AF/F (across all pre- and post-
Reversal sessions) of the preferred response during that session. The Fano factor (FF) was
calculated for the preferred cue during each session, we then used the median Fano factor
across all sessions pre- and post-Reversal. To estimate latency of response, we calculated the
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timepoint for the mean evoked response at which the response first exceeded 3 standard
deviations from baseline, where baseline was the 1 s prior to stimulus onset, and pooled
across days (median). The latency variability (Latency FF) was the Fano factor of the latency
calculated from single trials (for single trial comparisons, we reduced the above threshold to
2 standard deviations due to the noisier nature of this variable), pooled across days (median).
The time-to-peak (TTP) of the response was calculated as the time of the peak response of
the mean timecourse after stimulus onset for the preferred cue on each day, pooled across
days (median). The ramp index (RI) was calculated as 10g2(R ate / Rearly) Where the Ry ate is
the mean AF/F from 1.5-2 seconds post stimulus onset and the Rg,y is the mean AF/F from
0.25-0.75 seconds post stimulus onset (Makino and Komiyama, 2015). The locking to the 2
Hz temporal frequency was calculated by performing a trial-by-trial fast-Fourier transform
on the preferred cue during stimulus presentation for each neuron per day, extracting the
power from 1.75-2.25 Hz and normalizing by the power from 1-5 Hz (excluding 1.75-2.25
Hz; this normalization was done to account for differences in noise across neurons). We then
took the mean across the two days (pre- and post-Reversal) with the highest temporal
locking (if a neuron was only driven on one day, we took this value). To calculate
significance, we fit a normal distribution to all values less than the median locking value
across the population of all neurons and assigned significantly 2 Hz modulated neurons as
those that had 2 Hz locking values that exceed 3.5 standard deviations of this normal
distribution.

To assess the final neural ensemble prediction for all neurons, we took the mode
classification of all neurons in each test data set across all classifiers. For each classification
of a neuron as belonging to a certain class, we calculated the probability of that
classification. For all classes, the probability is the fraction of observations of this class in a
given classification tree leaf, averaged across all classification trees and across all classifiers.
We calculated the Random Forests confidence for each class as the probability of the
correctly classified class divided by the sum of all probabilities. We found a strong
correlation between the confidence metric we used to group PO, ID, and BR neurons and
this classification confidence (Figure S8E).

We then applied this classifier to all neurons that were significantly visually driven but that
were not tracked across the entirety of the Reversal. We did this by analyzing the features
described above, on all days in which neurons responded to visual stimuli. For all further
analyses, we only included those neurons that were confidently classified (classification
confidence > 0.6). PO-like, Identity-like, and Broadly-like neurons are those neurons that
have similar low-level stimulus responses to PO neurons, ID neurons, and BR neurons,
respectively. For all neurons, we also calculated “Random Forests proximities” (i.e. how
often a pair of neurons ends up in the same terminal node of a decision tree; a value of 1
means every time, a value of 0 means never; Figure S8F and S8I).

To assess how PO-like and Identity-like neurons were modulated by changes in the hunger

state of the mouse, we applied the classifier to previously published experiments involving

recordings from neurons in layer 2/3 of V1 and POR (Burgess et al., 2016). We again only

selected those neurons with high classifier confidence (confidence > 0.6) and calculated the
FC bias and the reward history modulation of the neurons as described above. We also
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calculated the hunger modulation index, which we defined as the change in a neuron’s
response to the FC when the animal was hungry vs. sated (hunger modulation index:

[FChungry — FCsatedl/[FCHungry + FCsated])-

Neural ensemble similarity

Page 29

We quantified how similar neurons were within each ensemble, as measured by their pattern
of noise and spontaneous correlations. We first obtained a vector for each neuron containing
6 elements: the first 3 elements were the mean noise correlation of that cell with PO, ID, and
BR neurons. The last 3 elements were the mean spontaneous cross-correlations of that cell
with PO, ID, and BR neurons. This vector thus represents the interaction of a particular
neuron with the PO, ID, and BR ensembles. We then calculated all pairwise correlations of

all neurons in all categories using this vector. To obtain each individual value in the
similarity matrix in Figure 7H, we examined all neurons belonging to two of the four

ensembles (Recruited, PO, ID, or BR) and pooled across all relevant neuron pairs in those
two ensembles (e.g. PO-PO, PO-ID, ID-ID pairs). A correlation value greater than zero
between two ensembles suggests that neurons in those ensembles have similar patterns of
noise and spontaneous correlations. A correlation value less than zero suggest neurons in

those two ensembles have different patterns of noise and spontaneous correlations, and

potentially different patterns of anatomical connectivity.

DATA AND SOFTWARE AVAILABILITY

Data are available upon request to the Lead Contact.

