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Abstract

Purpose of Review: To discuss the impact of deleterious changes in skeletal muscle 

morphology and function on exercise intolerance in patients with heart failure with reduced 

ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF), as well as 

the utility of exercise training and the potential of novel treatment strategies to preserve or improve 

skeletal muscle morphology and function.

Recent findings: Both HFrEF and HFpEF patients exhibit a reduction in percent of type I 

(oxidative) muscle fibers and oxidative enzymes coupled with abnormal mitochondrial respiration. 

These skeletal muscle abnormalities contribute to impaired oxidative metabolism with an earlier 

shift towards glycolytic metabolism during exercise that is strongly associated with exercise 

intolerance. In both HFrEF and HFpEF patients, peripheral “non-cardiac” factors are important 

determinants of the improvement in exercise tolerance following aerobic exercise training. 

Adjunctive strategies that include nutritional supplementation with amino acids and/or anabolic 

drugs to stimulate anabolic molecular pathways in skeletal muscle show great promise for 

improving exercise tolerance and treating heart failure-associated sarcopenia, but these efforts 

remain early in their evolution, with no immediate clinical applications.

Summary: There is consistent evidence that heart failure is associated with multiple skeletal 

muscle abnormalities which impair oxygen uptake and utilization and contribute greatly to 

exercise intolerance. Exercise training induces favorable adaptations in skeletal muscle 

morphology and function that contribute to improvements in exercise tolerance in patients with 

HFrEF. The contribution of skeletal muscle adaptations to improved exercise tolerance following 

exercise training in HFpEF remains unknown and warrants further investigation.
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Introduction

Heart failure (HF) is a major healthcare problem associated with high morbidity and 

mortality [1]. Approximately 50% of HF patients have reduced ejection fraction (HFrEF) 

while the remainder of patients have preserved ejection fraction (HFpEF) [2•]. While both 

HFrEF and HFpEF increase with age, incidence of HFpEF is particularly prominent, 

doubling in incidence with each decade after age 65 [3]. The cardinal symptom in clinically 

stable HFrEF and HFpEF patients is reduced exercise intolerance [4, 5, 6••, 7, 8]. Heart 

failure patients’ peak cardiorespiratory fitness (VO2peak) is ~65% of age-matched healthy 

controls [2•, 6••, 7, 9••, 10]. Moreover, declines in cardiorespiratory fitness in older HF 

patients are compounded by comorbidity, sarcopenia, malnutrition, and other aging sequela 

that exacerbate declines in cardiorespiratory activity as well as strength and balance, and 

progressively jeopardize quality of life and functional independence [2•, 11].

The reduced VO2peak is secondary to impaired cardiac and pulmonary performance, as well 

as peripheral vascular, and skeletal muscle abnormalities that result in reduced convective 

and diffusive O2 transport coupled with decreased O2 utilization by exercising muscle [2•, 

6••, 12, 13]. A number of invasive hemodynamic studies have shown that both HFrEF and 

HFpEF have reduced maximal cardiac output (CO) secondary to a lower heart rate and 

stroke volume response [7, 9••, 10, 14]. However, non-cardiopulmonary peripheral factors 

also contribute to the lower VO2peak [6••, 7, 9••, 10, 15, 16••].

The aim of this brief review is to discuss the impact that abnormal skeletal muscle 

morphology and function play in limiting exercise tolerance in HF patients, and the role of 

both exercise training as well as novel treatment strategies to improve skeletal muscle 

morphology and function.

Role of skeletal muscle abnormalities in HFrEF

It has been long known that HFrEF patients have multiple histological and metabolic 

skeletal muscle abnormalities including skeletal muscle atrophy [17–21], decreased 

oxidative (type I) fibers and enzymes [22–26], mitochondrial volume density [22], and 

capillary-fiber ratio [23, 26] (Table 1). Prior studies demonstrate that skeletal muscle atrophy 

and reduced lower extremity muscle mass contribute to decreased VO2peak and muscle 

strength in HFrEF [18, 20, 21, 27, 28]. Moreover, a reduction in the percent of type I fibers 

and oxidative enzymes coupled with abnormal mitochondrial respiration contributes to 

impaired oxidative metabolism with an earlier shift towards glycolytic metabolism resulting 

in decreased aerobic endurance (Table 1).

