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Abstract

Basement membrane is a highly conserved sheet-like extracellular matrix in animals, underlying 

simple and complex epithelia, and wrapping around tissues like muscles and nerves. Like the 

tissues they support, basement membranes become damaged by environmental insults. Although it 

is clear that basement membranes are repaired after damage, virtually nothing is known about this 

process. For example, it is not known how repaired basement membranes compare to undamaged 

ones, whether basement membrane components are necessary for epithelial wound closure, or 

whether there is a hierarchy of assembly that repairing basement membranes follow, similar to the 

hierarchy of assembly of embryonic basement membranes. In this report, we address these 

questions using the basement membrane of the Drosophila larval epidermis as a model system. By 

analyzing the four main basement membrane proteins – laminin, collagen IV, perlecan, and 

nidogen – we find that although basement membranes are repaired within a day after mechanical 

damage in vivo, thickened and disorganized matrix scars are evident with all four protein 

components. The new matrix proteins that repair damaged basement membranes are provided by 

distant adipose and muscle tissues rather than by the local epithelium, the same distant tissues that 

provide matrix proteins for growth of unwounded basement membranes. To identify a hierarchy of 

repair, we tested the dependency of each of the basement membrane proteins on the others for 

incorporation after damage. For proper incorporation after damage, nidogen requires laminin, and 

perlecan requires collagen IV, but surprisingly collagen IV does not to depend on laminin. Thus, 

the rules of basement membrane repair are subtly different than those for de novo assembly.
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Introduction

Basement membrane is the most ancient and conserved type of extracellular matrix in the 

animal kingdom [1], and it lies under the basal surface of epithelia and wraps around 

muscles, nerves, and other organs [2]. Basement membrane is also important for signaling, 

as it can interact with signaling ligands both to promote their activity [3] and conversely to 

constrain their diffusion [4]. Experimentally, it has been shown that basement membrane 

confers mechanical stiffness to tissues, important for shaping organs and determining 

cellular behaviors [5–9]. Because of such mechanical functions, the dynamic nature of 

basement membranes has often been overlooked, but these matrix structures expand and 

shrink along with tissue growth and destruction, and they must be repaired after injury. 

These dynamic activities occur in the context of continuing basement membrane mechanical 

functions.

Basement membranes are composed of four main types of glycoproteins and proteoglycans: 

laminin, collagen IV, nidogen, and perlecan, and these have been analyzed in vitro and in 
vivo. The first is laminin, a heterotrimeric protein that polymerizes into a two-dimensional 

scaffold. Laminin binds directly to cell-surface molecules such as integrins and 

dystroglycans, and these cell surface interactions increase the local concentration of laminin 

to promote polymerization at cell membranes [10], which appears to be the first step of 

making a new basement membrane. The second glycoprotein is collagen IV, a non-fibrillar 

collagen that assembles into a covalently reinforced sheet that gives basement membrane its 

mechanical stiffness. Although collagen IV can self-assemble in vitro [11], in vivo the de 
novo assembly of collagen IV into an embryonic basement membrane requires the presence 

of laminin in both mice and flies [12,13]. The glycoprotein nidogen binds to laminin and 

collagen IV in vitro [14–16]. Finally, perlecan is a large heparan sulfate proteoglycan [17], 

which binds with high affinity to nidogen in vitro [18]; yet in vivo, perlecan requires 

collagen IV for its deposition into basement membranes of the fly wing disc [19]. Thus, the 

binding interactions of these matrix proteins in vitro and the genetic data from animal 

studies suggest a partial hierarchy of assembly in vivo: laminin, then collagen IV, then 

perlecan.

In contrast with basement membrane assembly, there is a paucity of information about how 

the basement membrane is repaired after damage. Repairing basement membrane is 

important, as epidermal basement membranes become damaged after sun (UV) exposure, 

possibly contributing to skin aging [20]; damage of the glomerular basement membrane 

leads to renal disease [21]; and basement membrane repair after corneal injury appears to 

reverse injury-induced visual haze [22]. The repair of injury-induced basement membrane 

damage has been studied primarily in the cornea. When the corneal epithelium and adjacent 

basement membrane were removed in experimentally-induced wounds, epithelial cells 

closed the wounds within 4–6 days. Around this time, patches of repaired basement 

membrane were evident, and after 4 weeks increased levels of laminin and collagen IV were 

detected [23]. However, the repaired basement membrane became functional in terms of cell 

adhesion only after months [24]. These studies establish that the basement membrane can be 

repaired after wounding and suggest it may be altered after repair. To date, no studies have 

manipulated the various basement membrane components to examine the effect on its repair.
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We have chosen to analyze basement membrane repair in the fruit fly, Drosophila 
melanogaster. Like vertebrates, Drosophila has the same core conserved basement 

membrane components of laminin, collagen IV, nidogen, and perlecan. An advantage of 

Drosophila over vertebrates, however, is that there are far fewer genes encoding each 

component, making it easier to eliminate components of basement membranes. For example, 

targeting LanB1 knocks down all laminin heterotrimers; targeting either vkg or Col4a1 
knocks down all collagen IV heterotrimers; targeting Ndg knocks down the single nidogen 

gene, and targeting trol knocks down the single perlecan gene [9]. The sophisticated genetic 

tools of Drosophila further allow for spatial and temporal knockdown of each gene. Finally, 

each of these core basement membrane proteins has been tagged with GFP to permit easy 

visualization.

In this study, we analyze the repair of the epidermal basement membrane in larvae after a 

mechanical wound about 100–200 µm across. In similar Drosophila larval wounds, it has 

been observed that basement membrane is present on epidermal cells as they migrate to 

close the wound [25]. Although this observation seems to suggest that the epidermal cells 

secrete the repairing basement membrane components, we report here that both unwounded 

and repaired epidermal basement membrane is assembled from proteins secreted from 

adipose and muscle tissue. Further, we show that basement membrane is repaired within 24h 

after damage, although each component repairs with a visible scar. We investigate the 

requirements for assembly and find that collagen IV is incorporated into these wound sites 

independently of the synthesis of new laminin, unlike newly assembled embryonic basement 

membranes. Not every protein incorporates independently, however, because we find that 

nidogen requires laminin, and perlecan requires collagen IV for proper assembly into the 

repairing basement membrane.

Results

A lesion in the basement membrane at the site of repair

To analyze basement membrane repair, we utilized an established larval epidermal pinch-

wound assay first described by Galko et al [25]. The larval epidermis is an epithelial 

monolayer of extremely flat cells, roughly 40 µm in diameter and 3 µm thick, with highly 

polyploid nuclei. On the apical side these cells secrete a thick chitinous cuticle exoskeleton, 

and on the basal side they sit on a basement membrane, the source of which is not known. 