KEY RESOURCES TABLE

REAGENT or RESOURCE | SOURCE

IDENTIFIER

Antibodies

Bacterial and Virus Strains

AAV1.Syn.GCaMP6f.WPRE.SV40 | Penn Vector Core

CAT#100837-AAV1

Biological Samples

Chemicals, Peptides, and Recombinant Proteins

Critical Commercial Assays
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Experimental Models: Cell Lines

Experimental Models: Organisms/Strains

Mouse: C57BL/6J Jackson RRID: IMSR_JAX:000664

Oligonucleotides

Recombinant DNA

Software and Algorithms

MATLAB R2015b Mathworks https://www.mathworks.com/products/matlab.html; RRID: SCR_001622
MonkeyLogic Asaad & http://www.brown.edu/Research/monkeylogic/

Eskandar, 2008

Scanbox

Neurolabware

https://scanbox.org/

PCAV/ICA neuron identification

Mukamel, E. A.,
Nimmerjahn, A.
& Schnitzer, M.
J. 2009

https://github.com/mukamel-lab/CellSort

Demon’s algorithm

Thirion,
Vercauteren et
al., 2009

https://www.mathworks.com/help/images/ref/imregdemons.html

Glmnet

Friedman et al.,
2010

https://web.stanford.edu/~hastie/gimnet_matlab/

Calcium imaging deconvolution

Pnevmatikakis et

https://github.com/epnev/constrained-foopsi

algorithm al., 2016
ImageJ 1.49t NIH https://imagej.nih.gov/ij/; RRID: SCR_003070
Other

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Neuron. Author manuscript; available in PMC 2019 November 21.



https://www.mathworks.com/products/matlab.html
http://www.brown.edu/Research/monkeylogic/
https://scanbox.org/
https://github.com/mukamel-lab/CellSort
https://www.mathworks.com/help/images/ref/imregdemons.html
https://web.stanford.edu/~hastie/glmnet_matlab/
https://github.com/epnev/constrained-foopsi
https://imagej.nih.gov/ij/

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ramesh et al.

Page 31

Acknowledgments

We would like to thank Y. Livneh, J. Zaremba, K. McGuire and other members of the Andermann lab for useful
discussions, M. Barbini, E. Bamberg, and G. Niyazov for help with mouse training, as well as O. Alturkistani and
V. Flores-Maldonado for help performing cranial window surgeries. We thank Drs. Jayaraman, Kerr, Kim, Looger,
and Svoboda and the GENIE Project at Janelia Farm Research Campus, Howard Hughes Medical Institute for use
of GCaMP6. Support was provided by a Davis Family Foundation Postdoctoral Fellowship (CRB), NIH F31
105678 (RNR), NIH T32 5T32DK007516 (AUS), an NIH New Innovator Award DP2 DK105570 and RO1
DK109930, a McKnight Scholar Award, a Pew Scholar Award, a Smith Family Foundation Award, and grants from
the Klarman Family Foundation, the American Federation for Aging Research, and the Boston Nutrition and
Obesity Research Center (MLA).

References

Andermann ML, Kerlin AM, Roumis DK, Glickfeld LL, and Reid RC (2011). Functional
specialization of mouse higher visual cortical areas. Neuron 72, 1025-1039. [PubMed: 22196337]

Asaad WF, and Eskandar EN (2008). A flexible software tool for temporally-precise behavioral control
in Matlab. J. Neurosci. Methods 174, 245-258. [PubMed: 18706928]

Baxter MG, and Murray EA (2002). The amygdala and reward. Nat. Rev. Neurosci 3, 563-573.
[PubMed: 12094212]

Beaudin SA, Singh T, Agster KL, and Burwell RD (2013). Borders and comparative cytoarchitecture
of the perirhinal and postrhinal cortices in an F1 hybrid mouse. Cereb. Cortex 23, 460-476.
[PubMed: 22368084]

Beyeler A, Chang CJ, Silvestre M, Leveque C, Namburi P, Wildes CP, and Tye KM (2018).
Organization of Valence-Encoding and Projection-Defined Neurons in the Basolateral Amygdala.
Cell Rep 22, 905-918. [PubMed: 29386133]

Bonin V, Histed MH, Yurgenson S, and Reid RC (2011). Local diversity and fine-scale organization of
receptive fields in mouse visual cortex. J. Neurosci 31, 18506-18521. [PubMed: 22171051]

Breiman L (2001). Random Forests. Machine Learning 45, 5-32.

Buffalo EA, Fries P, Landman R, Liang H, and Desimone R (2010). A backward progression of
attentional effects in the ventral stream. Proc. Natl. Acad. Sci. U S A 107, 361-365. [PubMed:
20007766]

Burgess CR, Livneh Y, Ramesh RN, and Andermann ML (2017). Gating of visual processing by
physiological need. Curr. Opin. Neurobiol 49, 16-23. [PubMed: 29125986]

Burgess CR, Ramesh RN, Sugden AU, Levandowski KM, Minnig MA, Fenselau H, Lowell BB, and
Andermann ML (2016). Hunger-Dependent Enhancement of Food Cue Responses in Mouse
Postrhinal Cortex and Lateral Amygdala. Neuron 91, 1154-1169. [PubMed: 27523426]

Cai DJ, Aharoni D, Shuman T, Shobe J, Biane J, Song W, Wei B, Veshkini M, La-Vu M, Lou J, et al.
(2016). A shared neural ensemble links distinct contextual memories encoded close in time.
Nature 534, 115-118. [PubMed: 27251287]

Ch’ng YH, and Reid RC (2010). Cellular imaging of visual cortex reveals the spatial and functional
organization of spontaneous activity. Front. Integr. Neurosci 4, 20. [PubMed: 20941381]

Cohen MR, and Maunsell JH (2009). Attention improves performance primarily by reducing
interneuronal correlations. Nat. Neurosci 12, 1594-1600. [PubMed: 19915566]