Weiss et al. [16••], using 31P skeletal muscle spectroscopy, examined skeletal muscle 

energetics (PCr depletion and inorganic phosphate accumulation rates) at rest and during 
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graded (plantar flexion) exercise test in healthy subjects as well as those with HFrEF and 

HFpEF. A novel finding was that both NYHA class II and III HF patients had significantly 

faster rates of exercise-induced PCr depletion compared with healthy individuals and NYHA 

class I HFrEF patients. Finally, the rate of PCr decline during plantar flexion exercise was 

correlated (r2 = 0.83) with overall exercise time indicating that a rapid exercise-induced 

depletion of PCr in symptomatic HFrEF and HFpEF patients is closely related to exercise 

intolerance.

Role of skeletal muscle abnormalities in HFpEF

Emerging evidence demonstrates that peripheral “non-cardiopulmonary” factors are 

important determinants of reduced VO2peak in HFpEF [6••, 9••], mirroring many of the 

concepts previously only associated with HFrEF. Haykowsky et al. [6••] reported that the 

strongest independent predictor of VO2peak was the change in a-vO2diff from rest to peak 

exercise in elderly HFpEF patients. The mechanisms responsible for this impaired ability to 

augment avO2diff during peak exercise were not studied, however, it was hypothesized that 

it may relate to intrinsic skeletal muscle abnormalities that underlie reduced skeletal muscle 

oxygen delivery and/or impaired oxygen utilization.

Given that the majority of oxygen consumed during exercise occurs in the exercising muscle 

[2•, 10, 29], a decline in metabolically active tissue may limit exercise tolerance. Using dual-

energy X-ray absorptiometry and maximal exercise testing, Haykowsky et al. [30] measured 

lean body mass and VO2peak in older HFpEF patients and age-matched healthy controls. 

Older HFpEF patients had significantly reduced percent total and leg lean mass, and 

decreased peak VO2 indexed to lean body mass versus healthy controls [30] (Table 1). Also, 

the change in VO2peak with increasing percent leg lean mass was blunted in HFpEF 

compared to healthy controls [30].

These investigators also reported significantly increased intermuscular adipose tissue and 

ratio of intermuscular adipose to skeletal muscle area in HFpEF patients [31, 32] (Table 1). 

Both intermuscular adipose area and intermuscular adipose to skeletal muscle area were 

independent predictors of VO2peak in HFpEF [31], suggesting it is not only the loss of lean 

body mass, but the quality of muscle that determines VO2peak. Notably, skeletal muscle 

atrophy and increased intermuscular adipose tissue detected in HFpEF is similar to skeletal 

muscle changes that occur as part of aging physiology [33]. This raises important 

considerations regarding the overlap of HFpEF and aging physiology.

Additional histological and metabolic skeletal muscle abnormalities [34, 35••, 36••] (Table 

1) have also been demonstrated in HFpEF patients. Kitzman et al. [35••] showed a shift in 

skeletal muscle fiber type distribution towards a higher percentage of glycolytic (type II) 

fibers, with a subsequent reduction in percent type I (oxidative) fibers, type I/type II fiber 

ratio, and capillary-to-fiber ratio compared to age-matched healthy controls. Molina et al. 

[36••] extended those findings by demonstrating that skeletal muscle oxidative capacity, 

mitochondrial content, and mitochondrial fusion were abnormal in older patients with 

HFpEF, and that they were associated with reduced VO2peak and 6-min walk distance. 

Cumulatively, these findings suggest that a fiber type shift from oxidative to glycolytic fibers 
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coupled with abnormal mitochondrial function also contribute to impaired oxidative 

metabolism during exercise in HFpEF. Consistently, prior studies assessing skeletal muscle 

metabolism during small muscle mass exercise with 31P magnetic resonance spectroscopy 

showed a marked reduction in leg muscle oxidative metabolism in HFpEF patients compared 

to healthy individuals [16••, 34] (Table 1). Overall, impaired mitochondrial oxidative 

metabolism appears to be an important contributor to reduced exercise tolerance in HFpEF.