To generate epidermal wounds, larvae were pinched with blunted forceps on the dorsal side 

for approximately 10 seconds to inflict cellular and basement membrane damage without 

breaking the outer cuticle, resulting in a sterile wound that is not visually occluded by 

hemolymph clotting (Fig. 1A,B). By 24h after wounding, the wounds had closed. Pinch 

wounding created a cuticle indentation mirroring the damage to the underlying epithelium, 

and this indentation remained visible by DIC optics even 24 h after wounding, providing a 

reliable landmark for the location of the wound during and after repair (Fig. 1B).

To visualize basement membrane proteins, we used a functional GFP-fusion of each of the 

four main basement membrane proteins (Fig. 1C-F). Collagen IV and perlecan were imaged 

with vkg-GFP and trol-GFP protein-traps respectively, in which a GFP exon is inserted into 

the genomic region, resulting in the GFP fluorescent epitope spliced in-frame into the 
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endogenous protein. These two GFP-fusion proteins are fully functional, as evidenced by 

their viability as homozygotes. Functional LamininB1 (LanB1)-GFP was provided as a 

transgene, a recombineered 44 kb genomic fragment encoding a C-terminal fusion of 

LanB1-GFP that fully rescued a LanB1 mutant ([26] and our data not shown). Nidogen 
(Ndg)-GFP was also provided as a transgene, a recombineered 36 kb genomic fragment 

encoding a C-terminal fusion of Nidogen-GFP [26]. When imaged with each of these fusion 

proteins, the unwounded epidermal basement membrane appeared as a relatively smooth flat 

surface (Fig. 1C-F), although the epidermal fluorescence from Nidogen-GFP was 

considerably fainter than the other three fusion proteins. We refer to these four GFP fusion 

proteins collectively as BM-GFP.

After pinch-wounding, basement membrane and the overlying cells were visibly damaged at 

the site of the wound (Fig. 1G-J and Fig. S1), and the dimensions of damage were similar 

for both. Within 24 hours after injury, the basement membrane repaired to a continuous 

sheet in control animals. Strikingly, the basement membrane formed a lesion at the site of 

repair, evident with all four BM-GFP proteins (Fig. 1K-N). This lesion was characterized by 

regions of increased fluorescence, fibril-like in appearance, within the site of repair. These 

fibril-like structures were thicker than the unwounded basement membrane and were largely 

excluded from areas occupied by cell nuclei (Fig. 2). Furthermore, the thickening of 

basement membrane appeared to begin at the wound boundaries within 2 hours after pinch-

wounding (Fig. S1). We refer to the matrix lesion that appears after repair as a basement 

membrane scar. As shown in Figs. 1 and 2, the basement membrane scar is typified by 

increased abundance of the basement membrane proteins collagen IV, laminin, perlecan, and 

nidogen in the area where the basement membrane was repaired, resulting in a thicker and 

more disorganized region of extracellular matrix.

The sources of epithelial basement membrane are the same during normal growth and 
wound repair.

Since the repaired basement membrane within pinch wounds is morphologically distinct 

from the surrounding, undamaged basement membrane, the mechanism of repair may also 

be distinct from normal basement membrane assembly as the animal grows. One way repair 

might differ from assembly is in the source of each protein. During the 4 days after 

embryogenesis to the third larval instar, there is a dramatic ~40-fold expansion in epidermal 

area (8-fold in length and 5-fold in circumference [27]), requiring a similar expansion in 

basement membrane, but the source of these matrix proteins is not known. One possibility 

for either the growth source or the wound source is the epidermal cells. However, in 

Drosophila, there are many examples of basement membranes whose component proteins 

are derived from cellular sources that are not part of the tissue of a given basement 

membrane [9]. For example, as the Drosophila embryo develops, migrating hemocytes 

deposit matrix proteins to create de novo basement membrane throughout the tissues of the 

embryo, including the epidermis [28,29]. Intriguingly, after larval epidermal wounding, 

hemocytes are observed at the site of damage [30], so it seemed plausible that they may 

generate the matrix components required for basement membrane repair. Further, some 

vertebrate hemocytes secrete perlecan thought to promote wound repair [31]. A third 

candidate source is adipose tissue: other larval organs, including the wing disc and the 
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ventral nerve cord, expand their basement membranes during growth by incorporating 

collagen IV secreted into the hemolymph from the fat body (Drosophila adipose tissue that 

regulates metabolism and immunity [19]). It seemed plausible that epidermal basement 

membrane might also incorporate collagen IV secreted from the fat body.

To determine the source of basement membrane in unwounded epidermis, we controlled the 

expression of each of the four BM-GFP fusion proteins in each of these candidate tissues, 

i.e., epidermis, hemocytes, and fat body, using an RNAi-based strategy. Each candidate 

tissue was engineered to specifically and constitutively express double-stranded RNA 

against GFP (dsRNAGFP) in flies that contained a single allele of a BM-GFP. Importantly, 

expression of the wild-type matrix protein continued as normal throughout the animal’s life 

so that the basement membrane itself was never disrupted, eliminating any compensatory 

mechanisms that might lead to expression from a different source tissue (Fig. 3A). The 

presence or absence of GFP in the epidermal basement membrane was used to assess the 

contribution of each candidate tissue (Fig. 3B). To control for the possibility of incomplete 

knockdown of GFP, we compared the basement membrane fluorescence after candidate 

tissue knockdowns to the fluorescence after ubiquitous knockdown with Tub-Gal4 and to the 

autofluorescence within a tissue (Fig. 3C-F). Since the reliability of these experiments 

depended on the specificity of each driver used to express dsRNAGFP, great care was taken 

to assess their specificity (Fig. S2), and we confirmed that c564-Gal4 and Hml-Gal4 were 

each specific to fat and hemocytes, respectively. Because the pan-epidermal drivers A58-
Gal4 and e22C-Gal4 were not specific to epidermis but also expressed in the fat body of 3rd 

instar larvae (Fig. S2F, G), we knocked down GFP in the epidermis with pnr-Gal4, 

expressed in large patches along the dorsal side of the epidermis. Although the pattern of 

pnr-Gal4 was not ubiquitous across the epidermis, we did not observe any pattern or 

patchiness to the epidermal BM fluorescence when each BM-GFP was knocked down with 

pnr-Gal4, nor did we measure any reduction in total fluorescence (Fig. 3).

In unwounded epidermal basement membrane, laminin, collagen IV, and perlecan were 

found to derive from the fat body. For collagen IV-GFP, expression of dsRNAGFP in the fat 

body completely eliminated fluorescence from the epidermal basement membrane, with no 

significant difference between fat-body knockdown and ubiquitous knockdown (Fig. 3D). 