Cossell L, lacaruso MF, Muir DR, Houlton R, Sader EN, Ko H, Hofer SB, and Mrsic-Flogel TD
(2015). Functional organization of excitatory synaptic strength in primary visual cortex. Nature
518, 399-403. [PubMed: 25652823]

Cumming BG, and Nienborg H (2016). Feedforward and feedback sources of choice probability in
neural population responses. Curr. Opin. Neurobiol. 37, 126-132. [PubMed: 26922005]

Driscoll LN, Pettit NL, Minderer M, Chettih SN, and Harvey CD (2017). Dynamic Reorganization of
Neuronal Activity Patterns in Parietal Cortex. Cell 170, 986-999 €916. [PubMed: 28823559]

Friedman J, Hastie T, and Tibshirani R (2010). Regularization Paths for Generalized Linear Models via
Coordinate Descent. J. Stat. Softw 33, 1-22. [PubMed: 20808728]

Neuron. Author manuscript; available in PMC 2019 November 21.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ramesh et al.

Page 32

Geng W, Cosman P, Berry CC, Feng Z, and Schafer WR (2004). Automatic tracking, feature extraction
and classification of C elegans phenotypes. IEEE Trans. Biomed. Eng 51, 1811-1820. [PubMed:
15490828]

Gilbert CD, and Li W (2013). Top-down influences on visual processing. Nat. Rev. Neurosci 14, 350—
363. [PubMed: 23595013]

Goldey GJ, Roumis DK, Glickfeld LL, Kerlin AM, Reid RC, Bonin V, Schafer DP, and Andermann
ML (2014). Removable cranial windows for long-term imaging in awake mice. Nat. Protoc 9,
2515-2538. [PubMed: 25275789]

Grewe BF, Grundemann J, Kitch LJ, Lecoq JA, Parker JG, Marshall JD, Larkin MC, Jercog PE,
Grenier F, Li JZ, et al. (2017). Neural ensemble dynamics underlying a long-term associative
memory. Nature 543, 670-675. [PubMed: 28329757]

Hofer SB, Ko H, Pichler B, Vogelstein J, Ros H, Zeng H, Lein E, Lesica NA, and Mrsic-Flogel TD
(2011). Differential connectivity and response dynamics of excitatory and inhibitory neurons in
visual cortex. Nat. Neurosci 14, 1045-1052. [PubMed: 21765421]

Huerta CI, Sarkar PR, Duong TQ, Laird AR, and Fox PT (2014). Neural bases of food perception:
coordinate-based meta-analyses of neuroimaging studies in multiple modalities. Obesity (Silver
Spring) 22, 1439-1446. [PubMed: 24174404]

Itokazu T, Hasegawa M, Kimura R, Osaki H, Albrecht UR, Sohya K, Chakrabarti S, Itoh H, Ito T, Sato
TK, and Sato TR (2018). Streamlined sensory motor communication through cortical reciprocal
connectivity in a visually guided eye movement task. Nat. Commun 9, 338. [PubMed: 29362373]

Josselyn SA, Kohler S, and Frankland PW (2015). Finding the engram. Nat. Rev. Neurosci 16, 521—
534. [PubMed: 26289572]

Jurjut O, Georgieva P, Busse L, and Katzner S (2017). Learning Enhances Sensory Processing in
Mouse V1 before Improving Behavior. J. Neurosci 37, 6460-6474. [PubMed: 28559381]

Ko H, Hofer SB, Pichler B, Buchanan KA, Sjostrom PJ, and Mrsic-Flogel TD (2011). Functional
specificity of local synaptic connections in neocortical networks. Nature 473, 87-91. [PubMed:
21478872]

Kohn A, and Smith MA (2005). Stimulus dependence of neuronal correlation in primary visual cortex
of the macaque. J. Neurosci 25, 3661-3673. [PubMed: 15814797]

LaBar KS, Gitelman DR, Parrish TB, Kim YH, Nobre AC, and Mesulam MM (2001). Hunger
selectively modulates corticolimbic activation to food stimuli in humans. Behav. Neurosci 115,
493-500. [PubMed: 11345973]

Lee WC, Bonin V, Reed M, Graham BJ, Hood G, Glattfelder K, and Reid RC (2016). Anatomy and
function of an excitatory network in the visual cortex. Nature 532, 370-374. [PubMed: 27018655]

Livneh Y, Ramesh RN, Burgess CR, Levandowski KM, Madara JC, Fenselau H, Goldey GJ, Diaz VE,
Jikomes N, Resch JM, et al. (2017). Homeostatic circuits selectively gate food cue responses in
insular cortex. Nature 546, 611-616. [PubMed: 28614299]

Makino H, and Komiyama T (2015). Learning enhances the relative impact of top-down processing in
the visual cortex. Nat. Neurosci 18, 1116-1122. [PubMed: 26167904]

Mank M, Santos AF, Direnberger S, Mrsic-Flogel TD, Hofer SB, Stein V, Hendel T, Reiff DF, Levelt
C, Borst A, et al. (2008). A genetically encoded calcium indicator for chronic in vivo two-photon
imaging. Nat. Methods 5, 805-811. [PubMed: 19160515]

McAdams CJ, and Maunsell JH (1999). Effects of attention on orientation-tuning functions of single
neurons in macaque cortical area V4. J. Neurosci 19, 431-441. [PubMed: 9870971]

Morrison SE, and Salzman CD (2010). Re-valuing the amygdala. Curr. Opin. Neurobiol 20, 221-230.
[PubMed: 20299204]

Mukamel EA, Nimmerjahn A, and Schnitzer MJ (2009). Automated analysis of cellular signals from
large-scale calcium imaging data. Neuron 63, 747-760. [PubMed: 19778505]

Niell CM, and Stryker MP (2008). Highly selective receptive fields in mouse visual cortex. J. Neurosci
28, 7520-7536. [PubMed: 18650330]

O’Neill PK, Gore F, and Salzman CD (2018). Basolateral amygdala circuitry in positive and negative
valence. Curr. Opin. Neurobiol 49, 175-183. [PubMed: 29525574]

Neuron. Author manuscript; available in PMC 2019 November 21.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ramesh et al.