Exercise Interventions Improve Exercise Tolerance and Skeletal Muscle 

Function in HFrEF

Aerobic exercise training has been shown to increase VO2peak by 2.6 – 5.4 ml/kg/min [37, 

38] compared to usual care in patients with HFrEF. Whereas many cardiovascular experts 

assumed this was determined by cardiac performance, in fact much of this performance 

improvement is mediated by favorable adaptations in skeletal muscle morphology and 

function [29, 39–43] (Table 2). Hambrecht et al. [39–41] found that 6 months of aerobic 

exercise training (walking and cycling) significantly increased skeletal muscle mitochondrial 

and cytochrome c oxidase volume density, percentage of type I (oxidative) fibers, and 

number of capillaries that supply each of these fibers in HFrEF. Cytochrome c oxidase 

volume density also increased, and was associated with improved VO2peak [41].

Improvements in skeletal muscle oxidative capacity, capillary density, and mitochondrial 

volume density have also been demonstrated after small muscle mass exercise training in 

patients with HFrEF [29, 42, 44] (Table 2). Esposito et al. [29] showed that 8 weeks of 

unilateral knee extension exercise significantly increased vastus lateralis muscle fiber cross-

sectional area, percent type I fibers, muscle capillarity, and mitochondrial volume density. 

The improvement in skeletal muscle morphology with training correlated with the increase 

in VO2peak assessed during, maximal cycle exercise [29]. Overall, these studies highlight the 

ability of aerobic exercise training to induce rapid adaptations in skeletal muscle 

morphology and function in patients with HFrEF, and to improve exercise tolerance and 

VO2peak.

Improvements in exercise tolerance and VO2peak have also been observed following 

resistance training performed alone [45–48] or combined with aerobic exercise training [46, 

49] in HFrEF. Despite the paucity of studies investigating the peripheral adaptations 

associated with resistance exercise [48], it appears that increases in oxidative muscle fiber 

cross-sectional area and oxidative enzyme capacity are likely contributors. Pu et al. [48] 

demonstrated that 10 weeks of high-intensity progressive resistance exercise training in 

older women with HFrEF increased skeletal muscle type I fiber area and citrate synthase 

activity, and were predictive of improvements in functional capacity (assessed by 6-min 

walk distance).
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Exercise Interventions Improve Exercise Tolerance and Skeletal Muscle 

Function in HFpEF

Similar to HFrEF, aerobic exercise training has been shown to increase VO2peak by 2.1 – 3.0 

ml/kg/min [50–53, 54•] compared to usual care in patients with HFpEF [55–57, 58••, 59, 

60]. However, in contrast to HFrEF, this form of training is not associated with increased 

peak exercise cardiac output [57, 61••]. Specifically, Haykowsky et al. [61••] demonstrated 

that 84% of the improvement in VO2peak following 16 weeks of aerobic exercise training 

was attributed to increases in peak exercise a-vO2diff (Table 2). Similarly, Fu et al. [57] 

recently reported that 12 weeks of high-intensity interval exercise training significantly 

increased VO2peak, with the improvements in VO2peak driven by increases in estimated peak 

exercise a-vO2diff and leg muscle oxygenation, with little or no change in peak exercise 

cardiac output. The mechanisms responsible for these exercise-mediated peripheral 

adaptations that underlie improvements in peak exercise a-vO2diff seem likely to relate to 

improved peripheral muscle perfusion and/or enhanced mitochondrial function.

Novel Therapies to Target Skeletal Muscle Abnormalities in HF

As the key role of skeletal muscle in exercise tolerance has been recognized, multiple 

initiatives have been underway to improve skeletal muscle performance. Supplementing 

nutrition has demonstrated benefit as it responds to the hypercatabolic and malnourished 

state of typical HF patients [62]. Paradoxically, it has also been demonstrated that caloric 

restriction is also beneficial [63]. In the latter, benefits are mediated by healthful molecular 

signaling that stimulates clinical benefits [64]. In addition to dietary manipulations, a 

multitude of pharmacological-based research efforts are underway in which novel therapies 

are being studied to promote skeletal muscle growth in adults with sarcopenia, and which 

can presumably be applied to those with HF.

Nutrition

Several HFrEF studies have substantiated the premise of amino acid supplementation to 

improve exercise tolerance [65•, 66•, 67]. In a randomized controlled trial by Aquilani et al. 