For laminin-GFP, expression of dsRNAGFP in the fat body eliminated 62% of the 

fluorescence from the epidermal basement membrane compared to ubiquitous knockdown 

(Fig. 3C); and for perlecan-GFP, fat-body knockdown eliminated 73% of the fluorescence 

(Fig. 3E). Thus, although most of the laminin and perlecan in the epidermal basement 

membrane derive from the fat body, there appears to be a second source that makes a minor 

contribution. One possibility for this source is leftover laminin-GFP and perlecan-GFP from 

embryonic epidermal basement membrane deposited by hemocytes, or even from assembled 

basement membrane around other larval tissues (see Discussion).

To our surprise, nidogen in unwounded epidermal basement membrane did not originate 

from the fat body, hemocytes, or epidermis. We examined available expression data on 

nidogen and found that it is highly expressed in muscle progenitors [32]. After confirming 

the specificity of Mhc-Gal4 for muscles (Fig. S2D), we tested muscle as a source of each 
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basement membrane protein in the epidermis; we found that muscle contributes all of the 

nidogen to the epidermis (Fig. 3F), but does not contribute collagen IV, laminin, or perlecan.

We next asked if the same cellular source that supplied basement membrane proteins to 

growing epidermis also supplied basement membrane proteins for repair after epidermal 

wounding. To address this question, we focused on BM-GFP increased fluorescence within 

the wounded area compared to the background unwounded area: in control animals, the 

average fluorescence intensity of each of the four BM-GFPs was about two-fold brighter 

within the wound than outside the wound (Fig. 4). We reasoned that if the source for growth 

and repair were different, then when we knocked down GFP in the growth source, the 

repaired basement membrane should retain BM-GFP when the undamaged regions lost GFP, 

causing an increase in the ratio of fluorescence inside/outside the wound. Conversely, if the 

source for growth and repair were the same, then when we knocked down GFP in the growth 

source, significantly less BM-GFP would be incorporated into both the repairing basement 

membrane and the surrounding unwounded matrix, causing a reduction in fluorescence 

intensity inside the wound and a constant or decreased ratio inside/outside (see Fig. 4A for a 

schematic). For all four basement membrane proteins, we found that the ratio of 

fluorescence intensity decreased when dsRNAGFP knocked down the BM-GFP in the growth 

source tissue. Thus, our results indicated that basement membrane proteins are secreted from 

a source tissue and can be incorporated into either expanding basement membrane or 

damaged basement membrane, with no significant alternative source during wound repair 

(Fig. 4).

Epidermal cells close wounds in the absence of a fully repaired basement membrane

Next, we sought to test the function of each of the four major basement membrane proteins 

in wound repair. Because knocking down or mutating laminin, collagen IV, or perlecan is 

lethal in Drosophila [13,33,34], we used the temperature sensitive Gal4-Gal80ts system to 

express dsRNA against each basement membrane component ubiquitously throughout larvae 

(with Tub-Gal4), depleting the animals of newly synthesized basement membrane protein 

after embryogenesis. Each larva was allowed to grow to 3rd instar, wounded, and allowed to 

recover for 24h (see Experimental Procedures). Epidermal cells were able to close the 

wounds when each of the basement membrane proteins was depleted individually (Fig. 5).

In these basement membrane knockdown experiments, larvae knocked down for laminin or 

collagen IV were observed to be smaller than controls, and those lacking laminin, collagen 

IV, or perlecan died before adulthood. We expected that as a larva grew, the basement 

membrane proteins available in the hemolymph at the onset of knockdown would be 

assembled into extracellular matrices and thus be depleted from the hemolymph. We 

expected that these two pools could be identified biochemically as a soluble fraction (in the 

hemolymph) and an insoluble fraction (in the assembled basement membrane). To measure 

the extent of knockdown, we crossed in one copy of a BM-GFP into the knockdown 

background and performed anti-GFP western blots on soluble and insoluble larval fractions, 

as the GFP-tagged protein would be targeted by the same mechanism as the untagged 

protein. In control larvae, we had limited success in identifying intact basement membrane 

proteins in the soluble fraction (Fig. S3), although their degradation products could be 
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readily detected, making it difficult to reproducibly quantify knockdown efficiency in the 

soluble fractions; but all basement membrane proteins could be reproducibly identified and 

quantified in the insoluble fraction of larval lysates. In insoluble fractions from whole 

animals, the average depletion efficiency was about 71% for LanB1, 67% for collagen IV α2 

(Viking), 93% for perlecan, and 76% for nidogen, and it appears that the reduction of 

soluble proteins was even greater (Fig. S3 and Fig. 7C). An important validation of our 

strategy came from imaging the wounds in the knockdown animals: in every case the 

knocked-down BM-GFP protein was severely diminished within wound area 24h after 

wounding, even though the cells had closed the wound (Fig. 6 B,H,N,T). Thus, the 

knockdown strategy was sufficient to impair basement membrane repair.

Most matrix proteins assemble independently of others during basement membrane repair.

It was previously established that de novo basement membrane assembly occurs through a 

strict hierarchy: laminin creates a foundation that promotes collagen IV assembly, which in 

turn recruits perlecan [12,13,19]. We sought to determine if this hierarchy of assembly held 

true during wound repair by analyzing the scar made by each of the four BM-GFP proteins 

when each basement membrane protein was knocked down. We used the same temporally 

conditional, spatially ubiquitous strategy of knocking down basement membrane proteins as 

for examining wound closure, except that we imaged a BM-GFP rather than cells (Fig. 6). 

Scars in control animals were easily recognizable and consistent, characterized by regions of 

highly fluorescent BM-GFP staining interspersed with regions of low-intensity fluorescence. 

We refer to this juxtaposition of high/low fluorescence within the wound as fluorescence 

anisotropy. To address the requirements for basement membrane assembly in a quantitative 

manner, we measured the fluorescence anisotropy within the wound boundaries of each 

sample by measuring the mean fluorescence of the brightest 5% of pixels within the 

unobstructed wound bed, normalized to the area of low fluorescence within each wound (see 

Experimental Procedures). Because we found some initial changes in the scars of collagen 

IV and laminin knockdowns, we tested second dsRNA lines to knock down collagen and 

laminin, to establish specificity. In agreement with embryo de novo assembly data, laminin 

deposition into the repaired basement membrane did not require any of the other basement 

membrane proteins (Figure 6A-E, U). Although the intensity of the laminin scar decreased 

modestly in some samples when collagen IV α2 (vkg) was knocked down, this apparent 

change was not statistically significant (p ≥ 0.05) nor was it reproducible when we knocked 

down collagen IV α1 (Col4a1), the obligate partner of collagen IV α2 in the Drosophila 
collagen IV heterotrimer. Depletion of perlecan or nidogen had no effect on laminin 

anisotropy within the repaired wound (Figure 6U). Therefore, we concluded that laminin 

deposition into the basement membrane scar was independent from any other basement 

membrane proteins.