Page 33

Okun M, Steinmetz N, Cossell L, lacaruso MF, Ko H, Bartho P, Moore T, Hofer SB, Mrsic-Flogel TD,
Carandini M, and Harris KD (2015). Diverse coupling of neurons to populations in sensory cortex.
Nature 521, 511-515. [PubMed: 25849776]

Otis JM, Namboodiri VM, Matan AM, Voets ES, Mohorn EP, Kosyk O, McHenry JA, Robinson JE,
Resendez SL, Rossi MA, and Stuber GD (2017). Prefrontal cortex output circuits guide reward
seeking through divergent cue encoding. Nature 543, 103-107. [PubMed: 28225752]

Parker A, and Gaffan D (1998). Lesions of the primate rhinal cortex cause deficits in flavour-visual
associative memory. Behav. Brain Res 93, 99-105. [PubMed: 9659992]

Paton JJ, Belova MA, Morrison SE, and Salzman CD (2006). The primate amygdala represents the
positive and negative value of visual stimuli during learning. Nature 439, 865-870. [PubMed:
16482160]

Petreanu L, Gutnisky DA, Huber D, Xu NL, O’Connor DH, Tian L, Looger L, and Svoboda K (2012).
Activity in motor-sensory projections reveals distributed coding in somatosensation. Nature 489,
299-303. [PubMed: 22922646]

Pho GN, Goard MJ, Woodson J, Crawford B, and Sur M (2018). Task-dependent representations of
stimulus and choice in mouse parietal cortex. Nat. Commun 9, 2596. [PubMed: 29968709]

Pnevmatikakis EA, Soudry D, Gao Y, Machado TA, Merel J, Pfau D, Reardon T, Mu Y, Lacefield C,
Yang W, et al. (2016). Simultaneous Denoising, Deconvolution, and Demixing of Calcium
Imaging Data. Neuron 89, 285-299. [PubMed: 26774160]

Poort J, Khan AG, Pachitariu M, Nemri A, Orsolic I, Krupic J, Bauza M, Sahani M, Keller GB, Mrsic-
Flogel TD, and Hofer SB (2015). Learning Enhances Sensory and Multiple Non-sensory
Representations in Primary Visual Cortex. Neuron 86, 1478-1490. [PubMed: 26051421]

Reynolds JH, and Chelazzi L (2004). Attentional modulation of visual processing. Annu. Rev.
Neurosci 27, 611-647. [PubMed: 15217345]

Sacco T, and Sacchetti B (2010). Role of secondary sensory cortices in emotional memory storage and
retrieval in rats. Science 329, 649-656. [PubMed: 20689011]

Saez RA, Saez A, Paton JJ, Lau B, and Salzman CD (2017). Distinct Roles for the Amygdala and
Orbitofrontal Cortex in Representing the Relative Amount of Expected Reward. Neuron 95, 70-77
e73. [PubMed: 28683271]

Samuelsen CL, Gardner MP, and Fontanini A (2012). Effects of cue-triggered expectation on cortical
processing of taste. Neuron 74, 410-422. [PubMed: 22542192]

Sano Y, Shobe JL, Zhou M, Huang S, Shuman T, Cai DJ, Golshani P, Kamata M, and Silva AJ (2014).
CREB regulates memory allocation in the insular cortex. Curr. Biol 24, 2833-2837. [PubMed:
25454591]

Schoenbaum G, Chiba AA, and Gallagher M (1998). Orbitofrontal cortex and basolateral amygdala
encode expected outcomes during learning. Nat. Neurosci 1, 155-159. [PubMed: 10195132]

Schoenbaum G, Chiba AA, and Gallagher M (1999). Neural encoding in orbitofrontal cortex and
basolateral amygdala during olfactory discrimination learning. J. Neurosci 19, 1876-1884.
[PubMed: 10024371]

Schoenbaum G, Setlow B, Saddoris MP, and Gallagher M (2003). Encoding predicted outcome and
acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral
amygdala. Neuron 39, 855-867. [PubMed: 12948451]

Shadlen MN, and Newsome WT (1998). The variable discharge of cortical neurons: implications for
connectivity, computation, and information coding. J. Neurosci 18, 3870-3896. [PubMed:
9570816]

Shuler MG, and Bear MF (2006). Reward timing in the primary visual cortex. Science 311, 1606—
1609. [PubMed: 16543459]

Smith MA, and Kohn A (2008). Spatial and temporal scales of neuronal correlation in primary visual
cortex. J. Neurosci 28, 12591-12603. [PubMed: 19036953]

Sparta DR, Smithuis J, Stamatakis AM, Jennings JH, Kantak PA, Ung RL, and Stuber GD (2014).
Inhibition of projections from the basolateral amygdala to the entorhinal cortex disrupts the
acquisition of contextual fear. Front. Behav. Neurosci 8, 129. [PubMed: 24834031]

Stanislaw H, and Todorov N (1999). Calculation of signal detection theory measures. Behav. Res.
Methods Instrum. Comput. 31, 137-149. [PubMed: 10495845]

Neuron. Author manuscript; available in PMC 2019 November 21.