[65•], the benefits of an oral nutritional mixture of amino acids (4 g twice daily) versus a 

placebo were compared in 95 stable elderly HFrEF patients (NYHA Class II-III). VO2peak 

improved in the nutrition supplemented group. More recently, Lombardi et al. [66•] 

demonstrated that supplementing HFrEF patients (NYHA Class II-III) with one specific 

amino acid (L-carnosine) every day (500 mg dosage) for 6 months significantly improved 

exercise tolerance and functional capacity. These findings suggest that amino acid 

supplementation may improve exercise tolerance in patients with HFrEF as a result of 

correcting an amino acid deficiency either within cardiac or skeletal muscle. While it seems 

probable that similar nutritional supplementation would benefit patients with HFpEF as 

much as those with HFrEF, studies in this population have not yet been completed.

In contrast to nutritional supplements, nutritionally balanced caloric restriction has been 

demonstrated to trigger vital subcellular benefits in older adults through a very different 

mechanism of action [68]. Key molecular signaling pathways (e.g., mTor and AMPkinase) 
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are suppressed or stimulated, with downstream clinical benefits [68]. In older, obese 

individuals without HF, caloric restriction has been shown to improve LV mass and diastolic 

function, exercise capacity, body composition, and skeletal muscle function [69–72].

Kitzman et al. [58••] studied similar principles in older, obese HFpEF patients, comparing 

the effects of 20 weeks of caloric restriction or aerobic exercise training alone, or in 

combination, on VO2peak and quality of life. Aerobic exercise training (+1.2 ml/kg/min) and 

caloric restriction (+1.3 ml/kg/min) both yielded similar improvements in VO2peak and 

functional capacity, while a combination of both (aerobic exercise + caloric restriction) 

caused an additive effect on VO2peak (+2.5 ml/kg/min). Both aerobic exercise training and 

caloric restriction reduced body weight and fat mass, while caloric restriction improved 

muscle leg muscle quality, and reduced abdominal and thigh subcutaneous fat. In addition, 

the change in VO2peak was positively correlated with both the change in percent lean mass 

and the change in thigh muscle to intermuscular fat ratio. These findings demonstrate that 

caloric restriction alone or combined with aerobic exercise yield favorable improvements in 

body composition (including improved muscle quality).

Nonetheless, the long-term efficacy of caloric restriction for improving clinical outcomes in 

HF patients entails many aspects of clinical complexity that are inherently problematic. 

Older adults who are prone to developing HF are also susceptible to sarcopenia and frailty. 

Benefits of caloric restriction must be counterbalanced by the risks it may impose as it 

undercuts vital nutrition in patients who are relatively more enfeebled. Furthermore, 

observational studies report an obesity paradox in this patient population [73, 74], with 

overweight and obese HFpEF patients having better survival outcomes than those who are 

normal or underweight according to body mass index.

Novel pharmacological approaches

Pharmacological approaches to skeletal muscle growth remain an active area of research. 

Initiatives primarily target age-related sarcopenia, but with a common presumption that older 

HF patients may benefit disproportionately due to the additive effects of aging and disease 

on skeletal muscle atrophy and weakening. Pharmacotherapies targeting myostatin inhibition 

remain a particularly compelling consideration [75]. Myostatin is a highly conserved 

member of the transforming growth factor-beta superfamily that signals through the activin 

receptor type IIB (ActRIIB). Myostatin stimulates catabolic processes, and inhibits 

transcription of genes that underlie proliferation of skeletal muscle precursor cells. Thus, 

myostatin inhibition may moderate or reverse skeletal muscle loss and functional decline. 

Nonetheless, trials of myostatin inhibitors have revealed many side effects that heretofore 

have diminished enthusiasm for clinical application (e.g., aseptic meningitis, diarrhea, 

confusion, fatigue, involuntary muscle contractions) [75]. Nonetheless, ongoing studies with 

the anti-ActRII antibody “Bimagrumab” (BYM338) remain an eagerly anticipated focus of 

investigation [76].

Related research is focused on integrated regulatory mechanisms that determine muscle 

metabolism and growth. In part, this also relates to myostatin pathways, as myostatin also 

inhibits anabolic pathways in skeletal muscle in response to pro-growth signals (e.g., insulin 
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and insulin-like growth factor-1). Moreover, in addition to myostatin inhibition, 

supplementation of anabolic agents (e.g., testosterone) have been an active area of 

investigation. While persistent concerns regarding secondary risks of testosterone (e.g., fluid 

retention, gynecomastia, prostate tumors, and adverse lipid profiles) have diminished 

enthusiasm for clinical applications, there is still strong interest in its therapeutic potential. 