In contrast to what has been reported in embryos, collagen IV deposition into the repaired 

basement membrane was not perturbed by the depletion of other basement membrane 

proteins, including the depletion of laminin (Figure 6F-J, V), a surprising result that we 

tested further (see next section). Next, we analyzed perlecan deposition into the repaired 

basement membrane and found that it was significantly altered by the depletion of collagen 

IV (Figure 6K-O, W). Although the accumulation of perlecan in the repaired basement 
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membrane did not require collagen IV like it does in the growing wing disc [19], when 

either collagen IVα2 or collagen IVα1 were depleted, perlecan deposition was more 

uniform within the repaired region of basement membrane (Fig. 6M and Fig. S4D), 

appearing significantly different from the anisotropy of perlecan in control wounds (Fig. 

6W). Finally, for nidogen, measurements of fluorescence anisotropy within the wound 

showed a significant difference only in the case of laminin depletion (Fig. 6P-T, X). These 

results were reproduced with two different dsRNA constructs targeting the laminin gene. 

When laminin was knocked down, nidogen-GFP fluorescence decreased outside the wound 

area as well as in the scar, indicating that laminin is required for nidogen recruitment to the 

basement membrane during assembly and/or growth, as well as repair. Thus, in repairing 

basement membranes, laminin and collagen IV assemble independently of the other protein 

components, whereas nidogen depends on laminin and perlecan is organized by collagen IV.

Whenever either subunit of collagen IV was knocked down, the basement membrane was 

noticeably more fragile upon dissection, consistent with the role of collagen IV in 

determining the mechanical strength of basement membrane. In these knockdowns, the 

appearance of all the basement membrane proteins was visibly altered both inside and 

outside the wound, as though the entire basement membrane was scarred even outside the 

intended wound area, which we find a plausible outcome when collagen IV is not present for 

support. Because of this extensive change outside the wound, the scar within the wound 

appeared to spread across the wound bed rather than be focused in the center as in controls 

(see Figs. 6 and S4). This apparent increase in scarring is evident with all the basement 

membrane proteins in collagen IV knockdowns.

Collagen IV assembles into basement membrane scars by a different mechanism than de 
novo assembly.

The finding that collagen IV did not require laminin to assemble in wounds suggested two 

possibilities: 1) collagen IV assembly into basement-membrane scars occurs via a distinct 

mechanism from that of de novo assembly, or 2) the laminin depletion was not efficient 

enough to observe a phenotype. We reasoned that if the de novo and repair mechanisms are 

the same, and collagen IV requires only a limited amount of laminin to assemble, then a 

similar efficiency of knockdown would be enough to prevent collagen IV deposition into the 

basement membrane during de novo assembly in embryos. Using the same LanB1-GFP and 

dsRNA constructs as for larval wounds, we assessed the efficiency of laminin knockdown in 

embryos by measuring the fluorescence of Laminin-GFP in stage 16–17 embryos. 

Fluorescence levels in LanB1 knockdown embryos were 32% that of controls (Fig. 7A-B). 

This knockdown efficiency was remarkably similar to what we measured in larvae via 

western blot, in which Laminin-GFP levels were 29% that of controls (Fig. 7C, Fig. S3). 

Next we assessed collagen IV assembly in these LanB1 knockdown embryos, and found that 

collagen IV-GFP deposition into the basement membrane was disrupted (Fig. 7D) as 

previously described [12,13], but unlike what we observed for wound repair in larvae. These 

results indicate that basement membrane repair occurs via a distinct mechanism from that of 

de novo assembly.
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Discussion

In this report, we systematically analyzed aspects of basement membrane repair in a 

genetically tractable system, Drosophila larval epidermis. Importantly, although damaged 

basement membrane can be repaired to a continuous sheet within 24 h after the infliction of 

a ~100 µm wound, this repaired sheet has a visibly altered structure that is non-uniform with 

respect to all four basement membrane proteins. Thus, basement membrane repairs through 

formation of a scar. Comparing basement membrane repair to normal growth, we find that 

basement membrane proteins originate from the same sources for repair and growth. 

However, there are some differences between repair and de novo assembly mechanisms. 

Similar to de novo assembly, perlecan depends on collagen IV for proper incorporation into 

the basement membrane scar. Yet unlike de novo assembly, collagen IV does not depend on 

laminin for its incorporation into the scar, even though similar knockdown of laminin did 

prevent collagen IV incorporation into new basement membranes in embryos. Though not 

required for collagen IV, laminin is required for the deposition of nidogen into the growing 

and repairing basement membrane. The dependency of nidogen on laminin in vivo has not 

been previously reported, although nidogen has been reported to bind to laminin in vitro 
[14– 16].

This is the first study we are aware of that demonstrates a scar in the basement membrane 

following wound repair. The basement membrane scar is characterized by increased 

deposition of the core basement membrane components laminin, collagen IV, perlecan, and 

nidogen into the repaired wound, often displaying a fibril-like appearance. The formation of 

a scar may explain why repaired basement membrane does not recover its full adhesive 

function for months following corneal wound repair [24]. It is not possible to test whether 

the basement membrane scar recedes over time in larvae because they undergo 

metamorphosis and replace the epidermis only a few hours after our experiments ended. It is 

possible that the presence of a continuing basement membrane scar in larvae 24h after 

wounding may trigger changes in gene expression in cells that contact the scar. For example, 

levels of the matrix remodeling protease Mmp1 remain elevated long after re-

epithelialization [36], and levels of the actin binding protein Profilin remain elevated across 

the original wound bed even 24 h after wounding [35].

We examined the requirement for laminin, collagen IV, perlecan, and nidogen for the 

epidermis to close the wound, and interestingly none of these basement membrane proteins 

is required individually, indicating that none of these individual proteins is important as a 

provisional matrix for cells to migrate on during larval epidermal wound closure. A previous 

study showed that basement membrane is visible by electron microscopy (EM) on the basal 

surface of larval epidermal cells during the process of wound closure, as they migrate toward 

the wound, and similarly, we observe that the edge of the basement membrane appears 

coincident with the leading edge of the cells during wound closure. The lack of genetic 

requirement for wound closure, combined with the observations that matrix closes with the 

cells, suggests that the epidermal cells assemble the basement membrane during migration 

and that they migrate on the clot or cuticle on the apical side of the epidermis [25].
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Although it would be easy to assume that the basement membrane components were 

secreted by the wound-responsive epidermal cells in a cell-autonomous manner, our data 

contradict that assumption. Previous studies have identified three Drosophila cell types that 

generate the protein components of basement membranes: blood cells responsible for 