1duosnue Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ramesh et al.

Page 34

Thirion JP Image matching as a diffusion process: an analogy with Maxwell’s demons. Medical Image
Analysis 2, 243-260. [PubMed: 9873902]

Tsodyks M, Kenet T, Grinvald A, and Arieli A (1999). Linking spontaneous activity of single cortical
neurons and the underlying functional architecture. Science 286, 1943-1946. [PubMed: 10583955]

Vercauteren T, Pennec X, Perchant A, and Ayache N (2009). Diffeomorphic demons: efficient non-
parametric image registration. Neuroimage 45, S61-72. [PubMed: 19041946]

Wang Q, and Burkhalter A (2007). Area map of mouse visual cortex. J. Comp. Neurol 502, 339-357.
[PubMed: 17366604]

Wang Q, Sporns O, and Burkhalter A (2012). Network analysis of corticocortical connections reveals
ventral and dorsal processing streams in mouse visual cortex. J. Neurosci 32, 4386-4399.
[PubMed: 22457489]

Yang Y, Liu DQ, Huang W, Deng J, Sun Y, Zuo Y, and Poo MM (2016). Selective synaptic remodeling
of amygdalocortical connections associated with fear memory. Nat. Neurosci 19, 1348-1355.
[PubMed: 27595384]

Zhang S, Xu M, Kamigaki T, Hoang Do JP, Chang WC, Jenvay S, Miyamichi K, Luo L, and Dan Y
(2014). Selective attention. Long-range and local circuits for top-down modulation of visual cortex
processing. Science 345, 660—-665. [PubMed: 25104383]

Zhang W, Schneider DM, Belova MA, Morrison SE, Paton JJ, and Salzman CD (2013). Functional
circuits and anatomical distribution of response properties in the primate amygdala. J. Neurosci 33,
722-733. [PubMed: 23303950]

Zhou N, Masterson SP, Damron JK, Guido W, and Bickford ME (2018). The Mouse Pulvinar Nucleus
Links the Lateral Extrastriate Cortex, Striatum, and Amygdala. J. Neurosci 38, 347-362.
[PubMed: 29175956]

Ziv'Y, Burns LD, Cocker ED, Hamel EO, Ghosh KK, Kitch LJ, EI Gamal A, and Schnitzer MJ (2013).
Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci 16, 264-266. [PubMed:
23396101]

Neuron. Author manuscript; available in PMC 2019 November 21.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Ramesh et al.

Page 35

A

B Conditioned

stimulus  Action Outcome
[ | Lick = () Ensure

Ensure . . I I Food cue <I
Quinine ] (FC) Rl Nolig

Lickspout Lick ——p ‘Quinine

Quinine cue
(QC) No lick = Nothing

Lick = Nothing
,9 Neutral cue <
I 1 (NC) No lick == Nothing
|

Stimulus Response
window (3's) window (2 s)

C 5 D Pre Post
= \ Grating Outcome Grating Outcome
Muscimol Muscimol ?g}/ 4
| | - .
l 1 §3 e Ill Ensure M2 Cnsure
S
£
Q2 4
%— * QC : Qu%ine = Qu%ine
1
&
0 ,' Nothing mep 1 Nothi
Saline Mus ," e III e
E,\ 4 * . * F * *
5 1Q1Q2 Q3 Q4: o 1
‘q')’ i i » 2
e 3 © o 08
= Q
£ Z 9
5 5 S L 06 t QC
k= c %
g S 2 o4
X 4 O ®
% S < 02 - -
- b = > = 4
0 2
. . 0
Pre During Post Pre During Post

Figure 1: Mice learn changes in cue-outcome associations in a visual discrimination task
A. Head-restrained setup for visual stimulation, delivery of Ensure or quinine, and two-

photon calcium imaging.

B. Mice were trained on a Go-NoGo task.

C. Bilateral injection of muscimol (Mus) to silence lateral visual association cortex resulted
in decreased task performance.

D. Following initial learning, we switched cue-outcome associations by changing the
orientation of the visual grating that predicted each specific outcome.

E. Mice performed poorly immediately following the switch in cue-outcome associations,
but gradually improved until they attained high performance. Pre: pre-Reversal; During:
during-Reversal; Post: post-Reversal. “During” period shown in quartiles Q1-Q4. * p <
0.001 vs. during-Reversal (combined across quartiles; see text).

F. Mice selectively licked in response to the food cue (FC) during pre- and post-Reversal
epochs but licked indiscriminately to all cues during-Reversal. * p < 0.05; t denotes
significant increase in licking to the neutral cue (NC) during- vs. pre- and post-Reversal (p <
0.01); 2-way ANOVA, Tukey-Kramer post hoc test. Error bars: s.e.m. See also Figure S1.

Neuron. Author manuscript; available in PMC 2019 November 21.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Ramesh et al.