In contrast to early studies that utilized high dose testosterone, those using more 

physiological testosterone doses achieve greater safety and benefit [77]. Furthermore, as 

compared to oral formulations, transdermal or intramuscular administration is safer and 

better tolerated [78]. Furthermore, interest in selective androgen-receptor modulators 

(SARMs) like enobosarm has advanced as an alternative means of treating muscle and bone 

disorders, with relatively fewer side effects than testosterone [79].

Conclusions

Heart failure is associated with multiple skeletal muscle abnormalities (reduced lean mass, 

oxidative fiber percentage, capillarity, oxidative enzyme capacity, and mitochondrial 

volume), which impair oxygen uptake and utilization and contribute greatly to exercise 

intolerance. Large and small muscle mass exercise training induces favorable adaptations in 

skeletal muscle morphology and function (increased oxidative fiber percentage, capillarity, 

oxidative enzyme capacity, and mitochondrial volume) in patients with HFrEF. Further, 

these adaptations are associated with increased exercise tolerance. In patients with HFpEF, 

improvements in exercise tolerance following aerobic exercise training are primarily 

mediated through peripheral “non-cardiac” factors with little to no change in cardiac output. 

The contribution of skeletal muscle adaptations to improved exercise tolerance in HFpEF 

remains unknown and warrants further investigation. Furthermore, adjunctive strategies, 

both to supplement nutrition with amino acids, and to stimulate anabolic molecular 

pathways in skeletal muscle with caloric restriction are beneficial, with synergy when 

combined exercise training. Parallel investigations are exploring the utility of 

pharmacological strategies to similarly stimulate healthful molecular signaling and anabolic 

cell metabolism for older patients with sarcopenia and HF, but these efforts remain early in 

their evolution, with no immediate clinical applications.
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Abbreviations

a-vO2diff arterial-venous oxygen content difference

CO cardiac output

HF heart failure
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HFpEF heart failure with preserved ejection fraction

HFrEF heart failure with reduced ejection fraction

NYHA New York Heart Association

PCr phosphocreatine

VO2peak cardiorespiratory fitness
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Table 1.

Summary of skeletal muscle abnormalities that contribute to exercise intolerance in patients with heart failure 

with reduced or preserved ejection fraction.

Variable HFrEF vs Control HFpEF vs Control

Morphology

 Percent lean body mass ↓ [17–20, 27, 28] ↔ [80] ↓ [30]

 % type I fibers ↓ [22–24, 26] ↓ [35••]

 % type II fibers ↑ [22–24, 26] ↑ [35••]

 Capillary density ↓ [22, 23, 25, 26, 81] ↔ [24] ↓ [35••]

 Mitochondrial volume density ↓ [22–26] ↓ [36••]

 Mitochondrial enzyme density ↓ [22] ↓ [36••]

Function

 Peak exercise a-vO2diff ↔ [7, 8, 9••, 10] ↑ [82] ↓ [6••, 9••, 34] ↔ [14, 83]

 Sub-maximal exercise oxidative metabolism ↓ [15, 16••, 21, 84–88] ↓ [16••, 34]

↑ = increase; ↓ decrease; ↔ stays the same; a-vO2diff = arterial-venous oxygen content difference; HFpEF = heart failure with preserved ejection 

fraction; HFrEF = heart failure with reduced ejection fraction.
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Table 2.

Summary of exercise training-mediated skeletal muscle adaptations that contribute to improved exercise 

tolerance in patients with heart failure with reduced or preserved ejection fraction.

Variable HFrEF HFpEF

Morphology

 Lean body mass ↔ [48, 89–92] ↔ [58••]

 % type I fibers ↑ [29, 40, 48] ↔ [42, 44] Not studied.

 % type II fibers ↓ [29, 40] ↔ [42, 44] Not studied.

 Capillary density ↑ [29, 39, 42] Not studied.

 Mitochondrial volume density ↑ [29, 40, 41] Not studied.

 Mitochondrial enzyme density ↑ [29, 40–44, 48] Not studied.

Function

 Peak exercise a-vO2diff ↑ [29, 41, 93, 94] ↔ [57] ↑ [57, 61••]

 Sub-maximal exercise oxidative metabolism ↑ [91, 95–97] Not studied.

↑ = increase; ↓ decrease; ↔ stays the same; a-vO2diff = arterial-venous oxygen content difference; HFpEF = heart failure with preserved ejection 

fraction; HFrEF = heart failure with reduced ejection fraction.
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