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Abstract

The response of a cortical neuron to a motivationally salient visual stimulus can reflect a 

prediction of the associated outcome, a sensitivity to low-level stimulus features, or a mix of both. 

To distinguish between these alternatives, we monitored responses to visual stimuli in the same 

lateral visual association cortex neurons across weeks, both prior to and after reassignment of the 

outcome associated with each stimulus. We observed correlated ensembles of neurons with visual 

responses that either tracked the same predicted outcome, the same stimulus orientation, or that 

emerged only following new learning. Visual responses of outcome-tracking neurons encoded 

“value,” as they demonstrated a response bias to salient, food-predicting cues and sensitivity to 

reward history and hunger state. Strikingly, these attributes were not evident in neurons that 

tracked stimulus orientation. Our findings suggest a division of labor between intermingled 

ensembles in visual association cortex that encode predicted value or stimulus identity.
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Introduction

Our brains track not only the identity of sensory stimuli, but also the possible outcomes 

associated with these stimuli. Due to a constantly changing environment, learned cue-

outcome associations are frequently made, broken, and re-made. Accordingly, the neural 

representation of a given cue-outcome association must include both reliable encoding of the 

stimulus identity and flexible, context-dependent encoding of the predicted outcome and its 

motivational salience. However, representations of stimuli and of predicted outcomes are 

often considered in separate studies focused on different brain regions. For example, studies 

in early visual cortical areas have described correlated ensembles of neurons that encode 

low-level information about stimulus identity (Cossell et al., 2015; Hofer et al., 2011; Ko et 

al., 2011; Kohn and Smith, 2005; Lee et al., 2016), while studies in subcortical regions such 

as the amygdala have identified ensembles that respond to those sensory cues that become 

associated with a given salient outcome (Grewe et al., 2017; Paton et al., 2006; Schoenbaum 

et al., 1999; Zhang et al., 2013). Within intervening brain areas, it remains unclear whether 

representations of stimulus identity and of predicted outcome are largely encoded by a 

common group of neurons or are separately encoded by different groups of neurons.

A natural region in which to address this question is the visual postrhinal cortex (POR; 

Wang and Burkhalter, 2007) and neighboring regions of lateral visual association cortex 

(LVAC). Behavioral studies suggest that lateral association cortex may play a key role in 

linking representations of sensory stimuli and predicted outcomes (e.g., Parker and Gaffan, 

1998; Sacco and Sacchetti, 2010). Anatomical evidence points to LVAC as a putative 

integration site, as it receives feedforward projections from early visual cortex and visual 

thalamus (Wang and Burkhalter, 2007; Zhou et al., 2018) and feedback projections from 

lateral amygdala (Burgess et al., 2016). Evidence that LVAC contains a faithful 

representation of the visual world comes from observations that some LVAC neurons are 

retinotopically organized and can encode low-level stimulus features such as stimulus 

orientation, even in naïve mice (Burgess et al., 2016). Evidence that LVAC also contains a 

representation of the value of predicted outcomes comes from observations that, following 

training, LVAC neurons show a hunger-dependent response bias towards learned cues that 

predict food delivery, as well as sensitivity to reward history (Burgess et al., 2016).
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While the above study in mice and many neuroimaging studies in humans demonstrate 

enhanced responses to salient cues in LVAC (reviewed in Burgess et al., 2017), these studies 

were fundamentally limited in their ability to determine whether a given neuron is 

responsive to a visual cue because it is sensitive to the low-level features of the stimulus, to 

the outcome predicted by the stimulus, or to a combination of these factors. At one extreme, 

the observed population-level sensitivity to food cues, hunger state, and reward history could 

be a result of individual neurons that are tuned to low-level visual stimulus features but that 

also demonstrate changes in response gain across behavioral contexts. At the other extreme, 

one subset of neurons might track whichever cues predict a given salient outcome, while 

another intermingled set of neurons might track low-level visual features and maintain the 

same high-fidelity response tuning independent of context.

To address this question, we used two-photon calcium imaging to record in LVAC of mice 

performing a Go-NoGo visual discrimination task. Critically, we tracked the same neurons 

across days prior to, during, and following learning of a reassignment of cue-outcome 

associations (similar to classic reversal learning paradigms; Paton et al., 2006). We identified 

multiple ensembles of correlated LVAC neurons, each of which tracked the identity of a 

specific visual stimulus. Strikingly, we found that visual responses in these identity-coding 

ensembles were not sensitive to motivational salience. Instead, we identified an additional 

ensemble of correlated neurons that tracked predicted outcome and whose visual responses 

were sensitive to cue saliency, reward history, and hunger state. Surprisingly, relatively few 

neurons demonstrated appreciable joint tracking of stimulus identity and of predicted 

outcome. We propose that intermingled ensembles encoding stimulus identity or predicted 

outcome in visual association cortex may achieve dual goals of maintaining a faithful 

representation of a visual stimulus while enabling flexible encoding of predicted outcomes 

and their motivational salience.

Results

Mice learn changes in cue-outcome associations in a visual discrimination task

We trained food-restricted mice to perform a Go-NoGo visual discrimination task (Figure 

1A–B). Mice were presented with visual cues for 3 s, followed by a 2-s response window 

and a 6-s inter-trial interval. Mice were trained to discriminate between a food-predicting 

cue (FC; 0° in Figure 1B; orientations were counterbalanced across animals), a quinine-

predicting cue (QC; 270°), and a neutral cue (NC; 135°). Licking during the response 

window following the FC, QC, or NC resulted in delivery of liquid food (5 μL of Ensure), an 

aversive bitter solution (5 μL of 0.1 mM quinine), or nothing, respectively.

Lateral visual association cortex (LVAC) was necessary for task performance, as bilateral 

silencing (centered on visPOR) using the GABAA agonist muscimol (125 ng in 50 nl) 

disrupted performance (p = 0.006, paired t-test; n = 3 mice; Figure 1C and S1A). Silencing 

of LVAC did not result in general cessation of licking (as occurs when silencing insular 

cortex during this task, Livneh et al., 2017). Instead, it caused mice to lick indiscriminately 

in response to all cues (Figure S1A), suggesting a perceptual rather than a motivational 

deficit.
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Once mice stably performed the Go-NoGo task, we switched the three cue-outcome 

contingencies via a clockwise rotation of the outcome associated with each stimulus (Figure 

1D; e.g. FC: 0°→270°; QC: 270° →135°; NC: 135° →0°). Discrimination returned to high 

levels in as few as 3 days following this “Reversal” (Figure 1E–F; d’ pre- vs. during- vs. 

post-Reversal: p < 0.001, 1-way repeated measures ANOVA, Tukey-Kramer method). We 

used a behavioral performance threshold (d’ > 2 for ≥ 2 consecutive days) to divide our 

training paradigm into 3 epochs: (i) prior to switching of cue-outcome associations (pre-

Reversal), (ii) poor performance immediately after switching of cue-outcome associations 

(during-Reversal), and (iii) following learning of the new associations (post-Reversal; Figure 

1E–F). Following the switch, mice began licking indiscriminately to all cues, and then 

gradually increased licking to the new food cue (Figures 1F and S1B; p < 0.05, 2-way 

ANOVA, Tukey-Kramer method) and decreased licking to other cues. This switching of cue-

outcome associations also caused an increase in pre-stimulus licking. Food cue-evoked and 

pre-stimulus licking gradually returned to pre-Reversal levels and became more stereotyped 

(Figure S1C–D; Jurjut et al., 2017). The fraction of all trials with lick responses did not 

change (Figure S1E), suggesting similar levels of task engagement throughout the Reversal.

Different subsets of LVAC neurons track stimulus identity or predicted outcome

Throughout daily imaging sessions (14 ± 5 sessions/mouse in 4 mice), we tracked visual 

responses in the same population of neurons in layer 2/3 of lateral visual association cortex 

(LVAC) using two-photon calcium imaging. Recordings were from a region of LVAC 

centered around visPOR (Figure 2A), which was delineated using widefield intrinsic 

autofluorescence imaging of retinotopy, and subsequently injected with AAV1-hSyn-

GCaMP6f (Burgess et al., 2016).

We tracked 731 neurons across multiple imaging sessions, of which 179 were significantly 

visually responsive both pre- and post-Reversal. We hypothesized that some neurons would 

respond selectively to the same low-level stimulus feature (orientation) regardless of changes 

in associated outcome (e.g. Figure 2B, top: neural response preference tracks the 270° 

grating), while other neurons would respond selectively to visual cues predicting the same 

outcome regardless of stimulus orientation (see hypothetical example neuron in Figure 2B, 

bottom, which responds to the stimulus that predicts quinine, regardless of stimulus 

orientation; Figure S2A).

Diverse tuning properties were observed across simultaneously recorded neurons, both in 

single-trial visual responses (Figure 2C) and in mean responses (Figure 2D). Neuron #1 

responded to the food-predicting cue (FC) both pre- and post-Reversal, regardless of 

stimulus orientation (FC pre-Reversal: 0°; FC post-Reversal: 270°). Neuron #2 responded to 

the same orientation (270°) across the Reversal. Neuron #3 r esponded to all 3 cues across 

all sessions.

We assigned all neurons that were visually responsive both pre- and post-Reversal to one of 

three categories (Figure 2E): “Predicted Outcome (PO)” neurons had visual responses that 

predominantly tracked the same predicted outcome, “Identity (ID)” neurons maintained 

visual responses to the same preferred stimulus orientation, and “Broadly-tuned (BR)” 

neurons had non-selective visual responses. To categorize a neuron, we constructed a 3-point 
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tuning curve of its responses to the 3 stimuli pre-Reversal (Figure S2A, left panel; net cue 

preference: black arrow). We then estimated how this tuning curve and net preference would 

have “rotated” post-Reversal (Figure S2A, right panels), had the neuron been purely tuned to 

stimulus identity (no rotation, as ID neurons respond consistently to the same orientation; 

dashed purple arrow), or predicted outcome (clockwise rotation to match the rotation of 

outcomes relative to the 3 stimuli; dashed orange arrow). Using this categorization, we 

found 83 ID neurons and 43 PO neurons (Figure 2F; Figure S2A–E, right). We also found 53 

BR neurons that showed similar responses to all cues, and thus equally poorly “tracked” 

stimulus orientation, predicted outcome, and an artificial, counter-clockwise “null” rotation 

across Reversal (Figure S2B). The tracking of predicted outcome did not occur due to noisy 

estimates: while many LVAC neurons showed surprisingly pure tracking of the same 

predicted outcome (Figure 2F, right dashed box) or the same stimulus orientation (Figure 2F, 

left dashed box; Figure 2G), control analyses confirmed that almost no neurons showed 

similarly pure tracking of the artificial null rotation (Figure S2C).

Enhanced sensitivity to food cues and reward history in Predicted Outcome but not 
Identity neurons

Neural responses in LVAC of food-restricted mice were biased to food cues vs. other visual 

cues (Figure 3A), consistent with previous work in humans and mice (Burgess et al., 2016; 

Huerta et al., 2014; LaBar et al., 2001). Here, we asked whether this food cue response bias 

is more prevalent in any one category of LVAC neurons. The set of 179 neurons responsive 

to visual cues both pre- and post-Reversal showed a similar net food cue response 

enhancement as the total population (i.e. neurons driven either pre- and/or post-Reversal; 

Figure 3A and Figure S3A). Surprisingly, this food cue response bias was absent in the 

subset of neurons that preferentially tracked stimulus orientation (left half of Figure 3B; cf. 

Figure 2F; food cue bias = FCresponse / [FCresponse + QCresponse + NCresponse]; no bias: 0.33). 

This was true both for those neurons that purely tracked stimulus orientation (leftmost 

datapoint) and for those neurons that weakly tracked stimulus orientation (2nd and 3rd 

datapoints from left). Instead, the food cue bias only existed in those neurons that 

predominantly tracked the predicted outcome (right half of Figure 3B; p < 0.001, Wilcoxon 

Sign-Rank test against 0.33, Bonferroni corrected). Furthermore, those neurons that purely 

tracked the predicted outcome demonstrated the strongest food cue response bias.

We confirmed that the group of PO neurons showed a response bias to the food cue (Figure 

3C). This bias persisted both pre- and post-Reversal, and thus across associations of different 

stimulus orientations with the food reward (Figure 3C; inset shows per animal; Figure S3A–

B; PO neurons pre- and post-Reversal: p < 0.0001, Wilcoxon Sign-Rank test against chance, 

Bonferroni corrected within group). Critically, the group of ID neurons did not exhibit this 

bias (p > 0.05). Thus, while on average there exists a food cue response bias when 

considered across all neurons, a subgroup of neurons exists that faithfully encodes stimulus 

identity irrespective of motivational salience. These data suggest the co-existence of largely 

distinct sets of LVAC neurons that either faithfully represent the same low-level sensory 

features across time, or that show more plastic representations that track whichever stimulus 

predicts a given salient outcome.
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We previously showed that the magnitude of food cue responses in LVAC neurons varied in 

their sensitivity to reward history (Burgess et al., 2016). We asked whether such short-

timescale variation in expected value of predictive cues differed across functional categories. 