Page 36

A C Neuron #1 Neuron #2 Neuron #3
jvww wn w s roy e e vy
0.5 AF/FL C QG
10s

B

2 0 2 4
Time (s) Time (s)

Pre Post

Grating Outcome Grating Outcome

Bom = = = oG,

NC ,/ Nothing s III Nothing

Visual Identity neurons respond to
same orientation

Quinine

Pre Post

Grating Outcome Grating  Outcome

FC lll O oy e O
Ensure m— Ensure

o — ‘ _— V/ ‘ | Pre Post  Pre Post Pre Post
— = —_—
L= Qunne 7(/; auiine ! i m = 15 = j m L
z Normalized .X
NC A4 noring —b Nothing ¥ | i o-0-0-8-0
//, Ill response oloda oledy o S5
Predicted outcome neurons respond to 1234567 1234567 1234567
same predicted outcome Imaging session
Predicted outcome Pre Post
(PO) neurons
-8 Predicted

outcome
neurons

@ }—, e @ ® |dentity (ID) neurons
54 g Broadly-tuned (BR)
* I ¢ neurons
R Non-visually
responsive neurons

Identity
neurons

Number of neurons  T1

@ PO @D WY
racks precicted B
Pre Post Pre Post —> " outcome =

Preferred —MN ] Tracks PO
ey | | [—E ¢ : ¢ Tracks orientation
Precision ofracking — Same predicted outcome
|

pires + =5 (I T —_—" — Same orentaion

02
|NaFF
0ds

S5
YA

Figure 2. Different subsets of lateral visual association cortex neurons track stimulus identity or
predicted outcome

A. Left: schematic demonstrating location of cranial window. Right: example traces showing
varied responses to food cue (FC), quinine cue (QC), and neutral cue (NC) trials.

B. A schematic demonstrating the hypothetical responses of two neurons whose early visual
responses consistently track either stimulus identity (1D, top; same stimulus orientation) or
predicted outcome (PO, bottom) across a Reversal.

C. Heatmaps from one session for three simultaneously recorded neurons. White ticks
denote the first lick on a given trial and gold ticks denote delivery of Ensure.

D. Average cue-evoked responses across sessions for the same example neurons as in C.
Dashed gray line indicates when cue-outcome associations were switched. Neuron #1
tracked the cue that predicted food delivery. Neuron #2 tracked the 270° drifting grating,
regardless of the predicted outcome. Neuron #3 was broadly responsive to visual stimuli.
Parentheses: behavioral performance, d’. Insets: images of the GCaMP6-expressing cell
bodies. Bottom: normalized cue response magnitudes for all imaging sessions in which the
neuron was visually responsive.

E. Top: schematic of neurons within an imaging field of view, including those classified as
PO, ID, or Broadly-tuned (BR) neurons (e.g. example Neurons #1, #2, and #3, respectively).
Bottom: illustration of preferred stimulus orientation across a switch in cue-outcome
contingencies for a PO neuron and an ID neuron.
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F. The distribution of all neurons recorded both pre- and post-Reversal, ordered from those
that precisely tracked the same stimulus orientation (leftmost on x-axis) to those that
precisely tracked whichever stimulus predicted the same outcome (rightmost on x-axis).
Inset: pie chart indicating numbers of imaged neurons in each category. Arrows denote
example neurons from C-D.

G. Mean normalized responses for each category, demonstrating the degree to which
neurons in each category either responded preferentially to the same predicted outcome or to
the same orientation pre- vs. post-Reversal. See also Figure S2.
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Figure 3. Enhanced sensitivity to food cues and reward history in PO but not ID neurons
A. In hungry mice, lateral visual association cortex showed a response bias to the

motivationally-salient food cue both pre- and post-Reversal (black and white bars). A similar
bias was observed when only including those neurons that were visually responsive both
pre- and post-Reversal (gray bars). * p < 0.001; FCpyepgst VS. FCpre, FCpost: P > 0.05, 2-way
ANOVA, Tukey-Kramer test. Pre: pre-Reversal; Post: post-Reversal. FC: food cue; QC:
quinine cue; NC: neutral cue.

B. Food cue response bias across a range of neurons, from those that mostly tracked
stimulus orientation (left; see Figure 2F) to those that mostly tracked predicted outcome.* p
< 0.001, Wilcoxon Sign-Rank test against 0.33, Bonferroni corrected.

C. Analysis by category showed that PO neurons, but not ID or BR neurons, were
significantly biased to the food cue. * p < 0.0001, Wilcoxon Sign-Rank test against 0.33.
Inset: only PO neurons showed a significant food cue bias when performing statistics across
mice, rather than across neurons. * p < 0.025, 1-way RM ANOVA, Tukey-Kramer method.
D. Example neurons exhibiting modulation of cue-evoked response depending on whether
the previous trial was a rewarded trial (dashed) or not (solid).

E. Only those neurons that strongly tracked the same predicted outcome showed
significantly elevated modulation of visual responses by reward history. * p < 0.01 bootstrap
permutation test.

F. PO neurons were more sensitive to recent reward history than ID or BR neurons. Error
bars: s.e.m. (see text). See also Figure S3.