embryonic basement membranes [28,29], fat-body cells responsible for some components of 

the larval imaginal disc basement membranes [19], and follicle epithelial cells responsible 

for reinforcing the basement membrane surrounding the growing oocyte [37,38]. We find 

that laminin, collagen IV, and perlecan all originate from the fat body, a distant adipose 

tissue. In contrast, epidermal nidogen originates from the muscles. Body wall muscles 

directly contact the epidermis but do not completely cover it, so that nidogen must diffuse 

from its cellular source like the other matrix proteins [39]. Thus, our analysis identified a 

fourth tissue source of basement membrane in Drosophila. These results indicate that, like 

for basement membrane growth, basement membrane repair is accomplished by utilizing 

soluble matrix proteins that reach damaged basement membranes simply by diffusing within 

the hemolymph, which bathes the basement membranes of the larval body. Interestingly, in 

corneal basement membrane wounds, nidogen and perlecan originate from non-epithelial 

stromal tissues [40], suggesting that the non-autonomy of basement membrane components 

is not limited to Drosophila.

There are many reasons to analyze basement membrane repair in vivo. Matrix and tissue 

architecture cannot easily be recapitulated in cell culture systems, and because repair is a 

cell non-autonomous process, it is important that all cell types of the organism are able to 

participate. By using Drosophila larvae, we have been able to capitalize on these strengths, 

using the flexible genetic approaches of Drosophila to identify source cells and requirements 

for assembly. However, this in-vivo approach has limitations as well. In order to generate a 

functional basement membrane before damage, we used a conditional RNAi-based 

knockdown strategy to deplete basement membrane components after assembly and before 

wounding. Because basement membrane components are secreted into hemolymph by 

distant tissues, we had hoped that inducing RNAi would deplete the soluble (hemolymph) 

fraction of protein while sparing the insoluble (assembled) fraction. A significant portion of 

each larval matrix protein is soluble, as indicated by fractionating control lysates followed 

by western blotting. However, western blots showed that the insoluble fractions were 

significantly reduced after knockdown, ranging from 67% loss (collagen IV) to 93% loss 

(perlecan). The reduction of protein from the assembled basement membrane no doubt 

represents “thinning” of basement membranes due to continued matrix growth over two days 

of knockdown, and the reduction may be augmented by a concentration-dependent 

disassembly of insoluble basement membrane to restore the soluble portion. If soluble 

protein is released from deposited basement membranes, it would generate a pool of 

available protein in the hemolymph that cannot be experimentally eliminated, in addition to 

the inherent leakiness of RNAi that allows a small amount of continued protein synthesis. 

Free exchange between polymerized basement membrane protein and soluble subunits 

seems especially reasonable for laminin, which is polymerized via many weak interactions 

[41]. It is possible that exchange of subunits between soluble and deposited basement 

membrane may explain the second minor source of laminin and/or perlecan in epidermal 

growth, and this pool may also contribute to basement membrane repair after wounding.
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The observation that the organization of perlecan within the repaired wound is altered in the 

absence of collagen IV is similar to previous studies showing that collagen IV is required for 

perlecan deposition during the growth of several larval basement membranes [19]. However, 

the phenotype we observed was subtly different: in the absence of collagen IV, perlecan was 

present within the repaired basement membrane but its appearance was altered. The heparan 

sulfate chains that characterize heparan sulfate proteoglycans like perlecan can interact with 

hundreds of different proteins [42]. It is possible that the absence of collagen IV from the 

repaired basement membrane liberates perlecan to bind non-specifically with other 

molecules, creating the fluorescent haze we observed around wounds repaired in the absence 

of collagen IV. Alternatively, perlecan may bind specifically to multiple basement membrane 

proteins in vivo.

It was surprising to find that collagen IV deposition is not sensitive to laminin levels in the 

repaired wound. This lack of dependency stands in contrast to data showing laminin to be 

crucial for collagen IV deposition in the developing embryo [12,13]. The difference in 

wound repair may be that collagen IV is already present in the epidermal basement 

membrane prior to the depletion of laminin. Upon laminin depletion, collagen IV is 

maintained outside the wound borders after laminin knockdown. This assembled collagen IV 

matrix may provide scaffolding from which newly deposited collagen IV can self-assemble, 

extending into the repaired wound independently of laminin. In contrast, the deposition of 

nidogen into the basement membrane scar appeared to be entirely dependent on the presence 

of laminin. Though nidogen has been shown to bind laminin, collagen IV, and perlecan [43], 

our analysis indicates that laminin is the crucial component for nidogen recruitment into the 

basement membrane scar.

Experimental Procedures

Fly husbandry

Flies were maintained on cornmeal-molasses media supplemented with dry yeast. Flies are 

listed in Table 1. For all experiments with GFP-labeled BM proteins, flies contained a single 

copy of the GFP-labeled protein. For basement membrane source experiments, crosses were 

carried out at 25°C (Fig. 8A). For functional experiments requiring conditional knockdown 

with Gal4/Gal80ts, including basement membrane order of assembly experiments, the 

following conditions were used: for LanB1, vkg, and trol knockdown experiments, parents 

were allowed to pre-mate for 2–3 days at 18°C (permissive temperature) and then moved to 

fresh bottles to lay for 24 h at 18°C. Parents were removed and embryos developed an 

additional 24 h at 18°C for LanB1 and trol knockdown experiments, or for an additional 48 

h for vkg knockdown experiments. Bottles were then shifted to 29°C (knockdown 

conditions) and larvae developed to the foraging 3rd instar stage, approximately 4 days for 

LanB1 and trol knockdown experiments and 3.5 days for vkg knockdown experiments (Fig. 

8B). 3rd instar larvae were identified by branching of the anterior spiracles. For Ndg 
knockdown experiments, crosses and progeny were maintained at 29°C.
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Epidermal Pinch-Wounding

Third-instar larvae were pinched on the dorsal side between the hair stripes segments A3 and 

A4 for approximately 10 sec with blunted #5 dissecting forceps (Dumont), as adapted from 

Galko and Krasnow (2004). Care was taken to not puncture the cuticle. However, in 

Tub>dsRNALanB1 larvae the cuticle was more easily damaged than in other larvae, leading 

to small areas of melanization, which autofluoresce in the green channel. Melanization was 

most visible when Ndg-GFP was imaged (see Fig. 6Q) because the GFP signal is 

particularly faint in the LanB1 knockdown. After wounding, larvae recovered on grape juice 

plates, with access to wet yeast, for 24 h. If larvae were raised at 29°C, then recovery from 

wounding was also at 29°C; otherwise recovery was at 25°C.