We estimated the magnitude of a neuron’s average response to its preferred stimulus, either 

for trials preceded by a rewarded food cue (RFC→Pref) or those preceded by one or more 

non-rewarded cues (RnonFC→Pref), and calculated a reward history modulation index 

(abs[RnonFC→Pref-RFC→Pref]/RPref; see example cells in Figure 3D). We found that those 

neurons that tracked the orientation of the stimulus across the Reversal were relatively 

insensitive to recent reward history (left half of Figure 3E). In contrast, those neurons that 

purely tracked the predicted outcome (darkest gray circle) were more sensitive to reward 

history (bootstrap permutation test: p < 0.01; Figure 3E). Similarly, when analyzing neurons 

by category, we found that PO neurons were more sensitive to recent reward history than ID 

or BR neurons (Figure 3F and Figure S3C; PO vs. ID or BR neurons: p < 0.02; ID vs. BR 

neurons: p > 0.05; Kruskal-Wallis, Bonferroni corrected). As response bias towards the 

motivationally relevant food cue and sensitivity to reward history both reflect encoding of 

the expected value of predicted outcomes, these findings further support the conclusion that 

the subset of LVAC neurons that encode low-level stimulus features do not additionally 

encode expected value.

Dissecting sensory, motor, and reward-related responses in visual association cortex

We next used a generalized linear model (GLM; Figure 4A–C) to estimate the relative 

contributions of visual cues, reward delivery, and other task-relevant events to the overall 

responses of each group of neurons. Notably, visual cue coefficients, which captured activity 

tightly locked to stimulus onsets, explained the largest proportion of task-modulated activity 

in PO neurons as well as in ID and BR neurons (deviance explained using visual coefficients 

vs. motor coefficients such as those locked to the first lick following cue onset: p < 0.01, 

Wilcoxon Rank-Sum, Bonferroni corrected; Figure 4A–D; Figure S4A–B). We confirmed 

that a selective bias to the food cue was present in PO neurons, but not in ID or BR neurons, 

even when considering only the visual cue response coefficients from the GLM (p < 0.05, 

Kruskal-Wallis, Bonferroni corrected; Figure 4E).

PO neurons did not show responses tightly locked to any visual cue in sessions during-
Reversal, when the animal was performing the task poorly (potentially due to decreased 

confidence in cue predictions). We therefore quantified the likelihood of significant visual 
responses in all three categories of neurons as previously assessed pre- and post-Reversal, 

but now for during-Reversal sessions. We found that while ID and BR neurons were 

consistently visually responsive during-Reversal, this was not the case for PO neurons 

(Figure 4G and Figure S4C–D; PODuring vs. IDDuring or BRDuring: p < 0.0001, 2-way 

ANOVA with Tukey-Kramer method). This was true despite reliable activity prior to motor 

initiation (Figure 4F and Figure S4A), implying that this pre-motor neural signal can be 

decoupled from the visual component of responses in PO neurons. Thus, this GLM analysis 

reveals that PO neurons lose their short-latency visual response to the stimulus previously 

predictive of reward, and only display a short-latency response to the new visual stimulus 

predicting reward after re-learning, once the mouse has developed confident predictions of 

the new outcomes predicted by each cue.

Ramesh et al. Page 6

Neuron. Author manuscript; available in PMC 2019 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Taken together, the above results are consistent with a model in which LVAC neurons that 

track the same outcome across a Reversal are differentially influenced by common top-down 

inputs, such as amygdala feedback projections that exhibit strong food cue bias, sensitivity 

to trial/reward history, and encoding of both learned visual cues and associated outcomes 

(Burgess et al., 2016). In contrast, ID neurons may be differentially influenced by bottom-up 

input from early visual cortex and thalamus.

Correlated ensembles of Predicted Outcome, Identity, and Broadly-tuned neurons

Previously, higher within- vs. across-group co-fluctuations in cue-evoked neural activity (i.e. 

noise correlations) have been used to identify distinct functional “ensembles” that may 

reflect increased common input (Figure 5A; Cumming and Nienborg, 2016; Shadlen and 

Newsome, 1998) and/or increased local connectivity (Cossell et al., 2015; Ko et al., 2011). 

Thus, we tested whether the largely distinct functional groups of neurons encoding stimulus 

identity or predicted outcome showed increased within- vs. across-group functional 

connectivity, thereby supporting the notion of distinct ensembles. To this end, we assessed 

trial-to-trial co-fluctuations in cue-evoked responses across pairs of neurons during food cue 

presentations (Figure 5A). Indeed, PO neurons showed higher noise correlations with other 

PO neurons than with ID or BR neurons (Figure 5B; PO-PO vs. PO-Other: p < 0.001, 

Wilcoxon Rank-Sum, Bonferroni corrected). BR neurons also demonstrated higher within- 

vs. across-group noise correlations (p < 0.001). Similar results were observed when 

separately considering neurons that either weakly or strongly tracked predicted outcome 

(right half of Figure 5C, cf. Figure 2F). These elevated within- vs. across-group noise 

correlations were not due to differences in response preferences across groups: restricting 

analyses to those neurons in each group that preferred the orientation associated with food 

reward yielded similar results (p < 0.0001; Figure 5D, Wilcoxon Rank-Sum, Bonferroni 

corrected). Thus, even neurons that preferentially respond to the same stimulus can belong 

to different ensembles based on whether they track stimulus orientation vs. predicted 

outcome across a Reversal.

We additionally hypothesized that within the set of ID neurons in LVAC, there might exist 

highly correlated sub-ensembles, each preferring a unique stimulus orientation, as in primary 

visual cortex (Cossell et al., 2015; Ko et al., 2011). Indeed, we confirmed the presence of 

different sub-ensembles of ID neurons preferring each of the three stimulus orientations, 

with increased noise correlations within vs. across sub-ensemble (Figure 5E; FCori-FCori vs. 

FCori- Otherori: p = 0.009, NCori-NCori vs. NCori-Otherori: p = 0.004; QCori-QCori vs. QCori-

Otherori: p = 0.27).

Analysis of spontaneous co-activity of neurons provided additional evidence for the 

existence of distinct ensembles in LVAC. As with trial-to-trial noise correlations of stimulus-

evoked activity, we observed higher within-group vs. across-group correlations in 

spontaneous activity, during moments in which no stimulus was present (Figure 5F and 

Figure S5A–B; p < 0.001, Wilcoxon Rank-Sum, Bonferroni corrected). Pairs of ID neurons 

with the same orientation preference also showed higher spontaneous co-activity than those 

with different orientation preferences (Figure 5G; FCori-FCori vs. FCori-Otherori: p < 0.01, 

QCori-QCori vs. QCori- Otherori: p < 0.0001, NCori-NCori vs. NCori-Otherori: p = 0.17, 
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Wilcoxon Rank-Sum, Bonferroni corrected). These results were evident even in individual 

recording sessions (e.g. Figure S5CE). Altogether, these data suggest the existence of 

multiple ID sub-ensembles of correlated neurons encoding distinct stimulus features in 

LVAC (as in V1, Cossell et al., 2015; Ko et al., 2011), as well as at least one additional 

intermingled ensemble that encodes predicted outcome.

While PO, BR, and ID neurons were generally intermingled, PO and BR neurons did show 

weak spatial clustering relative to ID neurons (Figure S6A). However, functional properties 

did not differ between neurons in the center or in the periphery of our fields of view (Figure 

S6BF): both demonstrated selective food cue response enhancement in PO neurons (Figure 

S6D) and higher correlations within vs. across functional categories (Figure S6E–F). This 

suggests that our findings are not limited to the retinotopically-defined area in the center of 

our field of view – visual postrhinal cortex (visPOR) – but instead may generalize to 

neighboring regions of LVAC, possibly due to innervation by common sources of input 

(Burgess et al., 2016).

Joint tracking of stimulus identity and predicted outcome in single neurons

We sought to distinguish neurons that might exhibit true ‘joint tracking’ (i.e. those 

demonstrating a visual cue-evoked response both to a specific stimulus orientation and to 

whichever stimulus predicts the same outcome pre- and post-Reversal) from those that were 

simply broadly responsive to all stimuli. An example joint tracking neuron is shown in 

Figure 6B. To assess the strength of joint tracking, we used an index that equals 0 for those 

neurons that purely track the stimulus orientation (Figure 6C; x-axis value of −1) or the 

predicted outcome (Figure 6C; x-axis value of 1) across the Reversal, and that is positive for 

those neurons that partially track both stimulus orientation and predicted outcome (Figure 

6C; small black circles: neurons with significant joint tracking; large circles: averages for 

each category; dashed gray lines: 95% confidence intervals). Only a minority of neurons 

showed significant joint tracking (Figure 6D). PO and BR neurons with significant joint 

tracking demonstrated enhanced food cue responses post- vs. pre-Reversal (p < 0.01, 

Wilcoxon Sign-Rank test against 0, Bonferroni corrected; Figure 6E). This suggests that, in 

addition to encoding stimulus orientation, these neurons shifted their tuning curves post-

Reversal to also encode the new food cue. In contrast, the small minority of ID neurons 

exhibiting joint tracking showed no significant enhancement in food cue responses post-

Reversal, further supporting the notion that visual responses of ID neurons are largely 

insensitive to predicted value (p > 0.05, Wilcoxon Sign-Rank test against 0, Bonferroni 

corrected; Figure 6E).

Neurons recruited during new learning encode predicted value

During Reversal, Predicted Outcome neurons lose their short-latency response to the visual 

stimulus that previously predicted food reward, and subsequently develop a response to the 

new visual stimulus now predicting reward (Figure 4F–G). We therefore hypothesized that 

an additional subset of neurons might exist that develop a similar response to the new visual 

stimulus now predicting reward, yet that were unresponsive to any visual stimulus pre-

Reversal. Further, we predicted that such “Recruited” neurons would exhibit similar 

functional properties as PO neurons. We identified 472 neurons that were either not visually 
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responsive or that were not identifiable pre-Reversal, but that became visually responsive 

post-Reversal (Figure 7A–C). Visual responses in these neurons showed a similar bias to the 

food cue as in PO neurons (Figure 7D; p < 0.025 for all comparisons, Kruskal-Wallis, 

Bonferroni corrected) and a similarly strong sensitivity to reward history (Figure 7E; p > 

0.05, Wilcoxon Rank-Sum).

We found that Recruited neurons were integrated with the correlated ensemble of PO 

neurons. Specifically, both Recruited neurons and PO neurons showed higher post-Reversal 

noise correlations with PO neurons than with ID or BR neurons (Figure 5C; p < 0.002, 

Kruskal-Wallis, Bonferroni corrected). Recruited neurons also showed higher post-Reversal 

spontaneous event cross-correlations with PO neurons than with ID or BR neurons (Figure 

7G; post-Reversal: p < 0.01, 2-way ANOVA, Tukey-Kramer method). Overall, when 

combining noise and spontaneous correlations together post-Reversal, Recruited neurons 

were generally more co-active with PO neurons than with ID or BR neurons (Figure 7H). 

Remarkably, in those Recruited neurons for which we could measure spontaneous activity 

pre-Reversal, we also observed a significantly higher pre-Reversal correlation in 

spontaneous activity with PO neurons than with other groups (right of Figure 7G; p < 0.05, 

2-way ANOVA, Tukey-Kramer method), even though Recruited neurons were not 

significantly visual driven by any cue during this pre-Reversal epoch. These data suggest 

that Recruited neurons become integrated into the PO ensemble and may be predisposed to 

this integration even prior to the emergence of visual responses during new learning.

These Recruited neurons were mirrored by a population of neurons that ceased to be visually 

responsive when cue-outcome contingencies were reassigned (“Offline” neurons; n = 232 

neurons; Figure S7A–B). Pre-Reversal, these Offline neurons were also biased to the food 

cue (Figure S7C; FC vs. QC and NC: p < 0.001, Kruskal-Wallis, Bonferroni corrected) and 

showed similar sensitivity to reward history as PO neurons (p > 0.05, Wilcoxon Rank-Sum 

test). However, Offline neurons did not demonstrate the same pattern of functional 

connectivity as the Recruited population (Figure S7F–G), as they did not show higher noise 

correlations or spontaneous correlations with PO than with ID or BR neurons. Thus, while 

Offline neurons exhibit similar properties to PO neurons, they may be predisposed to go 

‘offline’ due to a lack of strong functional connectivity with PO neurons.