Neuron. Author manuscript; available in PMC 2019 November 21.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Page 39

—Test data w — AFIF w — AF/F
—— GLM prediction L3 Motor response w 0.07 Motor response
w03 < U ——Ensure < ~——Ensure
T 3 —Visual 2 — Visual X
P S Total prediction > Total prediction
5 I = 5 0.05
€ 02 g 02 :
3 8 3
2 8 3 0.03
£ 2 g 0
8 0.1 o 0.1 o
) [0} L
Q ; S 3 001
0 sl by bl P2 B
0 10 20 30 40 50 60 70 o 0 2 4 6 g o 0 2 4 6 8
Time (s) Time from stimulus onset (s) Time from stimulus onset (s)

Predicted Identity Broadly-

neurons

Motor outcome

tuned Motor onset
1 = Visual neurons

neurons

0.8

|*

0.6
0.5

L |*

0.4

Deviance explained

® PO
0.2 e D

¢ BR

Visual cue coefficients

Fraction of days visually driven

N

| — 0 :
FCQCNC FCQCNC FCQCNC T8 Pre During Post

Figure 4. Dissecting sensory, motor, and reward-related responses in visual association cortex
A. A generalized linear model (GLM) could predict the neural activity of an example ID

neuron using task variables.

B. The mean response of this neuron was mostly explained by the visual response
component (dark purple). Contributions to peri-stimulus responses by activity locked to the
motor response (red) or to Ensure delivery (green) were minimal.

C. An example PO neuron demonstrated a visual response component (dark purple), a motor
response component (red), and a component related to Ensure delivery (green).

D. We quantified the fraction of the deviance explained by each task variable included in the
GLM (normalized by the total deviance explained for each neuron). The deviance explained
by the visual response component was significantly greater than for the motor component in
PO, ID, and BR neurons. * p < 0.01, Wilcoxon Rank-Sum.

E. Critically, the response bias to the food cue in Fig. 2A—-C was not the result of motor or
premotor activity, as we still observed this bias when only considering coefficients reflecting
the visual response component for food cue (FC), quinine cue (QC), and neutral cue (NC)
trials.

F. Top: responses of PO neurons contained a motor component that peaked prior to the onset
of licking (dashed gray line), and that remained stable Pre-, During- and Post-Reversal.
Bottom: responses of PO neurons contained a visual response component for the food cue
(dashed gray line) Pre-, and Post-, but not During-Reversal.

G. Average fraction of all days that cells in each category were responsive to at least one
stimulus, for each task epoch. PO neurons were not reliably visually responsive during-
Reversal, when behavioral performance was poor. * p < 0.001, PO fraction during- vs. pre-
and vs. post-Reversal, as well as PO vs. ID neurons or PO vs. BR neurons during-Reversal.
T p <0.01, PO vs. ID neurons post-Reversal. 2-way ANOVA, Tukey-Kramer test. Error bars:
s.e.m. See also Figure S4.
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Figure 5. Correlated ensembles of PO, ID, and BR neurons
A. Top left: schematic of PO, ID, and BR neurons within a field of view. Right: hypothetical

profiles of local and long-range connectivity, were the network of PO, ID, and BR neurons
to show either full connectivity or selective connectivity within functionally-distinct
ensembles. Bottom left: hypothetical pairwise food cue response co-fluctuation (noise
correlation) in simultaneously recorded PO and ID neurons (bottom; gray shaded area: cue
presentation). Even though the mean response of all neurons is identical, PO neurons (1 & 2)
have larger responses on trial 1, and ID neurons (3 & 4) have larger responses on trial 2,
resulting in higher cue-evoked noise correlations within- vs. across-group. For the pairwise
correlation analyses below, hexagon pairs denote the functional identity of each neuron in
the pair.
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B. PO and BR neurons showed higher noise correlations within-group vs. across-group.
Left: pairwise correlations between two neurons in the same group (same color) vs. in any
other group (gray). Right: all pairwise comparisons. Shaded discs indicate s.e.m. * p < 0.01,
Wilcoxon Rank-Sum (left) and Kruskal-Wallis (right).

C. Noise correlation heatmap for all neurons, ranging from those that mostly tracked the
orientation of a stimulus to those that mostly tracked the predicted outcome. Pairs of neurons
with similar tracking properties had higher pairwise noise correlations.

D. Same analyses as in B, but restricted to the subsets of PO, ID, and BR neurons that
preferred the food cue (FC). Right: Pairwise noise correlations were higher within-group
(same color) vs. across-group (different colors). * significantly higher mean correlation for
neurons in the same vs. in different groups (gray): p < 0.01, Wilcoxon Rank-Sum (left) and
Kruskal-Wallis (right), Bonferroni corrected. t significantly higher mean correlation of
BREc neurons with other BRg¢ neurons than with IDgc neurons: p < 0.001, Kruskal-Wallis,
Bonferroni corrected. All other p values > 0.05. Shaded disc radius: s.e.m.

E. Subgroups of ID neurons preferentially responsive to a specific stimulus orientation
showed higher noise correlations within- vs. across-subgroup. Left: within-subgroup vs.
across-subgroup comparisons. Right: all pairwise comparisons. * p < 0.01, within- vs.
across-subgroup. T p < 0.01, highest vs. lowest pairs; Kruskal-Wallis/Wilcoxon Rank-Sum,
Bonferroni corrected

F. PO and BR neurons showed higher spontaneous event ross-correlations within-group vs.
across-group. * denotes p < 0.001 for within- vs. across-group comparison or vs. all other
groups; Kruskal-Wallis/Wilcoxon Rank-Sum, Bonferroni corrected. t p < 0.05, POID vs.
BR-ID pairs.