Larval dissection, fixation, and immunohistochemistry

Larvae were decapitated at the cerebral tracheal branch in chilled PBS and filleted along the 

ventral side. Dissections were performed in PBS + 4% paraformaldehyde, and immediately 

larval pelts were pinned flat and fixed for 20 min. Samples were washed at room 

temperature (RT) in PBS + 0.2% Triton X-100 (PBT-X), 2X 5 min. each and 1× 30 min. The 

pelts were blocked in PBT-X + 5% normal goat serum + 0.02% NaN3 for 3 h at RT and then 

incubated in 1° antibodies overnight at 4°C. The following day, pelts were washed twice in 

PBT-X (1 h per wash) at RT followed by incubation in 2° antibodies for 2 h at RT. Lastly, 

they were washed in PBT-X for 2 h at RT and quickly washed in PBS prior to mounting on 

glass slides in Vectashield mounting media with DAPI (Vector Laboratories, Burlingame, 

CA). For antibodies, rabbit Anti-GFP (Torrey Pines Biolabs, Secaucus, NJ, catalog number 

TP401) was used at a 1:200 dilution for imaging Vkg-GFP, Trol-GFP and LanB1-GFP. For 

imaging Ndg-GFP, Rabbit Anti-GFP (Abcam, catalog number ab6556) was used at a 1:1000 

dilution. For imaging FasIII, Mouse 7G10 Anti-FasIII (Developmental Studies Hybridoma 

Bank, Iowa City, IA) was used at a 1:10 dilution. Secondary antibodies (Jackson 

Immunoresearch Laboratories, West Grove, PA) were FITC Donkey Anti-Rabbit (code 

number 711–095-152) and Cy3 Goat Anti-Mouse (code number 115–165-206), each used at 

1:500.

Gal4 Driver Characterization

Gal4 drivers were used to constitutively express GFP in each of the candidate tissues tested. 

Upon reaching the 3rd instar stage, larvae were dissected and fixed as described above. The 

entire animal carcass was inspected for GFP expression, with special attention paid to the 

epidermis, muscles, and fat body. Exposure levels were kept the same between tissues of the 

same animal in Fig. S2A-D. For Hml-Gal4 expression, intact larvae were imaged to prevent 

loss of hemocytes upon dissection.

Microscopy

To image larval pelts and fixed embryos, optical sections were taken using a Zeiss Apotome 

mounted to an Axio Imager M2 using the following objectives: 10x/0.3 EC Plan-NeoFluar, 

20x/0.8 Plan-Apochromat, or 40x/1.3 EC Plan-NeoFluar. Images were acquired with an 

AxioCam MRm (Zeiss, Thornwood, NY) camera, X-Cite 120Q light source (Excelitas 

Technologies, Waltham, MA) and AxioVision 4.8 (Zeiss) software. All stacks were exported 
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to ImageJ, version 1.48v (National Institutes of Health, Bethesda, MD), as 16-bit, grayscale, 

ZVI files for analysis. For basement membrane source experiments in unwounded larvae, 

exposure levels were matched to control samples imaged on the same day. For all other 

experiments, exposure levels were optimized independently. For live embryos, images were 

acquired with a Zeiss Axiocam MRc camera mounted to a Zeiss Lumar V12 

stereomicroscope, using a Neolumar S 1.5x objective, X-Cite 120Q light source and 

Axiovision 4.8 software. Images were exported to ImageJ version 1.48v, as 8-bit TIFF files, 

for analysis.

Mean fluorescence intensity measurements and analysis

For basement membrane source experiments (Fig. 3), knock-down animals were always 

stained for GFP simultaneously with control animals (no knockdown). After staining, a 

representative region of basement membrane was imaged for each larva by compiling optical 

sections into a maximum projection, saved as a TIFF file in ImageJ 1.48v software. The 

ImageJ Measure tool was used to record mean fluorescence intensity for each animal from 

representative X-Y regions of basement membrane, selected by the absence of obscuring 

tissue or tears. The mean intensity for each animal was imported into Microsoft Excel and 

normalized to the mean of the control (no knockdown) samples that were stained 

simultaneously. Normalizing the mean fluorescence for each larva allowed fluorescence to 

be compared between experiments without concern for fluctuations in illumination intensity 

or antibody batches. Normalized data was imported into GraphPad Prism 7.0d and an 

ANOVA test was used to determine statistical significance among all datasets. An unpaired 

t-test coupled with a Bonferroni correction was then used to determine significance between 

two data sets of interest. For these experiments Trol-GFP was analyzed only in female larvae 

because of dosage compensation on the X chromosome.

For wounded samples (Fig. 4), mean fluorescence was measured from max projections in 

the repaired region (defined by the indentation of the cuticle following pinch-wounding) and 

in a representative unwounded region within the same image. The ratio between the two 

measurements for each sample was then calculated in Excel, and the ratio data was plotted 

and analyzed in GraphPad. Unpaired t-tests were used to determine significance between 

control and experimental datasets.

For embryo samples (Fig. 7), images were imported into ImageJ version 1.48v and the 

Measure tool was used to measure average fluorescence intensity of whole embryos. An 

ANOVA test was used to determine statistical significance among all data sets, followed by 

unpaired t-tests coupled with a Bonferroni correction to determine significance between 

specific data sets.

Fluorescence anisotropy measurements and analysis

Using ImageJ, optical sections were compiled into maximum projections and saved as TIFF 

files for analysis. Because the least fluorescence within a repaired wound area was found 

underneath the nuclei, we calculated the mean fluorescence under the nuclei by tracing the 

nuclei within the cuticle-indentation borders (marking the wound) and calculating the mean 

fluorescence within these sub-nuclear regions. To reproducibly identify the maximal 
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intensity of basement membrane deposition within the wound, we used the Threshold and 

Measure tools to record the mean of the top 5% of pixel values. Fluorescence anisotropy 

within the repaired wound was calculated as the ratio of the top 5% pixel values over the 

subnuclear fluorescence. This ratio was imported into GraphPad Prism 7.0d and an ANOVA 

test was used determine statistical difference among all datasets. Unpaired t-tests coupled 

with a Bonferroni correction were used to determine significance between specific datasets.

Embryo collection, fixation, and immunohistochemistry

Fattened females were allowed to lay eggs on grape juice-agar plates with wet yeast at 29°C 

for 4 h, and embryos were aged at 29°C for 9–10 h. To collect embryos for live measurement 

of LanB1-GFP fluorescence, embryos were rinsed into a beaker with 50% bleach and 

swirled for 2 min. to remove the chorion and then washed with water and gently blotted dry, 

then transferred to grape plates and immediately imaged on a fluorescence stereomicroscope 

(see above). LanB1-GFP, tub-Gal4/+; UAS-dsRNALanB1 were compared to siblings lacking 

UAS-dsRNALanB1, identified by the presence or absence of the red balancer TM3, sChFP.