Single-session visual response dynamics can predict which neurons will track stimulus 
identity or predicted outcome across Reversal

The above findings regarding Recruited and Offline neurons led us to conduct a more 

comprehensive assessment of the functional similarity and correlations between the small set 

of neurons driven pre- and post-Reversal and thus classifiable as PO, ID, or BR neurons (n = 

179) and the larger group of transiently visually responsive neurons driven on at least 2 

sessions pre-or post-Reversal, but not both (n = 543 neurons; Figure 8A). To this end, we 

tested whether response dynamics measured during a single recording session were 

sufficient to correctly classify neurons responsive pre- and post-Reversal as PO, ID, or BR 

(i.e. whether single-session responses could predict if a neuron would track stimulus 

orientation or predicted outcome across Reversal). If successful, this same classifier could 

then be applied to the larger pool of transiently responsive neurons, and thus serve as a 
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useful tool for relating our across-day findings to single-session measurements from both 

current and previous studies. Initial observations suggested that low-level response features 

might indeed be predictive of membership in an across-Reversal category. For example, 

certain neurons showed a temporally locked response to the 2 Hz temporal frequency of the 

drifting gratings (Figure 8B; p < 0.05; see STAR methods), and these neurons were all ID 

neurons that tracked the same stimulus orientation across the Reversal (note that 2 Hz 

locking was not used during initial categorization in Figure S2A–B).

To attempt to distinguish PO, ID, and BR neurons using single-session data, we extracted a 

large set of basic visual response features collected from a single imaging session (2 Hz 

locking, trial-to-trial response variability, mean response latency, response selectivity, 

response magnitude, response latency variability, ramp index, and time to peak). We trained 

a Random Forests classifier to label neurons as PO, ID or BR based on these sensory 

response features. Strikingly, this approach showed that within-session data was sufficient to 

classify neurons as PO, ID, and BR at well above chance levels (Figure 8C; Figure S8B–D; 

PO-, Identity-, and Broadly-tuned vs. Shuffle: p < 0.0001, Wilcoxon Rank-Sum; Breiman, 

2001; Geng et al., 2004).

Having validated the classifier, we applied it to transiently visually responsive neurons. We 

defined “PO-like,” “ID-like,” or “BR-like” neurons as those that demonstrated a high level 

of classifier confidence (> 0.6) that their response characteristics were similar to those of 

PO, ID, or BR neurons, respectively (Figure S8F). We found that, as with PO neurons, PO-

like neurons showed a stronger food cue response bias than ID-like or BR-like neurons 

(Figure 8D; PO-like vs. ID-like or BR-like: p < 0.0001; Kruskal-Wallis, Bonferroni 

corrected).

We then tested if these transiently visually responsive neurons were integrated into 

previously defined PO, ID, or BR ensembles. Indeed, PO-like neurons showed higher noise 

correlations and spontaneous correlations with PO neurons than with ID or BR neurons 

(Figure 8E–F; noise correlations with PO vs. ID neurons: p = 0.001; spontaneous cross-

correlations with PO vs. ID or BR neurons: p < 0.01, Kruskal-Wallis, Bonferroni corrected). 

Thus, neurons that are transiently visually responsive and share single-session visual 

response properties with PO neurons appear to be integrated with the PO ensemble.

Predicted Outcome-like neurons in both LVAC and V1 are differentially sensitive to hunger 
state

We next applied this classifier to imaging datasets from a previous study of neurons in 

visPOR (an area within lateral visual association cortex, LVAC) and in primary visual cortex 

(V1; n = 8 mice; Burgess et al., 2016). In previous studies, neurons in both V1 and LVAC of 

naïve mice often responded to specific oriented gratings (Burgess et al., 2016; Niell and 

Stryker, 2008) and maintained stable orientation tuning curves across multiple days (Burgess 

et al., 2016; Mank et al., 2008). Further, in trained mice, we previously found that satiety 

abolished the population-wide average food cue response bias across visPOR neurons, while 

a similar response bias and hunger sensitivity was not observed in V1 (Burgess et al., 2016). 

These previous analyses averaged across all responsive neurons, due to our previous 

inability to define ID, PO, and BR categories in the absence of Reversal learning. Now, by 
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training the classifier on our current dataset and classifying neurons from this previous 

dataset into functional categories, we could test (i) if PO-like neurons were also present in 

V1, and (ii) if the selective reduction in food cue responses in visPOR neurons following 

satiation occurred predominantly in PO-like neurons, consistent with their proposed role in 

encoding motivationally-salient predicted outcomes.

The Random Forests classifier identified PO-like neurons as well as ID-like neurons in our 

previous recordings in visPOR and, surprisingly, in V1. Consistent with the findings from 

PO and PO-like LVAC neurons in the current dataset, PO-like neurons in this previous 

dataset also showed a response bias to the food cue and enhanced sensitivity to reward 

history relative to ID-like neurons in visPOR and, surprisingly, in V1 (Figure 8G; p < 0.05, 

Wilcoxon Sign-Rank test against 0.33 and Wilcoxon Rank-Sum test, PO-like vs. ID-like). 

Nevertheless, the fraction of PO-like neurons was significantly higher in visPOR than in V1 

(Figure 8H; p < 0.05, Tukey’s HSD method).

Predicted Outcome (PO)-like neurons in V1 and visPOR were strongly biased to the food 

cue, and this bias was abolished by satiation in both regions of cortex (Figure 8I). In 

contrast, ID-like neurons in V1 and visPOR from this previous dataset did not show a food 

cue response bias, regardless of hunger state (Figure 8I; p > 0.05 Wilcoxon Rank-Sum). 

Moreover, even the subset of ID-like neurons that preferred the stimulus associated with 

food reward was not modulated by changes in hunger state or reward history (Figure S8G–

H). These data further support our finding that the encoding of either stimulus identity or 

predicted value is carried out by largely distinct, intermingled ensembles of cortical neurons. 

More generally, these findings illustrate the utility of training a classifier to use single-

session data to predict a neuron’s response plasticity and dynamics during longitudinal 

recordings, as a means to bridge chronic functional imaging datasets with single-session 

recordings across studies and brain areas.

Discussion

Using two-photon calcium imaging, we tracked visual responses in the same layer 2/3 

neurons of mouse lateral visual association cortex (LVAC) across sessions prior to, during 

and after a reassignment of cue-outcome associations. We identified intermingled ensembles 

of neurons that mostly tracked either stimulus identity or predicted outcome. Neurons that 

tracked stimulus identity (ID neurons) encoded a low-level stimulus feature – stimulus 

orientation – across a switch in cue-outcome associations. Strikingly, ID neurons did not 

encode stimulus value, as they showed no response bias to the salient food cue and little 

sensitivity to reward history or hunger state. In this way, these neurons maintained a faithful 

representation of stimulus identity. In contrast, neurons that tracked the same predicted 

outcome irrespective of the stimulus orientation (PO neurons) exhibited short-latency visual 

responses that were biased to the motivationally relevant food cue and sensitive to reward 

history. Both PO and ID groups of neurons showed higher within- vs. across-group noise 

correlations and spontaneous correlations, suggesting that these groups represent largely 

distinct functional ensembles. Other neurons in LVAC were initially unresponsive to visual 

cues but developed cue-evoked responses after new learning. These recruited neurons had 

visual responses that were strongly biased to the food cue and were selectively correlated 
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with those of the PO ensemble. Together, these findings suggest that lateral visual 

association cortex maintains a faithful neuronal representation of visual stimuli, together 

with a largely separate, motivation-dependent representation of salient predicted outcomes.

Ensembles encoding visual stimulus identity or predicted value in other brain regions

Historically, sensory representations of stimulus identity and predicted value have most 

commonly been considered in separate studies in different brain areas (but see Paton et al., 

2006; Schoenbaum et al., 1998). For example, the existence of ensembles of excitatory 

neurons preferring distinct stimulus features has been extensively documented in primary 

visual cortex (V1; Ko et al., 2011; Kohn and Smith, 2005; Lee et al., 2016). Groups of V1 

neurons with common stimulus preferences and with high pairwise trial-to-trial noise 

correlations (Cossell et al., 2015; Ko et al., 2011) and/or high correlations in spontaneous 

activity (Ch’ng and Reid, 2010; Okun et al., 2015; Tsodyks et al., 1999) are often defined as 

belonging to the same ensemble. Such ensembles may be activated together due to increased 

probability of within-ensemble connections (Cossell et al., 2015; Ko et al., 2011; Lee et al., 

2016), and/or due to common sources of feedforward or feedback input (Cohen and 

Maunsell, 2009; Cumming and Nienborg, 2016; Shadlen and Newsome, 1998; Smith and 

Kohn, 2008). Due to their robust responses even during passive viewing of visual stimuli, 

these ensembles in primary visual cortex are thought to encode low-level features of the 

visual stimulus.

In contrast to the important role of V1 ensembles in encoding the identity of visual stimuli, 

regions such as lateral and basolateral amygdala have been shown to strongly encode cues 

predicting salient outcomes (Grewe et al., 2017; Morrison and Salzman, 2010; Paton et al., 

2006). Intermingled neurons in the rodent and primate amygdala encode cues associated 

with positive or negative outcomes (Beyeler et al., 2018; Morrison and Salzman, 2010; 

O’Neill et al., 2018; Schoenbaum et al., 1998), and silencing or lesioning the amygdala 

affects behavioral responses to learned cues (Baxter and Murray, 2002; Sparta et al., 2014). 

Furthermore, recent studies using cross-correlation analyses show that positive value-coding 

and negative value-coding amygdala neurons form distinct ensembles (Zhang et al., 2013). 

Our findings show that, in a region of cortex between early visual areas and amygdala, there 

exists intermingled ensembles of functionally distinct neurons whose visual responses 

mostly track either stimulus orientation or predicted outcome, thereby separately encoding 

stimulus identity and stimulus value.

Different afferent inputs may target ensembles encoding stimulus identity or predicted 
outcome

How might these largely distinct functional ensembles come about in lateral visual 

association cortex? We hypothesize that different afferent inputs target PO vs. ID ensembles, 

and that these inputs could contribute to the higher within-ensemble vs. across-ensemble 

correlations (Figure 8J). Previous studies have shown that visPOR receives feedforward 

input from areas important for basic visual processing, including V1 (V1; Niell and Stryker, 

2008; Wang et al., 2012), secondary visual cortex (LM; Wang et al., 2012), and the lateral 

posterior nucleus in the thalamus (LP; Zhou et al., 2018). We predict that these inputs more 

strongly target the ID ensemble and provide information predominantly regarding low-level 
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stimulus features (Figure 8J). In contrast, PO neurons could receive stronger input from 

brain regions that exhibit sensitivity to motivational context (e.g. hunger-dependent food cue 

biases and sensitivity to reward history) such as the lateral amygdala (LA; Burgess et al., 

2016; Saez et al., 2017). Supporting this, amygdala silencing impairs neuronal responses to 

salient learned cues in many cortical areas (Livneh et al., 2017; Samuelsen et al., 2012; 

Schoenbaum et al., 2003; Yang et al., 2016). PO neurons may also receive input from areas 

conveying information about decision making and motor planning that varies with task 

context (e.g. PFC: Otis et al. 2017; OFC: Schoenbaum et al. 2003; PPC: Pho et al. 2018).

We found a minority of neurons whose visual responses significantly tracked both stimulus 

identity and predicted outcome across a Reversal. These “joint tracking” neurons could 

potentially arise locally due to cross-talk between PO and ID neurons, as we observed lower 

but non-zero noise and spontaneous correlations between these groups. Alternatively, joint 

tracking neurons could inherit their tuning (e.g. from LP or LM inputs; Wang et al., 2012; 

Zhou et al., 2018). Critically, only a small fraction of ID neurons demonstrated significant 

joint tracking, and those that did showed no response enhancement to the motivationally 

relevant food cue (Figure 6). These findings further suggest largely separate LVAC 

populations representing stimulus identity or predicted value.

The hierarchical organization of value representations in the visual system

Human neuroimaging studies consistently report strong hunger-dependent enhancement of 

neural responses to food cues in lateral visual association cortex (LVAC), but not in V1 (V1; 

Huerta et al., 2014; LaBar et al., 2001). Similarly, our previous study in mice showed 

stronger hunger modulation in LVAC than in V1 (Burgess et al., 2016). Here, we identified a 

small number of neurons in V1 that had similar stimulus response features to PO neurons in 

LVAC. Visual responses in these “PO-like” V1 neurons were strongly biased to the food cue 

and sensitive to hunger state, similar to previous studies showing increased coding of cues 

predicting rewards in rodent V1 (Poort et al., 2015; Shuler and Bear, 2006). Value-related 

activity in PO-like V1 neurons may arise from top-down feedback projections from PO 

neurons in LVAC (Gilbert and Li, 2013; Wang et al., 2012), from other higher visual areas 

and non-visual inputs (Buffalo et al., 2010; Burgess et al., 2016; Makino and Komiyama, 

2015; Zhang et al., 2014).