G. Subgroups of 1D neurons showed higher spontaneous event cross-correlations within-
subgroup vs. across-subgroup. * p < 0.01, within- vs. across-subgroups. T p < 0.01, highest
vs. lowest pairs:, Kruskal-Wallis/Wilcoxon Rank-Sum, Bonferroni corrected. See also
Figures S5-S6.
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Figure 6. Joint tracking of stimulus identity and predicted outcome in single neurons
A. Schematic demonstrating the possible existence of neurons that partially track both

stimulus identity and predicted outcome.

B. An example neuron that demonstrates joint tracking. This neuron initially responded to
the orientation associated with the food cue (FC). Following new learning, it continued to
respond to this orientation but now also responded to the new FC. QC: quinine cue; NC:
neutral cue.

C. Joint tracking index across neurons, ordered from those that precisely tracked the same
stimulus orientation (left end of x-axis) to those that precisely tracked whichever stimulus
predicted the same outcome (right end of x-axis). A minority of neurons showed significant
joint tracking of both stimulus identity and predicted outcome (dashed lines: 95%
confidence intervals). Black outlines denote neurons with significant joint tracking. Arrow:
example neuron from B.

D. Fraction of neurons in each category showing significant joint tracking. 38/179 showed
significant joint tracking (inset).

E. Joint tracking neurons from the PO category showed a response enhancement to the food
cue, while those from the ID category did not.
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Figure 7. Neurons recruited during new learning encode predicted value
A. Schematic demonstrating the possible existence of neurons that are “recruited” by new

learning.

B. Example neuron that developed cue-evoked responses as the mouse learned the new cue-
outcome associations. FC: food cue; QC: quinine cue; NC: neutral cue.

C. Fraction of visually-responsive Recruited neurons and Predicted Outcome (PO) neurons
pre-, during- and post-Reversal.

D. Recruited neurons showed a population response bias to the food cue.

E. Recruited neurons and PO neurons both had similarly strong sensitivity to recent reward
history. n.s.: p > 0.05, Wilcoxon Rank-Sum.

F. Recruited neurons and PO neurons showed similar noise correlations with PO, ID, and BR
neurons, suggesting that Recruited neurons might become integrated with the PO ensemble.
*p <0.05, Kruskal-Wallis.

G. Recruited neurons showed higher spontaneous correlations with PO neurons than with ID
or BR neurons post-Reversal and, surprisingly, pre-Reversal (an epoch when Recruited
neurons were not visually responsive). * p < 0.05, 2-way ANOVA, Tukey-Kramer test.
Shaded disc radius: s.e.m.

H. We quantified the similarity in the patterns of noise and spontaneous correlations for
neurons in each category. PO neurons showed higher similarity to Recruited neurons, while
ID neurons showed higher similarity to BR neurons. See also Figure S7.
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stimulus features reward history, and hunger state

Figure 8. Single-session visual response dynamics can predict which neurons will track stimulus
identity or predicted outcome across Reversal

A. Many neurons were transiently visually responsive and were not tracked across the
Reversal.

B. Left: some neurons displayed visual responses that followed the 2 Hz temporal frequency
of the drifting grating. Right: quantile plot. Neurons that were significantly modulated at 2
Hz (rightmost circles, outlined in black; all plotted in left panel) were all ID neurons.

C. A Random Forests classifier could use single-session, low-level visual response features
to distinguish PO, ID, or BR neurons at levels significantly above chance. * p < 0.01,
Wilcoxon Rank-Sum, real vs. permuted shuffle of category labels during classifier training.
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D. Neurons that shared the same low-level visual response features as PO neurons (“PO-like
neurons”) showed a stronger bias to the motivationally relevant food cue than “ID-like” or
“BR-like” neurons.

E. PO-like neurons showed higher noise correlations with PO neurons than with ID neurons.
F. PO-like neurons showed higher spontaneous correlations with PO neurons than with 1D or
BR neurons.

G. Unlike ID-like neurons, PO-like neurons in both visual postrhinal cortex (visPOR) and
primary visual cortex (V1) showed a significant response bias to the food cue (left). PO-like
neurons also demonstrated greater sensitivity to reward history than ID-like neurons (right).
H. While PO-like neurons were present in V1, they were significantly less common than in
ViSPOR. * p < 0.05, Tukey’s HSD post hoc test among proportions.

I. In both V1 and visPOR, PO-like neurons showed a strong response bias to the food cue
while ID-like neurons did not. This bias was abolished following satiation. * p < 0.01,
Wilcoxon Sign-Rank vs. chance (0.33). Error bars: s.e.m.

J. We hypothesize that within the same region of lateral visual association cortex, PO, PO-
like and Recruited neurons (right) receive inputs from brain regions involved in assigning
valence/salience to learned cues (e.g. LA/BLA), in task-dependent decision-making and/or
motor action (e.g. PFC/OFC), as well as input from visual sources, including LP, and local
neurons encoding stimulus identity. By contrast, ID and ID-like neurons (left) may
predominantly receive input from earlier visual areas including LP, V1 and LM. LA: lateral
nucleus of the amygdala; BLA: basolateral nucleus of the amygdala; PFC: prefrontal cortex;
OFC: orbitofrontal cortex; LP: lateral posterior nucleus of the thalamus; LM: lateromedial
visual area. See also Figure S8.
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