To analyze Vkg-GFP assembly along the ventral nerve cord when LanB1 was constitutively 

knocked down in embryos, embryos of genotype vkgGFP205/+; TubGal4/UAS-dsRNALanB1 

were compared to vkgGFP205/+; TubGal4/+. Embryos were laid and aged as above. For 

fixation, embryos were transferred into 2 ml of 100% heptane in a glass vial. Next, 2 ml of 

16% formaldehyde was added to the vial, bringing the embryos to the interface between 

heptane and formaldehyde, and the vial was shaken for 10 min. The formaldehyde and 

heptane were removed and replaced with 5 ml of fresh 100% heptane. To remove the 

vitelline membrane, 5 ml of 100% methanol was added and the vial was immediately shaken 

vigorously by hand for 30 s. The heptane and methanol were removed and replaced with 2 

ml fresh methanol and transferred to an Eppendorf tube. Embryos were rehydrated and 

washed twice in PBS + 0.2% Triton X-100 (PBT-X) and blocked in 1% bovine serum 

albumin (BSA) in PBT-X for 1 h on a rocker at RT. For imaging Vkg-GFP, mouse anti-GFP 

antibodies (UC Davis catalog # 73–131 and # 73–132) were used at a 1:5 dilution, rocking 

overnight at 4°C. The following day, embryos were washed in PBT-X three times for 30 min 

each, rocking at RT. Next, embryos were incubated in FITC Goat anti-Mouse (Jackson 

Immunoresearch Laboratories, West Grove, PA, code number 115–095-206) diluted 1:500 

for 3 h rocking at RT. Finally, embryos were washed three times in PBT-X for 30 min each 

and once in PBS. All PBS was removed and embryos were resuspended in Vectashield 

mounting media with DAPI (Vector Laboratories, Burlingame, CA) prior to being mounted 

on a glass slide. To assess collagen IV assembly into basement membranes around the 

ventral nerve cord, stage 16–17 embryos were identified by gut morphology. LanB1 
knockdown embryos were identified by the absence of an mCherry balancer. The 

knockdown embryos were extremely fragile, and 3 intact embryos were identified. Collagen 

IV was not assembled along the ventral nerve cord grooves in any of them.

Western Blots

From 10–100 3rd-instar larvae were frozen in liquid nitrogen and ground to a powder with a 

mortar and pestle; each larva yielded ~1 mg powder. The powder was re-suspended to a 

concentration of 50 mg/ml in ice-cold RIPA buffer (10 mM Tris-Cl pH = 8.0, 1 mM EDTA, 
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1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS, 140 mM NaCl) plus 1x HALT 

protease inhibitor cocktail (Thermo Scientific). Samples were centrifuged for 15 min at 4°C 

at 16,110 x g. The supernatant, containing the soluble fraction, was removed and mixed with 

Laemmli sample buffer (1X). The pellet, containing the insoluble fraction, was washed 3X 

in 1 ml chilled RIPA buffer per 75 mg original powder, and resuspended to 50 mg/ml by 

vortexing in RIPA buffer. The pellet suspension was mixed with Laemmli sample buffer (2X 

final concentration). Samples were boiled for 5 min. and spun for 30 s at 16,110 x g. 15–30 

μl (equivalent to about 1 larva) was loaded onto either 10% or 4–20% SDS PAGE gels (Bio-

Rad Laboratories), transferred to nitrocellulose (GE Healthcare) and incubated with 1° 

antibodies overnight at 4°C followed by 2o antibody incubation (Li-Cor) at 1:2000 for 1 h at 

RT. Blots were developed and imaged with the Odyssey Infrared Imaging System (Li-Cor 

Biosciences). The 1° antibodies used to detect GFP were Rabbit anti-GFP (Torrey Pines 

Biolabs, Secaucus, NJ, catalog number TP401) at a dilution of 1:1000 or Rabbit anti-GFP 

(Abcam, catalog number ab6556) at a dilution of 1:1000. Antibodies used for loading 

controls were Mouse anti-Actin (EMD Millipore, catalog number MAB1501R) at a dilution 

of 1:2000 and Goat Anti-GAPDH (Imgenex, catalog number #IMG3073) at a dilution of 

1:2500). Actin was used as the loading control for the insoluble fraction while GAPDH was 

used as the loading control for the soluble fraction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Basement membrane forms a scar during wound repair in Drosophila larvae.

• Epidermal basement membrane originates from adipose tissue and muscle in 

Drosophila larvae.

• Collagen IV recruitment to the repairing basement membrane does not require 

laminin.

• Nidogen recruitment to the repairing basement membrane requires laminin.
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Figure 1: The basement membrane is damaged by pinch wounds and forms a scar upon repair.
A) To damage the basement membrane, blunt forceps were used to pinch larvae on the 

dorsal epidermis between the hair stripes of segments A3 and A4. B) Pinch wounds do not 

break the outer cuticle, but they do leave an indentation visible with DIC, outlined with 

yellow dotted line. C-F) Undamaged epidermal basement membrane visualized with GFP-

fusion constructs of each of the core basement membrane proteins. Images are representative 

of the no-knockdown controls quantified in Fig. 3. G-J) Damaged epidermal basement 

membrane after pinch-wounding. K-N) Within 24 h, the basement membrane was repaired, 

leaving behind a visible scar in the region of the healed wound. Images are representative of 

the no-knockdown controls quantified in Fig. 4. Dotted yellow lines indicate original wound 

borders based on cuticle indentation. Scale bar, 50 µm.
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Figure 2: The basement membrane scar is thicker than unwounded basement membrane.
Yellow dotted lines indicate wound border. Orange solid line indicates location sampled for 

XZ projections. A) Basement membrane scar, evident on the left (wounded) side. B-D) Z-

section shows increased thickness and fluorescence of collagen IV within the healed wound 

(N ≥ 3). Scale bar, 10µm.
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Figure 3: In unwounded epidermis, basement membrane proteins come from other tissues.
A) Experiment overview: tissue expressing a basement membrane protein allele fused to 

GFP (BM-GFP) and an allele not fused with GFP will secrete both forms for incorporation 

into the basement membrane, resulting in fluorescent basement membrane. When 

dsRNAGFP targets GFP in the source tissue, only the basement membrane protein lacking 

GFP will be secreted, resulting in non-fluorescent basement membrane. B) Example images 

without (top) and with (bottom) dsRNAGFP expression. Scale bar, 50 µm. C-E) Laminin-