The overall increase in food cue response enhancement in LVAC vs. V1 appears mainly due 

to a larger fraction of LVAC neurons with short-latency visual responses that encode 

predicted value vs. identity. Consistent with these findings, a recent study found that many 

neurons in mouse parietal association cortex (PPC) tracked sensorimotor contingencies 

associated with the “Go” response across a reversal in cue-outcome contingencies, while 

only a few PPC neurons tracked stimulus identity, whereas the converse was observed in V1 

(Pho et al., 2018).

What might be the purpose of identity-coding neurons in lateral visual association cortex? A 

recent study found that while visual and non-visual information is present in rostral visual 

association cortex, neurons in this area that project to secondary motor cortex preferentially 

deliver “pure” visual information, while reciprocal feedback to this area delivers “pure” 

motor information (Itokazu et al., 2018). Delivery of low-level visual information to 
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downstream brain areas may guide motor performance or provide prediction error signals 

during learning. We speculate that a similar loop exists between LVAC and lateral amygdala 

(LA), in which inputs from LVAC to LA encode low-level stimulus features, while inputs 

from LA to LVAC carry information regarding motivational context (Burgess et al., 2016) 

and target PO neurons. Thus, LVAC may deliver high-fidelity sensory information to limbic 

regions important for encoding of motivational salience, while providing context-dependent 

estimates of the motivational salience of a stimulus to earlier visual areas, thereby biasing 

bottom-up processing.

At first blush, the finding that ID neurons in mouse LVAC do not demonstrate sensitivity to 

cue saliency might appear inconsistent with studies of attentional gain modulation of 

orientation-tuned neurons in macaque higher visual cortical areas (McAdams and Maunsell, 

1999; Reynolds and Chelazzi, 2004). However, the magnitude of attentional modulation in 

these studies is often reduced when using high contrast and easily discriminable visual 

stimuli (see Reynolds and Chelazzi, 2004) similar to those employed in our task.

Visual responses emerge with learning in a subset of cortical neurons

We additionally identified a subset of neurons that were not initially visually responsive in 

well-trained mice, but that subsequently developed cue-evoked visual responses and hence 

were “recruited” with new learning. Previous work in the amygdala, hippocampus, and 

cortex has shown that neurons with increased excitability are more likely to be incorporated 

into the memory representation of a salient experience (Cai et al., 2016; Josselyn et al., 

2015; Sano et al., 2014). We suggest that Recruited neurons may be more excitable at the 

time of new learning, and thus predisposed to integrate into newly formed cue-outcome 

associative representations. In support of this, Recruited neurons showed a strong response 

bias to the new food cue, and became increasingly integrated into the PO ensemble, as they 

showed stronger correlations with PO neurons post- and even pre-Reversal.

In summary, we have identified separate but intermingled ensembles in lateral visual 

association cortex that predominantly encode stimulus identity or predicted outcome across 

a switch of cue-outcome associations. Our chronic imaging approach sets the stage for 

testing the circuit and synaptic mechanisms by which this brain region maintains a faithful 

representation of the visual features of the external world as well as a flexible representation 

of the predicted value of learned cues.

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Mark Andermann (manderma@bidmc.harvard.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal care and experimental procedures were approved by the Beth Israel Deaconess 

Medical Center Institutional Animal Care and Use Committee. Mice (n=15, male C57BL/6) 

were housed with standard mouse chow and water provided ad libitum, unless specified 

otherwise. Mice used for in vivo two-photon imaging (age at surgery: 9–15 weeks) were 
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instrumented with a headpost and a 3 mm cranial window, centered over lateral visual 

association cortex including postrhinal cortex (window centered at 4.5 mm lateral and 1 mm 

anterior to lambda; the exact retinotopic location of visual postrhinal association cortex 

(visPOR) was determined via intrinsic signal mapping; see below and Goldey et al., 2014). 

Portions of the data in Figure 8 involve new analyses of a previous dataset (n=8 mice; 

Burgess et al., 2016).

METHOD DETAILS

Behavioral training

After at least one week of recovery post-surgery, animals were food-restricted to 85–90% of 

their free-feeding body weight. Animals were head-fixed on a 3D printed running wheel for 

habituation prior to any behavioral training (10 minutes to 1 hour over 3–4 days). If mice 

displayed any signs of stress, they were immediately removed from head-fixation, and 

additional habituation days were added until mice tolerated head-fixation without visible 

signs of stress. On the final day of habituation to head-fixation, mice were delivered Ensure 

(a high calorie liquid meal replacement) by hand via a syringe as part of the acclimation 

process. Subsequently, we trained the animals to associate licking a lickspout with delivery 

of Ensure, by initially triggering delivery of Ensure (5 μL, 0.0075 calories) to occur with 

every lick (with a minimum inter-reward-interval of 2.5 s). We tracked licking behavior via a 

custom 3D-printed, capacitance-based lickspout positioned directly in front of the animal’s 

mouth. All behavioral training was performed using MonkeyLogic (Asaad and Eskandar, 

2008; Burgess et al., 2016).

For the Go-NoGo visual discrimination task, food-restricted mice were trained to 

discriminate square-wave drifting gratings of different orientations (2 Hz and 0.04 cycles/

degree, full-screen square-wave gratings at 80% contrast; the same 3 orientations were used 

for all mice; for example: food cue (FC): 0°, quinine cue (QC): 270°, neutral cue (NC): 

135°; grating orientations were counterbalanced across mice). All visual stimuli were 

designed in Matlab and presented in pseudorandom order on a calibrated LCD monitor 

positioned 20 cm from the mouse’s right eye. All stimuli were presented for 3 s, followed by 

a 2-s window in which the mouse could respond with a lick and a 6-s inter-trial-interval 

(ITI). The first lick occurring during the response window triggered delivery of Ensure or 

quinine during FC or QC trials, respectively. Licking during the visual stimulus presentation 

was not punished, but also did not trigger delivery of the Ensure/quinine. The lickspout was 

designed with two lick tubes (one for quinine and one for Ensure) positioned such that the 

tongue contacted both tubes on each lick.

Training in the Go-NoGo visual discrimination task progressed through multiple stages. The 

first stage was Pavlovian FC introduction, followed by FC trials in which reward delivery 

depended on licking during the response window (‘go’ trials in which licking during the 

response window led to delivery of 5 μL of Ensure), and finally by the introduction of QC 

and NC trials (‘no-go’ trials in which licking during the response window led to delivery of 

5 μL of 0.1 mM quinine and nothing, respectively) as described in Burgess et al. (2016). 

Mice were deemed well-trained (d’ > 2; loglinear approach, Stanislaw and Todorov, 1999) 

following ˜2–3 weeks of training. Performance in well-trained mice involved sessions 
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including equal numbers of FC, QC, and NC trials. We began all imaging and behavior 

sessions with presentation of 2–5 Pavlovian FC trials involving automatic delivery of Ensure 

reward, as a behavioral reminder. Pavlovian FC trials also occurred sporadically during 

imaging (0–15% of trials) to help maintain engagement. None of these Pavlovian FC 

presentations were included in subsequent data analyses, unless specifically mentioned.

Pharmacological silencing experiments proceeded as follows: experiments took place once 

mice were fully trained, and only for mice weighing ˜85% of free-feeding weight. We 

removed the dummy cannulae and inserted stainless steel cannulae to target visual 

association cortex centered on POR (internal: 33-gauge; Plastics One). Each day, mice were 

tested on 100 trials of the task to ensure good performance. We then injected 50 nL of 

muscimol solution (2.5 ng/nL) or saline at a rate of 50 nL/min. After infusion, the injection 

cannulae were replaced with the dummy cannulae, and behavioral testing started 20 min 

later. Mice performed 400 trials post-injection. Each run started with 5 Pavlovian food cue 

trials, then 10 operant food cue trials. Pavlovian food cue trials also occurred sporadically 

(5% of trials) throughout training. None of these Pavlovian food cue presentations were 

included in the behavioral or neural data analyses. We verified cannula location for every 

animal and included in subsequent analyses all animals with verified locations of cannulae 

in POR.

‘Reversal’ training paradigm involving a switch in cue-outcome contingencies

Once mice stably performed the Go-NoGo visual discrimination task with high behavioral 

performance (d’ > 2) for at least two days, we switched the cue-outcome associations. The 

switching of cue-outcome associations consisted of a clockwise rotation of the outcome 

associated with each of the three visual oriented drifting gratings (Figure 1D). If the initial 

cue-outcome associations were: FC: 0°, QC: 270°, and NC: 135°, then switching the cue-

outc ome associations would involve switching the FC from 0° → 270°, the QC from 270° 

→ 135°, and the NC from 135° → 0°.

As mentioned above, we classified sessions as containing high behavioral performance when 

the discriminability, d’, had a value greater than 2. To calculate d’, we pooled false-alarm 

trials containing a QC or a NC. Separately, we pooled correct-reject trials containing a QC 

or a NC. This metric allowed us to divide up the behavioral performance across sessions into 

3 different epochs: (i) “pre-Reversal” – before the cue-outcome associations have been 

changed and while the mice exhibit high behavioral performance (d’ > 2); (ii) “during-

Reversal” – after the cue-outcome associations have been switched and while the mice 

exhibit poor behavioral performance (d’ < 2), and (iii) “post-Reversal” – an epoch in which 

the mice again exhibit high behavioral performance (d’ > 2). We use the term “Reversal” to 

refer to the switch in cue-outcome associations, even though it is a rotation of the outcome 

associated with each stimulus orientation, rather than a strict Reversal of the food-associated 

stimulus and the quinine-associated stimulus. The Reversal could take as little as 3 days and 

as long as 2 weeks.

During initial training following Reversal, more FC trials were given in order to facilitate 

learning and maintain task engagement. Over the subsequent days of the during-Reversal 

epoch, we increased the number of QC and NC trials until equal numbers of FC, QC, and 
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NC trials were presented (all pre-Reversal and post-Reversal sessions contained equal 

numbers of each trial type).

Intrinsic signal mapping

To delineate visual cortical areas, we used epifluorescence imaging to measure stimulus-

evoked changes in the intrinsic autofluorescence signal (Andermann et al., 2011) in awake 

mice. Autofluorescence produced by blue excitation (470 nm center, 40 nm band, Chroma) 

was measured through a longpass emission filter (500 nm cutoff). Images were collected 

using an EMCCD camera (Rolera EM-C2 QImaging, 251 × 250 pixels spanning 3 × 3 mm; 

4 Hz acquisition rate) through a 4x air objective (0.28 NA, Olympus) using the Matlab 

Image Acquisition toolbox. For retinotopic mapping, we presented Gabor-like patches at 6–9 

retinotopic locations for 8 s each (20 degree disc, 2 Hz, 0.04 cycles/degree, 45° or noise 

patch), with an 8 s int er-stimulus interval. Analysis was performed in ImageJ and Matlab 

(as in Andermann et al., 2011; Burgess et al., 2016). We isolated POR from LI/LM most 

easily using stimuli centered at varying vertical locations (from high-to-low stimulus 

elevation) in the medial/nasal visual field, which translated to medial-to-lateral locations of 

peak neuronal responses, respectively. We isolated area POR from area P by comparing 

responses to stimuli positioned at nasal vs. lateral locations in visual space, corresponding to 

posterior-to-anterior locations of peak neuronal responses in POR but not in P, as expected 

from Wang and Burkhalter (2007). Following retinotopic mapping for identification of POR, 

the cranial window was removed, AAV1-Syn-GCaMP6f was injected into POR (100–150 nL 

into layer 2/3; UPenn Vector Core), and the window was replaced (Goldey et al., 2014). We 

centered our imaging field of view on POR (visPOR, Allen Brain Atlas), as opposed to 

cytoarchitectonic POR (Beaudin et al., 2013).

Two-photon calcium imaging

Two-photon calcium imaging was performed using a resonant-scanning two-photon 

microscope (Neurolabware; 31 frames/second; 787×512 pixels/frame). All imaging was 

performed with a 16x 0.8 NA objective (Nikon) at 1x zoom (˜1200 × 800 μm2). All imaged 

fields of view (FOV) were at a depth of 110–250 μm below the pial surface. Laser power 

measured below the objective was 25–60 mW using a Mai Tai DeepSee laser at 960 nm 

(Newport Corp.). Neurons were confirmed to be within a particular cortical area by 

comparison of two-photon images of surface vasculature above the imaging site with surface 

vasculature in widefield intrinsic autofluorescence maps, aligned to widefield retinotopic 

maps (Andermann et al., 2011; Burgess et al., 2016).

QUANTIFICATION AND STATISTICAL ANALYSIS

For analysis of behavior, n refers to the number of mice, and for comparisons of neural 

activity n refers to the number of neurons. Where appropriate statistical tests were performed 

across mice in addition to across neurons. These n values are reported in the results and in 

the figure legends.

Statistical analyses are described in the results, figure legends, and below in this section. In 

general, we used non-parametric statistical analyses (Wilcoxon sign-rank test, rank-sum test, 
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Kruskal-Wallis tests) or permutation tests so that we would make no assumptions about the 

distributions of the data. All statistical analyses were performed in Matlab and p < 0.05 was 

considered significant (with Bonferroni correction for the number of tests where applicable). 

Quantitative approaches were not used to determine if the data met the assumptions of the 

parametric tests.

Lick behavior analysis

We additionally quantified behavioral performance by assessing the fraction of trials in 

which the animal licked to each cue (Figure 1F; Figure S1B). Following the change in cue-

outcome associations, we observed a decrease in cue-evoked licking and an increase in 

levels of “baseline” or non-specific licking. We quantified this by using a lick-learning index 

(Jurjut et al., 2017) that compares the number of licks in the one-second period prior to cue 

presentation (LicksPreCue) and the number of licks in the last second of cue presentation 

(LicksCue; Figure S1C; lick-learning index = [LicksCue – LicksPreCue]/[LicksCue + 

LicksPreCue]; a value of 1 means that, for every trial, there were zero licks prior to cue onset 

and there is anticipatory licking before cue offset). We also quantified how stereotyped the 

licking behavior was at various stages prior to and following Reversal. We smoothed the lick 

raster plot with a Gaussian filter (σ: 1 second) and then calculated the correlation of each 

trial’s smoothed lick timecourse with the mean across all smoothed lick timecourses for all 

trials of a given type. Importantly, we only included the timecourse on each trial up to 

delivery of the outcome, so that we would not be correlating periods with consummatory 

licking. The value plotted is the mean correlation value across trials. A value of 1 would 

indicate that the animal demonstrated identical lick dynamics in every trial that included a 

behavioral response (Figure S1D).

Image registration and timecourse extraction

To correct for motion along the imaged plane (x-y motion), each frame was cropped to 

account for edge effects (cropping removed outer ˜10% of image) and registered to an 

average field-of-view (cropped) using efficient subpixel registration methods (Bonin et al., 

2011). Within each imaging session (one session/day), each 30-minute run (4–6 runs/

session) was registered to the first run of the day. Slow drifts of the image along the z-axis 

were typically < 5 μm within a 30-minute run, and z-plane was adjusted between runs by eye 

or by comparing a running average field-of-view to an imaged volume ± 10 μm above and 

below our target field-of-view. Cell region-of-interest (ROI) masks and calcium activity 

timecourses (F(t)) were extracted using custom implementation of common methods 

(Burgess et al., 2016; Mukamel et al., 2009). To avoid use of cell masks with overlapping 

pixels, we only included the top 75% of pixel weights generated by the algorithm for a given 

mask (Ziv et al., 2013) and excluded any remaining pixels identified in multiple cell masks.

Fluorescence timecourses were extracted by (non-weighted) averaging of fluorescence 

values across pixels within each ROI mask. Fluorescence timecourses for neuropil within an 

annulus surrounding each ROI (outer diameter: 50 μm; not including pixels belonging to 

adjacent ROIs) were also extracted (Fneuropil(t): median value from the neuropil ring on each 

frame). Fluorescence timecourses were calculated as Fneuropil_corrected(t) = FROI(t) – w * 

Fneuropil(t). The neuropil weight was calculated by maximizing the skewness of the 
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difference between the raw fluorescence and the neuropil per day (Bonin et al., 2011), 

imposing a minimum of 0 and a maximum of 1.5. Most neuropil weights ranged between 

0.4 – 1.4. A running estimate of fractional change in fluorescence timecourses was 

calculated by subtracting a running estimate of baseline fluorescence (F0(t)) from 

Fneuropil_corrected(t), then dividing by F0 (t): ΔF/F(t) = (Fneuropil_corrected(t) - F0(t))/ F0(t). 

F0(t) was estimated as the 10th percentile of a trailing 32-s sliding window (Burgess et al., 

2016; Petreanu et al., 2012). For visualization purposes, all example cue-evoked timecourses 

shown were re-zeroed by subtracting the mean activity in the 1 s prior to visual stimulus 

onset.

Normalization of traces

For all traces shown in Figure 2D and Figure 6B, we normalized within day to the largest 

overall mean response from 0–1 seconds post-stimulus onset. This was done in order to 

illustrate the dynamics of the neuron’s response to all 3 cues, and to control for differences 

in response magnitude and/or in z-sectioning of the cell across sessions. For the across-day 

response plots in Figure 2D, bottom, and the timecourses in Figure 2G, we normalized the 

mean response for each cue by the sum of all three responses, thereby focusing on the 

relative magnitude of each response. For all mean timecourse plots, we smoothed individual 

trials by 3 frames. For the single trial heatmaps (Figure 2C), we smoothed each trial by 500 

ms.

To plot the timecourses of all visually driven neurons on a single day (Figure S5C), we used 

an auROC (area under the receiver operating characteristic) timecourse (Burgess et al., 

2016). We calculated this timecourse each day by binning (93 ms bins) the ΔF/F response of 

single trials and comparing each bin with a baseline distribution (binned data in the 1 s prior 

to stimulus onset, for all trials of a given cue type within a session) using an ROC analysis. 

For this analysis, we included all trials regardless of behavioral performance. This analysis 

quantifies how discriminable the distribution of activity in a given bin is relative to the 

baseline activity distribution. For example, if the two distributions are completely non-

overlapping, the auROC yields an estimate of 1 (clear increase in activity on every trial; all 

post-baseline firing rate values are larger than all baseline firing rate values; gold) or 0 (clear 

decrease in activity; all post-baseline firing rate values are smaller than all baseline firing 

rate values; light blue), while an auROC estimate of 0.5 indicates that the distributions of 

baseline activity and of post-baseline activity are indistinguishable (white).

Alignment of cell masks across days

For imaging of cell bodies in POR, we chose one set of cell masks for each day. All analyses 

for the alignment of cell masks across days were semi-automated with the aid of custom 

Matlab GUIs. To align masks across any pair of daily sessions, we first aligned the mean 

image from each day by estimating the displacement field using the Demon’s algorithm 

(Thirion; Vercauteren et al., 2009). This was done for all pairwise combinations of days. 

This displacement field was then applied to each individual mask for each pair of days. If at 

least a single pixel overlap existed between 2 cell masks, we calculated a local 2D 

correlation coefficient to obtain candidate masks of the same cell across multiple days. We 

then used a custom Matlab GUI to edit these suggestions, and another GUI to confirm each 
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cell across days (Figures 2D & 6B). Thus, each cell aligned across days was manually 

observed by eye two times for confirmation. Note that the image registration and warping 

techniques were applied only to masks for alignment suggestion purposes and were never 

applied to cell masks for fluorescence timecourse estimation. To visualize neurons tracked 

across days for Figure 2 and 6, we took the mean image of the 200 frames where that neuron 

had the highest activity (from extracted timecourses).

Criteria for visually responsive neurons

To determine if a cell was visually driven, we independently tested its cue-evoked response 

to each cue (FC, QC, or NC) for each day the cell was identified, using conservative criteria. 

For each cell and each visual cue, we calculated the cue-evoked response up to 100 ms prior 

to the first lick post-stimulus onset, on every trial (to protect against behaviorally-modulated 

activity). To ensure fair comparisons across all cues, we excluded all neural activity for all 

cues after the median lick latency to the FC on that particular imaging session. This criterion 

ensured that responses were not integrated over a longer duration for QC or NC trials vs. FC 

trials, particularly during sessions with high behavioral performance in which licking was 

largely limited to FC trials). We also eliminated any trials with licking in the 1 s prior to the 

cue presentation or in the first 250 ms following cue presentation. Unless otherwise 

specified, these steps were used to obtain mean single-trial responses from ‘clean’ single 

trials in all subsequent analyses. We binned the peri-stimulus fractional change in 

fluorescence (ΔF/F) timecourse into 3-frame bins (˜93 ms/bin) and performed a Wilcoxon 

Sign-Rank test for each bin (as compared to a 1 s baseline period prior to stimulus onset) 

with Bonferroni correction for comparison across multiple bins. We tested each bin (starting 

at cue onset), advancing in time until there were fewer than 10 trials (of a given cue type) 

contributing to a given bin (with increasing time following cue onset, a decreasing number 

of trials existed for which a lick response had not yet occurred). For a cell to be considered 

visually responsive, we required 3 consecutive significant bins (i.e. ˜279 ms of significantly 

elevated activity above baseline, using the Wilcoxon Sign-Rank test described above). Cells 

were deemed to be visually responsive on a given day if there was a significant increase in 

activity to at least one visual cue. A cell’s ‘preferred’ visual cue on each day that the cell 

was driven was determined as the cue evoking the largest mean response from 0–1 s post 

stimulus onset.

Identification of functional groups of neurons

Neurons were only included in Predicted Outcome (PO), Identity, or Broadly-tuned 

categories if they were visually driven both pre- and post-Reversal (a total of 179 neurons 

met this criterion). We compared each neuron’s post-Reversal response to all 3 cues to its 

pre-Reversal response to all 3 cues. Using three different circular shifts of the cue-outcome 

contingencies (i.e. rotation of the outcomes associated with each cue, as in Figure 1D), we 

could estimate three hypothetical response tuning curves of a neuron post-Reversal based on 

its pre-Reversal tuning, under the three hypotheses that the neuron was either perfectly 

Identity, Predicted Outcome, or Broadly-tuned. If a neuron was an Identity neuron, we 

would expect it to respond similarly to the same orientation, regardless of the predicted 

outcome (dashed purple arrow post-Reversal vs. black arrow pre-Reversal; Figure S2A). 

This would be represented by a tuning curve that underwent no circular shift following 
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Reversal. If the neuron was a Predicted Outcome neuron, we would expect it to circularly 

shift in a clockwise manner to match the clockwise shift in predicted outcome (dashed 

orange arrow post-Reversal vs. black arrow pre-Reversal; Figure S2A). The third ‘control’ 

circular shift of the pre-Reversal tuning curve was in the counterclockwise direction (i.e. a 

shift in an unexpected “null” direction; dashed green arrow post-Reversal vs. black arrow 

pre-Reversal; Figure S2A). See Supplemental Table 1 for an example response of a given 

neuron pre-Reversal, and the predicted response tuning post-Reversal under these three 

hypothetical rotations.

After estimating all three candidate post-Reversal response tuning profiles, we normalized 

all candidate 3-cue post-Reversal response vectors to unit vectors and calculated the angle 

between the actual post-Reversal response vector (also converted to a unit vector) and the 

three candidate post-Reversal response vectors (dotted orange, purple, and green angle: 

θStimulus feature (SF) = actual angle post reversal relative to predicted rotation for an Identity 

(ID) neuron; θPredicted outcome (PO) = actual angle post reversal relative to predicted rotation 

for a Predicted Outcome (PO) neuron; θNull = actual angle post reversal relative to predicted 

rotation for neuron that tracks the null rotation; Figure S2A–B). Because all vectors were 

unit vectors, this was proportional to taking the Euclidean distance between the two vectors.

For each neuron tracked across the Reversal, three angles were calculated (Figure S2B). We 

assigned each neuron to one of three groups. PO neurons were selected as those that tracked 

predicted outcome, in that they had a post-Reversal unit vector that most resembled the 

hypothetical rotation tracking predicted outcome (θPredicted outcome (PO) < θStimulus feature (SF), 

θNull). ID neurons were selected as those that tracked the same visual stimulus feature across 

Reversal (θSF < θPO, θNull). The smaller the angle, the higher the precision of tracking 

(Figure S2B).

A subset of neurons initially classified as PO or ID neurons had similarly small angles to all 

three candidate rotations (θNull ≈ θSF ≈ θPO). As described below, these neurons behaved 

similarly to those neurons for which the post-Reversal rotation best matched a rotation in the 

unexpected ‘null’ direction (θNull < θSF, θPO). We identified these PO and ID neurons using 

agglomerative hierarchical clustering and moved them to a Broadly-tuned category (together 

with the null-preferring neurons in which θNull < θSF, θPO). For all of these neurons, θNull 

was quite similar to θPO and θSF (Figure S2B, right; < 2% of these neurons had a 

substantially smaller angle to the null rotation vs. to other candidate rotations, θNull << θSF 

or θPO, and this small subset was excluded from all further analyses). In effect, all neurons 

in the Broadly-tuned category had similar angular distances to all three candidate rotations 

post-Reversal because they were broadly and similarly responsive to all three visual cues, 

hence the name “Broadly-tuned neurons”. Thus, regardless of the circular shift, the 

calculated θSF, θPO, and θNull for these neurons would always be similar. Importantly, the 

actual breadth of tuning was not used for classification, this label simply reflects why all 

three angles were of comparable magnitude. All three angular distances for each neuron are 

shown in Figure S2B.