GFP, collagen IV-GFP, or perlecan-GFP is lost from the epidermal BM when dsRNAGFP is 
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expressed in adipose tissue. F) Nidogen-GFP is lost from the epidermal BM when 

dsRNAGFP is expressed in the muscles. *** indicates p ≤ 0.001.
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Figure 4: The sources of basement membrane for repairing damage are the same as for growth.
A) Schematic of possible outcomes to test for a wound-specific source of basement 

membrane. In control unwounded epidermis, the basement membrane is fluorescent 

(depicted as medium gray color, top left) from the incorporation of BM-GFP. After repair, 

the basement membrane in the wound area is about 2-fold brighter than background (top 

right). If the tissue sources for growth (unwounded) and repair of basement membrane are 

different, then the permanent knockdown of GFP in the growth source tissue will cause the 

intact basement membrane (background) to become dim, but the repaired area is expected to 

remain bright, increasing the wound/background ratio. If the tissue source for growth 

(unwounded) and repair is the same, the permanent knockdown of GFP in the source tissue 

is expected to affect basement membrane repair in a similar manner, maintaining or reducing 

the wound/background ratio. B) Example of repaired epidermal basement membrane in the 

absence of dsRNAGFP (left) or in the presence of dsRNAGFP expressed in the fat body 

(right). C-F) Ratio of average fluorescence inside the wound over outside the wound with or 

without dsRNAGFP expression in the growth source tissue for epidermal basement 

membrane. Components appear to come from the same source tissues for growth and repair 

of basement membrane. * indicates p ≤ 0.05, ** indicates p ≤ 0.01. Scale bar, 50 µm.
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Figure 5: Cells do not require any of the core basement membrane proteins to close wounds.
A) 2 h after injury, wounds were open. B-F) 24 h after injury, cells had closed the wound in 

(B) controls, or (C-F) when laminin, collagen IV, perlecan, or nidogen was knocked down 

days before wounding. Note that multinucleate syncytial cells were present after repair in 

control as well as knockdown wounds as previously reported [25]. Panels A-F are 

representative of 7, 25, 16, 15, 18, and 14 wounds examined, respectively. Scale bar, 50 µm.
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Figure 6: Hierarchy of basement membrane assembly during repair.
A-E) Laminin assembled into repaired basement membrane independent of any other 

basement membrane proteins. F-J) Collagen IV assembled into repaired basement 

membrane independent of any other basement membrane proteins. K-O) Although perlecan 

assembled into repaired basement membrane independent of any other basement membrane 

proteins, its assembly into the scar required collagen IV (M). P-T) Nidogen required laminin 

(Q) but not collagen IV (R) or perlecan (S) to assemble into repaired basement membrane. 

In collagen knock-down wounds (C,H,M,R), scars appear to extend outside the wound area, 
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see text. In panel Q, the bright dots at the wound center (marked by yellow stars) are 

autofluorescent melanization, see Experimental Procedures. U-X) Quantification of 

fluorescence anisotropy in repaired basement membranes. * indicates p ≤ 0.05, ** indicates 

p ≤ 0.01. Unless otherwise indicated, no significant difference was observed. Scale bar, 50 

µm.
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Figure 7: The requirement for laminin is different between basement membrane de novo 
assembly and repair.
A) Expression of dsRNA against LanB1 knocked down LanB1-GFP levels in stage 16– 17 

embryos, as determined by GFP fluorescence. B) Quantification of GFP fluorescence in 

embryos showed dsRNA against LanB1 reduced LanB1-GFP levels by 68%. C) For 

comparison, expression of the same dsRNA against LanB1 in larvae depleted LanB1-GFP 

by 71% as measured by western blot (see also Fig. S3). D) Expression of dsRNA against 

LanB1 was sufficient to disrupt collagen IV deposition into the basement membrane of 
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ventral nerve cord channels in stage 16–17 embryos, as visible in controls (yellow arrows) 

(N ≥ 3). Scale bar, 50 µm.
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Figure 8: Timeline of experimental protocols for gene knockdown, showing larval development, 
dsRNA expression, and wounding.
A) For all basement membrane source experiments, animals were maintained at 25°C. 

Larvae developed to early 3rd instars, were pinched, and usually recovered 24 h before 

dissecting. For experiments where no wound was inflicted, larvae developed to late 3rd instar 

prior to dissecting. B) For basement membrane hierarchy of repair and function experiments 

in which LanB1, vkg, or trol was knocked down, embryos were laid and allowed to develop 

to 1st instar larvae at 18°C, with dsRNA not expressed. During 1st instar, bottles were shifted 

to 29°C to promote dsRNA expression, and larvae developed to early 3rd instar prior to 

wounding. After wounding, larvae recovered for 24 h at 29°C prior to dissecting. For Ndg 
KD experiments, bottles were maintained at 29°C for the entire experiment (not shown). 

Only control, trol KD and Ndg KD larvae were capable of pupariating. dsRNABM denotes 

dsRNA against vkg, trol, or LanB1.
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Table 1:

Fly Stocks

Genotype Source

LanB1GFP VDRC 318180

vkgGFP791 Sally Horne-Badovinac, U. Chicago [44]

vkgGFP205 [45]

trolGFP1973 [45]

NdgGFP VDRC 318629

w1118 Todd Laverty, Janelia Farm

UAS-GFPS65T BDSC 1522

Tub-Gal4/TM6B [46]

e22c-Gal4 BDSC 5083

A58-Gal4/TM6B Michael Galko, MD Anderson Cancer Center

Pnr-Gal4/TM6B Beth Stronach, University of Pittsburgh

Hml-Gal4 BDSC 30139

Mhc-Gal4 BDSC 55133

C564-Gal4 Kathryn V. Anderson, Sloan Kettering

UAS-dsRNAGFP BDSC 9330

UAS-dsRNAvkg VDRC 106812

UAS-dsRNACol4A1 BDSC 44520

w; UAS-dsRNALanB1 VDRC 23121 (main line used)

y sc v; UAS-dsRNALanB1 BDSC 42616 (alternate line)

UAS-dsRNtrol VDRC 1110494

UAS-dsRNANdg VDRC 109625

w; VkgGFP205; TubGal4, TubGal80ts/ SM6-TM6B This study

w; VkgGFP791; UAS-dsRNAGFP This study

w; UAS-dsRNAGFP; LanB1GFP This study

w; LanB1GFP TubGal4 TubGal80ts / TM6B This study

w TrolGFP1973; UAS-dsRNAGFP This study

w TrolGFP1973; TubGal4, TubGal80ts / TM6B This study

NdgGFP, UAS-dsRNAGFP This study

NdgGFP TubGal4 TubGal80ts / TM6B This study

w; vkgGFP205 / CyO, sChFP; TubGal4, TubGal80ts / TM3,
sChFP

This study

w; LanB1GFP TubGal4 TubGal80ts / TM3, sChFP This study

CyO, sChFP BDSC 35523

TM3, sChFP BDSC 35524
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