We calculated a metric of confidence that a given neuron could be decisively categorized as 

belonging to a given group. To this end, we normalized all angular distances by dividing 
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each angle by the largest angle pooled across all neurons and subtracting this from 1 (to put 

all neurons in a range of 0–1 with 0 being low confidence and 1 being high confidence; Ci = 

1-[θi/θAllMax] where i is Stimulus Feature (SF), Null, or Predicted Outcome (PO)) such that 

a Predicted Outcome neuron categorized with the highest confidence would have confidence 

metrics (C) [CPO, CSF, CNull] = [1,0,0], while an Identity neuron categorized with the 

highest confidence would have confidence metrics [CPO, CSF, CNull] = [0,1,0] (Figure S2D). 

We additionally plotted all pairwise distributions of confidence values for all PO, ID, and 

BR neurons (Figures S2C; x axes calculated as the projection of all 3 confidence metrics 

onto the relevant axis; for 3D plot that we don’t collapse along any particular axis, see 

Figure S2D; all histograms in Figures S2C and 2F represent the projection of all neurons 

onto a particular axis). For the heatmap showing the precision of tracking at the bottom of 

Figure 2F, which corresponds to the precision for cells at the corresponding bin in the 

histogram above the heatmap, we used a rolling bin size of 0.3 arbitrary units. We plotted the 

response of each experimentally tracked neuron to its preferred cue pre-Reversal (Figure 2G 

left), and the post-Reversal response of the same neuron to the same predicted outcome (i.e. 

pre-Reversal FC → post-Reversal FC), or to the same orientation (i.e. pre-Reversal 0° → 
post-Reversal 0°; Figure 2G right). As expected, we found that PO neurons responded to the 

same predicted outcome and ID neurons responded more to the same orientation.

In order to plot results across cells without using pre-defined categories such as Predicted 

Outcome, Identity, or Broadly-tuned, we additionally plotted results against the stimulus 

orientation / predicted outcome axis used in Figure 2F (see e.g. Figure 3b). We used bins of 

0.33 arbitrary units (on a scale from −1 to 1; −1: purely tracks stimulus identity, +1: purely 

tracks predicted outcome). Regardless of a neuron’s category, we assigned each of the 179 

neurons that were visually responsive pre- and post-Reversal to one of these 6 bins. We used 

this as a way to plot food cue response bias, reward history, and correlation effects without 

lumping neurons into discrete functional categories (i.e. into ID, PO or BR categories).

Noise correlations

To calculate noise correlations, we sub-selected those neurons within each mouse on each 

day that were driven to the FC and calculated the pairwise correlation of trial-by-trial FC 

responses between pairs of neurons (single-trial responses were estimated using the mean of 

all timepoints from 0–2 s post-stimulus onset, or from 0 s up to 100 ms before the first lick, 

whichever came first). For each pair of neurons, we obtained a single correlation value per 

day. From this value, we subtracted the mean of 500 bootstrapped correlations in which we 

shuffled the trial order among cues of the same type and recalculated the correlation. This 

controls for differences in Fano factor between neurons, and accounts for contributions of 

the tuning curve of mean evoked responses (i.e. shared stimulus-evoked response tuning). 

We computed noise correlations for all pairs of FC visually driven neurons on days when the 

animal exhibited high task performance (d’ > 2). The noise correlations estimated from a 

single session are shown in Figure S5E (left: correlation matrix; right: pooled bar plot). 

Additionally, we sub-divided ID neurons into those neurons that prefer the FC orientation, 

the QC orientation, or the NC orientation, and performed the same noise correlation analysis 

described above on each subset. Importantly, we only included those neurons that were also 

significantly responsive to the FC, regardless of their stimulus preference.
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Spontaneous event cross-correlations

To estimate spontaneous event cross-correlations between pairs of neurons (Figure 5F–G, 

7G, 8F, S5B,D), we performed deconvolution on the raw calcium activity traces 

(Pnevmatikakis et al., 2016) and only calculated cross-correlation coefficients during 

moments of time in which a stimulus was not on the screen (all activity during stimulus 

presentation was excised). We then calculated the spontaneous event cross-correlation for 

these concatenated inter-trial-interval (ITI) periods. From this, we subtracted the mean of 50 

bootstrapped cross-correlations where we shuffled the ITI periods prior to concatenating, in 

part to account for differences in baseline activity. For comparisons across groups, we 

focused on the cross-correlation values at a lag of 0 s. The spontaneous cross correlation 

values from a single session are shown in Figure S5D (left: correlation matrix; right: bar plot 

of mean correlations for different sets of neuron pairs). We additionally sub-divided ID 

neurons into those neurons that prefer the FC orientation, the QC orientation, or the NC 

orientation, and performed the same analysis (Figure 5G).

Quantification of response bias

We quantified the bias in average population response towards a given cue, as follows. For 

each visually-driven neuron, we calculated the mean response to all three visual cues from 

0–1 s post-stimulus onset. We only included activity up to 100 ms before the first lick on any 

given trial or up to the median lick time for all FC trials (applied to FC, QC, and NC trials). 

We then set any negative responses to zero and normalized the resulting 3-point tuning curve 

by the largest cue response (responses to each cue could range from 0–1). To calculate the 

cue response bias, we then took the response of each visually-driven neuron to a given cue 

and divided it by the summed response to all 3 cues (bias = 1 if a neuron responded to only 

one cue, bias = 0.33 if a neuron responded equally to all 3 cues). We calculated the response 

bias of the population by averaging across all visually driven neurons.

Quantification of reward history modulation

To quantify the effects of reward history on neural responses, we asked how the magnitude 

of the response to a given cue was affected by whether the previous trial was rewarded. We 

compared the response magnitude of each neuron’s preferred stimulus when the previous 

trial was a rewarded FC (RFC→Pref) vs. the response magnitude when the previous trial was 

a non-rewarded cue (RnonFC→Pref). Note that licking to a reward ceased well before the 

onset of the following trial, and that the 6–8-s inter-trial interval ensured that earlier 

increases in GCaMP6f fluorescence could return to baseline levels. To quantify modulation 

by previous reward history, we created a reward history modulation index (RHMI) by 

normalizing the difference between these two history-dependent responses by the mean 

overall response: (RnonFC→Pref - RFC→Pref)/RPref. A RHMI value of 0 means that the 

response to the preferred stimulus is not modulated by whether or not the last trial was 

rewarded, a positive RHMI value means the response to the preferred stimulus is greater 

when the previous trial was an unrewarded trial, and a negative RHMI value means the 

response to the preferred stimulus is greater when the previous trial was a rewarded FC. To 

quantify the overall magnitude of recent reward history effects, we calculated the absolute 

value of RHMIs across all cells (Figure 3F).
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Generalized linear model (GLM)

For each session, we fit a Poisson Generalized Linear Model (Driscoll et al., 2017; Friedman 

et al., 2010) to the estimated event rates of each cell, when taking into account behavioral 

and task variables. First, we downsampled deconvolved neural data (Pnevmatikakis et al., 

2016) and all corresponding behavioral/task variables to 10 Hz. Our variables consisted of 

the times of lick onset of the animal following each trial onset, all individual licks 

(excluding lick onsets), Ensure delivery, quinine delivery, stimulus presentation (separated 

by cue type and behavioral response – hit, miss, correct reject, and false alarm), stimulus 

offsets (for all 3 cues), and the x-y shifts obtained during image registration (to represent 

brain motion). The downsampled, deconvolved neural activity was smoothed using a 

Gaussian filter (see below). Behavioral/task variables provided the input for basis functions. 

For each behavioral variable, we implemented a vector of Gaussian filters (all filters had a 

standard deviation of 1 second, overlapping and evenly distributed, 1 Gaussian/3 frames, 100 

ms/frame). For lick onsets, our filters extended 1 second prior to lick onset and 2 seconds 

post lick onset, to account for ramping activity before the animal licks and activity following 

the initial lick. For all other licks, we replaced every lick (other than lick onsets) with a 

single filter. Ensure and quinine filters had the same structure as lick onset filters. For all 

stimulus presentations, the filters spanned the duration of the stimulus and after stimulus 

offset by 1 sec. For stimulus offset, the filters extended 4 seconds following the offset of a 

FC, QC, or NC. We convolved the derivative of the x-y shifts (to look at changes in activity 

due to brain motion) with the same kernel used for the neural activity.

We used the glmnet package to fit GLMs. Each imaging session consisted of 4–5 30-minute 

imaging runs. We trained on the first 75% of each run and tested on the remaining 25%. This 

allowed us to control for slow changes that might happen with time. Parameters were fit for 

each cell separately with elastic net regularization consisting of 99% L2 and 1% L1 

methods. Deviance explained was used as the metric of model fit (Driscoll et al., 2017). It 

was calculated by comparing the activity predicted by the model to the actual activity (for 

single frames) calculated using data not used during the fitting procedure. This was 

compared to the null model in which the predicted event rate was 1. We tested if the model 

prediction significantly described test data above chance by recalculating the deviance 

explained using circularly shifted neuronal activity (by at least 15 s; bootstrapped 50 times). 

For all experimentally identified neurons (tracked pre- and post-Reversal), we only accepted 

models whose deviance explained on non-circularly shifted data was significantly greater 

than the shuffled distribution of deviance explained values from circularly-shifted neuronal 

activity.

To examine the contribution of each behavioral variable towards explaining variability in 

neural activity, we recalculated the deviance explained using each individual behavioral 

variable alone. We then plotted the deviance explained by each behavioral variable, 

normalized to the total deviance explained by all variables (Figure 4D for just visual and 

motor pre- and post-reversal; Figure S4B for all behavioral variables used pre-, during-, and 

post-Reversal). We additionally confirmed the food cue response bias result by exclusively 

including those basis sets that were locked to the visual stimulus onset and not to licking or 

reward events in the absence of licking or motor confounds. The response coefficient 
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instability metric was calculated by grouping all visual response components and calculating 

the Euclidean distance between (i) the coefficients on a single session and (ii) the mean 

coefficients across all daily sessions (Figure S4D). Larger distances suggest higher 

instability across days.

Joint tracking index

In order to quantify the degree of joint tracking by individual neurons, we asked if a neuron 

could partially track both the predicted outcome and a particular stimulus orientation across 

the Reversal (see example neuron in Figure 6B). Importantly, to distinguish such “joint 

tracking” neurons from those neurons that broadened their response tuning indiscriminately 

post-Reversal, we compared the post-Reversal response profile across the three stimulus 

orientations with what we would expect given the pre-Reversal response profile for neurons 

tracking the same stimulus orientation, the same predicted outcome, or a mix of both (see 

below). We designed an index that allowed us to distinguish between those neurons that 

purely tracked stimulus orientation or predicted outcome, those that were broadly tuned, and 

those that were “joint tracking:”

Joint tracking index = [POresidual] * [1 - SFresidual] * [1 – BROADLYresidual]

This index equals zero in the absence of any joint tracking and is greater than zero for 

neurons that demonstrate a mix of stimulus tracking and predicted-outcome tracking. More 

positive values of this index indicate a higher level of joint tracking.

To illustrate how this index works, we describe the three-point tuning curves of a given 

neuron pre- and post-Reversal. The pre-Reversal tuning curve is normalized to the peak 

response. For the example in the upper portion of the following table, the peak response pre-

Reversal is to the FC, and the maximum response pre- and post-Reversal of a neuron is 1 

(see Supplemental Table 2 for details).

For the sake of simplicity, we will consider the scenario where pre-Reversal the preferred 

cue is the FC and therefore the response to the FC is 1:

POresidual

• Specifically, POresidual = 0 for purely ID neurons; > 0 for neurons that 

additionally track the predicted outcome

• We define POresidual = (Response post-Reversal to an orientation associated with 

the outcome that the neuron preferred pre-Reversal) – (Response pre-Reversal to 

this same orientation)

• For the example neuron in the above table: POresidual = [y – a], because the 

neuron initially preferred the FC; post-Reversal, the FC orientation is 270°, so 

the calculation is (post-Reversal response to the FC) – (pre-Reversal response to 

the same orientation as the orientation of the post-Reversal FC).

[1 - SFresidual]
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• This component ensures that purely outcome-tracking neurons do not have a 

positive joint tracking index.

• For the example neuron in the above table: SFresidual = [1-x]. This is because the 

neuron initially preferred 0°; post-Reversal, 0° is the NC, so the calculation is (1-

x) = (pre-Reversal response to the same orientation of the orientation of the post-

Reversal NC) - (post-Reversal response to the NC); the order has to be flipped 

because it is 1 - SFresidual to ensure purely outcome-tracking neurons = 0 (see 

below).

• For example, if this neuron only responded to the FC both pre-Reversal ([1,a,b] = 

[1,0,0]) and post-Reversal ([x,y,z] = [0,1,0]), then for this purely FC-tracking 

neuron, [1-SFresidual ] = [1-[1-x]] = 0, ensuring that the joint tracking index 

equals zero for this example neuron.

[1 - BROADLYresidual]

• This component ensures that neurons that are not tracking either SF or PO but 

are instead broadening their response following Reversal do not have a positive 

joint tracking index.

• For the example neuron above: BROADLYresidual = [z – b] because a neuron that 

jointly tracks stimulus features and predicted outcome in the above example 

should change its responses to the FC and to the orientation of the pre-Reversal 

FC, but should not change its response to an orientation that was not the 

orientation of the FC pre-Reversal or post-Reversal, and thus an increase in 

response to this orientation (135° in the above example) affects the 

BROADLYresidual = [z – b], and correspondingly would indicate a broadening of 

tuning. In this way, a neuron with no broadening of tuning (BROADLYresidual = 

0) would lead to [1- BROADLYresidual] = 1, and thus this component would not 

attenuate the joint tracking index.

• For example, if this neuron only responded to the FC pre-Reversal ([1,a,b] = 

[1,0,0]) but post-Reversal still prefers the same orientation but now broadens its 

tuning curve without any actual joint tracking of predicted outcome (e.g. post-

Reversal tuning of [x,y,z] = [1,1,1]), then for this broadening neuron, [1-

BRresidual ] = [1-[z-b]] = 0, ensuring that the joint tracking index equals zero for 

this example neuron.

To determine if a neuron demonstrated significant joint tracking, we tested whether it 

exceeded the 95% confidence intervals of a Normal distribution. We estimated this Normal 

distribution using all neurons with negative joint tracking index values, as we assumed these 

were aphysiological and thus due to ‘noise.’ 95% confidence intervals are shown as dashed 

gray lines in Figure 6C. Those neurons that were significantly above or below these 

confidence intervals were deemed significant. To quantify food cue enhancement in joint 

tracking neurons, we asked how much larger the FC response of a given neuron post-

Reversal was compared to what we would expect from the FC response predicted by rotation 

of the set of pre-Reversal responses to the three cues. In the example above, this would be 
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calculated as (y-a) (i.e. the FC response post-Reversal minus the response predicted from the 

pre-Reversal response to 270°, which is the FC orientat ion post-Reversal).

Spatial organization of the three functional categories

In order to quantify the spatial organization of our three functional categories, we calculated 

all pairwise distances between neurons within group and across group within our field of 

view (e.g. the distribution of distances between PO and PO neurons vs. the distribution of 

distances between PO and ID neurons). Our imaging field-of-view also spanned an area 

larger than retinotopically identified postrhinal cortex. In order to quantify if our results 

were true specifically in retinotopically identified postrhinal cortex or were also more 

broadly true in neighboring regions of lateral visual association cortex, we sub-selected the 

inner 65% of our field-of-view and labeled neurons in this area as being inside the “Center” 

and those neurons that weren’t as being “Outside.” We repeated the cue response bias 

analysis and pairwise correlation analyses with these distinct subsets of neurons.

Random Forests classifier

We trained a network of Random Forests classifiers (Breiman, 2001; Geng et al., 2004) to 

distinguish experimentally identified PO, ID, or BR neurons. A Random Forests classifier 

contains many classification trees, each of which “votes” for a specific class. The classifier 

pools over all trees for the final classification. Due to the uneven numbers of neurons in each 

category (PO neurons: 43; ID neurons: 83; BR neurons: 53), we trained 500 instances of a 

Random Forests classifier, each using a random sample of 32 neurons from each group for 

training. This left out at least 25% of the neurons in each group, and we used these neurons 

for cross-validation (PO neurons: 11; ID neurons: 51; BR neurons:21). Theoretically, the set-

aside test data set for cross-validation should be unnecessary, and as expected, the ‘out-of-

bag’ (those cases not used in the construction of each tree) classification accuracy matched 

our test set prediction accuracy (Figure S8B–C). Each Random Forests classifier had 100 

decision trees. We additionally examined how the number of features sampled at each 

decision split would affect classification performance. We found minimal effects of the 

number of features sampled at each decision split on either the test set or the out-of-bag 

prediction accuracy (Figure S8B–C). For all further analyses, we used the default number of 

features sampled (3) which is derived based on the number of total features (8 features; the 

default is the square root the number of features used). We also performed a control where, 

prior to building each classifier, we randomly shuffled the labels of PO, ID, or BR neurons 

to train the classifier but did not shuffle labels on the test set. We found that performance on 

the test set and the out-of-bag performance both dropped to chance levels (chance = 0.33 due 

to the use of 3 different groups of neurons; Figure S8B–C).

The metrics used for classification were as follows. The cue response selectivity was 

calculated as the median (across all pre- and post-Reversal recording sessions) of the 

response to the preferred cue (during that session) divided by the sum of responses to all 

cues. The response magnitude was calculated as the median ΔF/F (across all pre- and post-

Reversal sessions) of the preferred response during that session. The Fano factor (FF) was 

calculated for the preferred cue during each session, we then used the median Fano factor 

across all sessions pre- and post-Reversal. To estimate latency of response, we calculated the 
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timepoint for the mean evoked response at which the response first exceeded 3 standard 

deviations from baseline, where baseline was the 1 s prior to stimulus onset, and pooled 

across days (median). The latency variability (Latency FF) was the Fano factor of the latency 

calculated from single trials (for single trial comparisons, we reduced the above threshold to 

2 standard deviations due to the noisier nature of this variable), pooled across days (median). 

The time-to-peak (TTP) of the response was calculated as the time of the peak response of 

the mean timecourse after stimulus onset for the preferred cue on each day, pooled across 

days (median). The ramp index (RI) was calculated as log2(RLate / REarly) where the RLate is 

the mean ΔF/F from 1.5–2 seconds post stimulus onset and the REarly is the mean ΔF/F from 

0.25–0.75 seconds post stimulus onset (Makino and Komiyama, 2015). The locking to the 2 

Hz temporal frequency was calculated by performing a trial-by-trial fast-Fourier transform 

on the preferred cue during stimulus presentation for each neuron per day, extracting the 

power from 1.75–2.25 Hz and normalizing by the power from 1–5 Hz (excluding 1.75–2.25 

Hz; this normalization was done to account for differences in noise across neurons). We then 

took the mean across the two days (pre- and post-Reversal) with the highest temporal 

locking (if a neuron was only driven on one day, we took this value). To calculate 

significance, we fit a normal distribution to all values less than the median locking value 

across the population of all neurons and assigned significantly 2 Hz modulated neurons as 

those that had 2 Hz locking values that exceed 3.5 standard deviations of this normal 

distribution.

To assess the final neural ensemble prediction for all neurons, we took the mode 

classification of all neurons in each test data set across all classifiers. For each classification 

of a neuron as belonging to a certain class, we calculated the probability of that 

classification. For all classes, the probability is the fraction of observations of this class in a 

given classification tree leaf, averaged across all classification trees and across all classifiers. 

We calculated the Random Forests confidence for each class as the probability of the 

correctly classified class divided by the sum of all probabilities. We found a strong 

correlation between the confidence metric we used to group PO, ID, and BR neurons and 

this classification confidence (Figure S8E).

We then applied this classifier to all neurons that were significantly visually driven but that 

were not tracked across the entirety of the Reversal. We did this by analyzing the features 

described above, on all days in which neurons responded to visual stimuli. For all further 

analyses, we only included those neurons that were confidently classified (classification 

confidence > 0.6). PO-like, Identity-like, and Broadly-like neurons are those neurons that 

have similar low-level stimulus responses to PO neurons, ID neurons, and BR neurons, 

respectively. For all neurons, we also calculated “Random Forests proximities” (i.e. how 

often a pair of neurons ends up in the same terminal node of a decision tree; a value of 1 

means every time, a value of 0 means never; Figure S8F and S8I).

To assess how PO-like and Identity-like neurons were modulated by changes in the hunger 

state of the mouse, we applied the classifier to previously published experiments involving 

recordings from neurons in layer 2/3 of V1 and POR (Burgess et al., 2016). We again only 

selected those neurons with high classifier confidence (confidence > 0.6) and calculated the 

FC bias and the reward history modulation of the neurons as described above. We also 
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calculated the hunger modulation index, which we defined as the change in a neuron’s 

response to the FC when the animal was hungry vs. sated (hunger modulation index: 

[FCHungry – FCSated]/[FCHungry + FCSated]).

Neural ensemble similarity

We quantified how similar neurons were within each ensemble, as measured by their pattern 

of noise and spontaneous correlations. We first obtained a vector for each neuron containing 

6 elements: the first 3 elements were the mean noise correlation of that cell with PO, ID, and 

BR neurons. The last 3 elements were the mean spontaneous cross-correlations of that cell 

with PO, ID, and BR neurons. This vector thus represents the interaction of a particular 

neuron with the PO, ID, and BR ensembles. We then calculated all pairwise correlations of 

all neurons in all categories using this vector. To obtain each individual value in the 

similarity matrix in Figure 7H, we examined all neurons belonging to two of the four 

ensembles (Recruited, PO, ID, or BR) and pooled across all relevant neuron pairs in those 

two ensembles (e.g. PO-PO, PO-ID, ID-ID pairs). A correlation value greater than zero 

between two ensembles suggests that neurons in those ensembles have similar patterns of 

noise and spontaneous correlations. A correlation value less than zero suggest neurons in 

those two ensembles have different patterns of noise and spontaneous correlations, and 

potentially different patterns of anatomical connectivity.

DATA AND SOFTWARE AVAILABILITY

Data are available upon request to the Lead Contact.

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Bacterial and Virus Strains

AAV1.Syn.GCaMP6f.WPRE.SV40 Penn Vector Core CAT#100837-AAV1

Biological Samples

Chemicals, Peptides, and Recombinant Proteins

Critical Commercial Assays
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Experimental Models: Cell Lines

Experimental Models: Organisms/Strains

Mouse: C57BL/6J Jackson RRID: IMSR_JAX:000664

Oligonucleotides

Recombinant DNA

Software and Algorithms

MATLAB R2015b Mathworks https://www.mathworks.com/products/matlab.html; RRID: SCR_001622

MonkeyLogic Asaad & 
Eskandar, 2008

http://www.brown.edu/Research/monkeylogic/

Scanbox Neurolabware https://scanbox.org/

PCA/ICA neuron identification Mukamel, E. A., 
Nimmerjahn, A. 
& Schnitzer, M. 
J. 2009

https://github.com/mukamel-lab/CellSort

Demon’s algorithm Thirion, 
Vercauteren et 
al., 2009

https://www.mathworks.com/help/images/ref/imregdemons.html

Glmnet Friedman et al., 
2010

https://web.stanford.edu/~hastie/glmnet_matlab/

Calcium imaging deconvolution 
algorithm

Pnevmatikakis et 
al., 2016

https://github.com/epnev/constrained-foopsi

ImageJ 1.49t NIH https://imagej.nih.gov/ij/; RRID: SCR_003070

Other

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Mice learn changes in cue-outcome associations in a visual discrimination task
A. Head-restrained setup for visual stimulation, delivery of Ensure or quinine, and two-

photon calcium imaging.

B. Mice were trained on a Go-NoGo task.

C. Bilateral injection of muscimol (Mus) to silence lateral visual association cortex resulted 

in decreased task performance.

D. Following initial learning, we switched cue-outcome associations by changing the 

orientation of the visual grating that predicted each specific outcome.

E. Mice performed poorly immediately following the switch in cue-outcome associations, 

but gradually improved until they attained high performance. Pre: pre-Reversal; During: 

during-Reversal; Post: post-Reversal. “During” period shown in quartiles Q1-Q4. * p < 

0.001 vs. during-Reversal (combined across quartiles; see text).

F. Mice selectively licked in response to the food cue (FC) during pre- and post-Reversal 

epochs but licked indiscriminately to all cues during-Reversal. * p < 0.05; † denotes 

significant increase in licking to the neutral cue (NC) during- vs. pre- and post-Reversal (p < 

0.01); 2-way ANOVA, Tukey-Kramer post hoc test. Error bars: s.e.m. See also Figure S1.
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Figure 2. Different subsets of lateral visual association cortex neurons track stimulus identity or 
predicted outcome
A. Left: schematic demonstrating location of cranial window. Right: example traces showing 

varied responses to food cue (FC), quinine cue (QC), and neutral cue (NC) trials.

B. A schematic demonstrating the hypothetical responses of two neurons whose early visual 

responses consistently track either stimulus identity (ID, top; same stimulus orientation) or 

predicted outcome (PO, bottom) across a Reversal.

C. Heatmaps from one session for three simultaneously recorded neurons. White ticks 

denote the first lick on a given trial and gold ticks denote delivery of Ensure.

D. Average cue-evoked responses across sessions for the same example neurons as in C. 

Dashed gray line indicates when cue-outcome associations were switched. Neuron #1 

tracked the cue that predicted food delivery. Neuron #2 tracked the 270° drifting grating, 

regardless of the predicted outcome. Neuron #3 was broadly responsive to visual stimuli. 

Parentheses: behavioral performance, d’. Insets: images of the GCaMP6-expressing cell 

bodies. Bottom: normalized cue response magnitudes for all imaging sessions in which the 

neuron was visually responsive.

E. Top: schematic of neurons within an imaging field of view, including those classified as 

PO, ID, or Broadly-tuned (BR) neurons (e.g. example Neurons #1, #2, and #3, respectively). 

Bottom: illustration of preferred stimulus orientation across a switch in cue-outcome 

contingencies for a PO neuron and an ID neuron.
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F. The distribution of all neurons recorded both pre- and post-Reversal, ordered from those 

that precisely tracked the same stimulus orientation (leftmost on x-axis) to those that 

precisely tracked whichever stimulus predicted the same outcome (rightmost on x-axis). 

Inset: pie chart indicating numbers of imaged neurons in each category. Arrows denote 

example neurons from C-D.

G. Mean normalized responses for each category, demonstrating the degree to which 

neurons in each category either responded preferentially to the same predicted outcome or to 

the same orientation pre- vs. post-Reversal. See also Figure S2.
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Figure 3. Enhanced sensitivity to food cues and reward history in PO but not ID neurons
A. In hungry mice, lateral visual association cortex showed a response bias to the 

motivationally-salient food cue both pre- and post-Reversal (black and white bars). A similar 

bias was observed when only including those neurons that were visually responsive both 

pre- and post-Reversal (gray bars). * p < 0.001; FCPrePost vs. FCPre, FCPost: p > 0.05, 2-way 

ANOVA, Tukey-Kramer test. Pre: pre-Reversal; Post: post-Reversal. FC: food cue; QC: 

quinine cue; NC: neutral cue.

B. Food cue response bias across a range of neurons, from those that mostly tracked 

stimulus orientation (left; see Figure 2F) to those that mostly tracked predicted outcome.* p 

< 0.001, Wilcoxon Sign-Rank test against 0.33, Bonferroni corrected.

C. Analysis by category showed that PO neurons, but not ID or BR neurons, were 

significantly biased to the food cue. * p < 0.0001, Wilcoxon Sign-Rank test against 0.33. 

Inset: only PO neurons showed a significant food cue bias when performing statistics across 

mice, rather than across neurons. * p < 0.025, 1-way RM ANOVA, Tukey-Kramer method.

D. Example neurons exhibiting modulation of cue-evoked response depending on whether 

the previous trial was a rewarded trial (dashed) or not (solid).

E. Only those neurons that strongly tracked the same predicted outcome showed 

significantly elevated modulation of visual responses by reward history. * p < 0.01 bootstrap 

permutation test.

F. PO neurons were more sensitive to recent reward history than ID or BR neurons. Error 

bars: s.e.m. (see text). See also Figure S3.
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Figure 4. Dissecting sensory, motor, and reward-related responses in visual association cortex
A. A generalized linear model (GLM) could predict the neural activity of an example ID 

neuron using task variables.

B. The mean response of this neuron was mostly explained by the visual response 

component (dark purple). Contributions to peri-stimulus responses by activity locked to the 

motor response (red) or to Ensure delivery (green) were minimal.

C. An example PO neuron demonstrated a visual response component (dark purple), a motor 

response component (red), and a component related to Ensure delivery (green).

D. We quantified the fraction of the deviance explained by each task variable included in the 

GLM (normalized by the total deviance explained for each neuron). The deviance explained 

by the visual response component was significantly greater than for the motor component in 

PO, ID, and BR neurons. * p < 0.01, Wilcoxon Rank-Sum.

E. Critically, the response bias to the food cue in Fig. 2A–C was not the result of motor or 

premotor activity, as we still observed this bias when only considering coefficients reflecting 

the visual response component for food cue (FC), quinine cue (QC), and neutral cue (NC) 

trials.

F. Top: responses of PO neurons contained a motor component that peaked prior to the onset 

of licking (dashed gray line), and that remained stable Pre-, During- and Post-Reversal. 

Bottom: responses of PO neurons contained a visual response component for the food cue 

(dashed gray line) Pre-, and Post-, but not During-Reversal.

G. Average fraction of all days that cells in each category were responsive to at least one 

stimulus, for each task epoch. PO neurons were not reliably visually responsive during-

Reversal, when behavioral performance was poor. * p < 0.001, PO fraction during- vs. pre- 

and vs. post-Reversal, as well as PO vs. ID neurons or PO vs. BR neurons during-Reversal. 

† p < 0.01, PO vs. ID neurons post-Reversal. 2-way ANOVA, Tukey-Kramer test. Error bars: 

s.e.m. See also Figure S4.
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Figure 5. Correlated ensembles of PO, ID, and BR neurons
A. Top left: schematic of PO, ID, and BR neurons within a field of view. Right: hypothetical 

profiles of local and long-range connectivity, were the network of PO, ID, and BR neurons 

to show either full connectivity or selective connectivity within functionally-distinct 

ensembles. Bottom left: hypothetical pairwise food cue response co-fluctuation (noise 

correlation) in simultaneously recorded PO and ID neurons (bottom; gray shaded area: cue 

presentation). Even though the mean response of all neurons is identical, PO neurons (1 & 2) 

have larger responses on trial 1, and ID neurons (3 & 4) have larger responses on trial 2, 

resulting in higher cue-evoked noise correlations within- vs. across-group. For the pairwise 

correlation analyses below, hexagon pairs denote the functional identity of each neuron in 

the pair.
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B. PO and BR neurons showed higher noise correlations within-group vs. across-group. 

Left: pairwise correlations between two neurons in the same group (same color) vs. in any 

other group (gray). Right: all pairwise comparisons. Shaded discs indicate s.e.m. * p < 0.01, 

Wilcoxon Rank-Sum (left) and Kruskal-Wallis (right).

C. Noise correlation heatmap for all neurons, ranging from those that mostly tracked the 

orientation of a stimulus to those that mostly tracked the predicted outcome. Pairs of neurons 

with similar tracking properties had higher pairwise noise correlations.

D. Same analyses as in B, but restricted to the subsets of PO, ID, and BR neurons that 

preferred the food cue (FC). Right: Pairwise noise correlations were higher within-group 

(same color) vs. across-group (different colors). * significantly higher mean correlation for 

neurons in the same vs. in different groups (gray): p < 0.01, Wilcoxon Rank-Sum (left) and 

Kruskal-Wallis (right), Bonferroni corrected. † significantly higher mean correlation of 

BRFC neurons with other BRFC neurons than with IDFC neurons: p < 0.001, Kruskal-Wallis, 

Bonferroni corrected. All other p values > 0.05. Shaded disc radius: s.e.m.

E. Subgroups of ID neurons preferentially responsive to a specific stimulus orientation 

showed higher noise correlations within- vs. across-subgroup. Left: within-subgroup vs. 

across-subgroup comparisons. Right: all pairwise comparisons. * p < 0.01, within- vs. 

across-subgroup. † p < 0.01, highest vs. lowest pairs; Kruskal-Wallis/Wilcoxon Rank-Sum, 

Bonferroni corrected

F. PO and BR neurons showed higher spontaneous event ross-correlations within-group vs. 

across-group. * denotes p < 0.001 for within- vs. across-group comparison or vs. all other 

groups; Kruskal-Wallis/Wilcoxon Rank-Sum, Bonferroni corrected. † p < 0.05, POID vs. 

BR-ID pairs.

G. Subgroups of ID neurons showed higher spontaneous event cross-correlations within-

subgroup vs. across-subgroup. * p < 0.01, within- vs. across-subgroups. † p < 0.01, highest 

vs. lowest pairs:, Kruskal-Wallis/Wilcoxon Rank-Sum, Bonferroni corrected. See also 

Figures S5-S6.
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Figure 6. Joint tracking of stimulus identity and predicted outcome in single neurons
A. Schematic demonstrating the possible existence of neurons that partially track both 

stimulus identity and predicted outcome.

B. An example neuron that demonstrates joint tracking. This neuron initially responded to 

the orientation associated with the food cue (FC). Following new learning, it continued to 

respond to this orientation but now also responded to the new FC. QC: quinine cue; NC: 

neutral cue.

C. Joint tracking index across neurons, ordered from those that precisely tracked the same 

stimulus orientation (left end of x-axis) to those that precisely tracked whichever stimulus 

predicted the same outcome (right end of x-axis). A minority of neurons showed significant 

joint tracking of both stimulus identity and predicted outcome (dashed lines: 95% 

confidence intervals). Black outlines denote neurons with significant joint tracking. Arrow: 

example neuron from B.

D. Fraction of neurons in each category showing significant joint tracking. 38/179 showed 

significant joint tracking (inset).

E. Joint tracking neurons from the PO category showed a response enhancement to the food 

cue, while those from the ID category did not.
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Figure 7. Neurons recruited during new learning encode predicted value
A. Schematic demonstrating the possible existence of neurons that are “recruited” by new 

learning.

B. Example neuron that developed cue-evoked responses as the mouse learned the new cue-

outcome associations. FC: food cue; QC: quinine cue; NC: neutral cue.

C. Fraction of visually-responsive Recruited neurons and Predicted Outcome (PO) neurons 

pre-, during- and post-Reversal.

D. Recruited neurons showed a population response bias to the food cue.

E. Recruited neurons and PO neurons both had similarly strong sensitivity to recent reward 

history. n.s.: p > 0.05, Wilcoxon Rank-Sum.

F. Recruited neurons and PO neurons showed similar noise correlations with PO, ID, and BR 

neurons, suggesting that Recruited neurons might become integrated with the PO ensemble. 

* p < 0.05, Kruskal-Wallis.

G. Recruited neurons showed higher spontaneous correlations with PO neurons than with ID 

or BR neurons post-Reversal and, surprisingly, pre-Reversal (an epoch when Recruited 

neurons were not visually responsive). * p < 0.05, 2-way ANOVA, Tukey-Kramer test. 

Shaded disc radius: s.e.m.

H. We quantified the similarity in the patterns of noise and spontaneous correlations for 

neurons in each category. PO neurons showed higher similarity to Recruited neurons, while 

ID neurons showed higher similarity to BR neurons. See also Figure S7.
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Figure 8. Single-session visual response dynamics can predict which neurons will track stimulus 
identity or predicted outcome across Reversal
A. Many neurons were transiently visually responsive and were not tracked across the 

Reversal.

B. Left: some neurons displayed visual responses that followed the 2 Hz temporal frequency 

of the drifting grating. Right: quantile plot. Neurons that were significantly modulated at 2 

Hz (rightmost circles, outlined in black; all plotted in left panel) were all ID neurons.

C. A Random Forests classifier could use single-session, low-level visual response features 

to distinguish PO, ID, or BR neurons at levels significantly above chance. * p < 0.01, 

Wilcoxon Rank-Sum, real vs. permuted shuffle of category labels during classifier training.
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D. Neurons that shared the same low-level visual response features as PO neurons (“PO-like 

neurons”) showed a stronger bias to the motivationally relevant food cue than “ID-like” or 

“BR-like” neurons.

E. PO-like neurons showed higher noise correlations with PO neurons than with ID neurons.

F. PO-like neurons showed higher spontaneous correlations with PO neurons than with ID or 

BR neurons.

G. Unlike ID-like neurons, PO-like neurons in both visual postrhinal cortex (visPOR) and 

primary visual cortex (V1) showed a significant response bias to the food cue (left). PO-like 

neurons also demonstrated greater sensitivity to reward history than ID-like neurons (right).

H. While PO-like neurons were present in V1, they were significantly less common than in 

visPOR. * p < 0.05, Tukey’s HSD post hoc test among proportions.

I. In both V1 and visPOR, PO-like neurons showed a strong response bias to the food cue 

while ID-like neurons did not. This bias was abolished following satiation. * p < 0.01, 

Wilcoxon Sign-Rank vs. chance (0.33). Error bars: s.e.m.

J. We hypothesize that within the same region of lateral visual association cortex, PO, PO-

like and Recruited neurons (right) receive inputs from brain regions involved in assigning 

valence/salience to learned cues (e.g. LA/BLA), in task-dependent decision-making and/or 

motor action (e.g. PFC/OFC), as well as input from visual sources, including LP, and local 

neurons encoding stimulus identity. By contrast, ID and ID-like neurons (left) may 

predominantly receive input from earlier visual areas including LP, V1 and LM. LA: lateral 

nucleus of the amygdala; BLA: basolateral nucleus of the amygdala; PFC: prefrontal cortex; 

OFC: orbitofrontal cortex; LP: lateral posterior nucleus of the thalamus; LM: lateromedial 

visual area. See also Figure S8.
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