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Grail attenuates influenza A virus 
infection and pathogenesis by 
inhibiting viral nucleoprotein
Hui-Tsu Lin2, Cheng-Cheung Chen2, Pei-Yao Liu1, Hsueh-Ling Wu2, Ti-Hui Wu3, Chih-
Heng Huang2 & Ying-Chuan Chen1,2

Grail is a well-characterized mediator of metabolic disease, tumour progression, and immune response. 
However, its role in influenza A virus (IAV) infection remains poorly understood. In this study, we 
demonstrated that Grail knockdown potentiates IAV infection, whereas Grail overexpression blocks 
IAV replication. The intranasal administration of IAV to Grail KO mice led to a lower survival rate 
than in similarly infected wild-type mice. Additionally, IAV-infected Grail KO mice had higher viral 
titres, greater immune cell infiltration, and increased expression of inflammatory cytokines in the 
lungs. Mechanistically, we showed that Grail interacts with viral nucleoprotein (NP), targeting it for 
degradation and inhibiting IAV replication. NP expression was increased in Grail knockdown cells and 
reduced in cells overexpressing Grail. Collectively, our results demonstrate that Grail acts as a negative 
regulator of IAV infection and replication by degrading viral NP. These data increase our understanding 
of the host antiviral response to infection with IAV.

Influenza A virus (IAV) is a highly feared pathogen that poses a significant threat to public health and holds the 
potential for worldwide outbreaks (pandemics). IAV belongs to the Orthomyxoviridae family of RNA viruses 
and contains a negative-sense, single-stranded RNA genome of 8 segments that encode 16 viral proteins on eight 
segments1. Replication of the IAV genome requires viral ribonucleoprotein (vRNP), which consists of the het-
erotrimeric, RNA-dependent RNA polymerase complex (PB1, PB2, and PA), oligomeric nucleoproteins (NPs), 
and viral RNA (vRNA). IAV vRNP plays a vital role in viral mRNA synthesis in the early stage of infection and 
genomic vRNA production later in infection2. Recent genome-wide RNAi screens and supporting experimen-
tal evidence have suggested that cellular host proteins interact with IAV at every stage of the viral life cycle3–6. 
Moreover, a number of host factors and cellular processes have been identified as potential regulators of vRNP 
function and thus may be implicated in host adaptation and viral pathogenicity7–15.

Increasing evidence has suggested that the host ubiquitin-proteasome system regulates key stages of the IAV 
life cycle. E3 ubiquitin ligases, of which there are over 600 types in human, predominantly control substrate speci-
ficity during ubiquitination16. Two of these, Itch and Nedd4, are involved in IAV uncoating from the endosome6,17, 
where the ubiquitinated viral capsids then activate and exploit the aggresome for efficient uncoating18. Several 
members of the tripartite motif (TRIM) superfamily have been reported to contribute to the host anti-influenza 
response by mediating proteasomal degradation of viral proteins; for example, TRIM22 and TRIM41 have been 
shown to ubiquitinate viral NP19,20, while TRIM32 conjugates polyubiquitin at the polymerase basic protein 1 
protein21. However, the E3 ligase Ccr4-Not transcription complex subunit 4 (CNOT4) is another key host-derived 
mediator of NP ubiquitination that positively regulates viral RNA replication and does not lead to proteasomal 
degradation of NP22.

Gene related to anergy in lymphocytes (Grail) encodes a transmembrane protein that is involved in the expres-
sion of cytokines related to T cell activation. The deletion of Grail in mice leads to reduced T cell responsiveness 
under TCR stimulation23,24. Additionally, the mammalian target of rapamycin pathway has been shown to medi-
ate the cell cycle progression and proliferation of naïve T cells through the regulation of Grail expression25. This 
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evidence implies that Grail may play an important role in cell cycle arrest and proliferation. Our previous work 
also shows that Grail can regulate p53-mediated cell cycle arrest and apoptosis in response to DNA damage26. 
There is also evidence that Grail plays a crucial role in adipogenesis and diet induced obesity27. The dysregulation 
of Grail has been linked to ulcerative colitis, a chronic inflammatory disease of the gastrointestinal tract28. Recent 
work also indicates that Grail can regulate host innate immune responses to vesicular stomatitis virus (VSV) and 
herpes simplex virus type 1 (HSV-1) infections29. However, despite this body of research, the involvement of Grail 
during IAV infection and replication has not yet been well characterized. In the present study, we demonstrated 
that Grail aids in the control of IAV replication and infection by enhancing the degradation of viral NP in vitro 
and in vivo. Given this, we suggest that Grail is a potential drug target for the further prevention and treatment 
of IAV infections.

Results
Grail expression is upregulated after IAV infection in vitro and in vivo.  Grail holds multiple bio-
logical roles in cell growth, adipogenesis, and immunity. However, the effect of Grail on the regulation of IAV 
infection is unclear. To address this, we first determined the expression level of Grail during IAV infection. Grail 
expression was shown to be induced in A549 cells infected with virus at an MOI of 1 (Fig. 1A and Supplementary 
Fig. 1) as well as in low titre infections using an MOI of 0.01 (Fig. 1B). Furthermore, mouse data showed that Grail 
expression was significantly higher in the lung tissue of animals infected with 1000 PFU of WSN than in control 
animals (Fig. 1C). These results show that IAV infection induces Grail expression.

Grail knockout (KO) mice succumb to IAV infection.  Recently, it was shown that Grail improved innate 
antiviral immune responses to VSV (an RNA virus) and HSV-1 (a DNA virus) by enhancing TANK-binding 
kinase 1 (TBK1) activity29. To determine whether this antiviral property of Grail was also active against IAV infec-
tion in vivo, we employed mice carrying a deletion of the Grail gene. Wild-type (WT) and Grail KO mice were 
intranasally infected with 1000 PFU of mouse-adapted influenza A/WSN/33 H1N1 (WSN) virus. Both groups 
lost weight from day 2; however, Grail KO mice revealed a rapid period of weight loss at 3 dpi when compared to 
WT mice (Fig. 2A). In WT mice, WSN infection resulted in 66.6% mortality, while all Grail KO mice died by day 
7 post-infection (Fig. 2B). The viral load in the lungs at 3 dpi, as determined by plaque assay, was 2 logs higher 
in the Grail KO mice than in the WT mice (Fig. 2C). Furthermore, we used the substrate-free IAV-iRFP reporter 
virus and strategy described by Fukuyama et al.30 to visualize the viral dynamics in vivo. We observed that iRFP 
fluorescence was detectable in mice infected with IAV-iRFP from 1 to 6 dpi. Grail KO mice demonstrated a wider 
distribution of this signal in the infected lung tissues than did WT mice (Fig. 2D). The iRFP signal was generally 
consistent with the viral load in the lungs of WSN-infected mice at 3 dpi (Fig. 2C,D). These in vivo data suggest 
that Grail may contribute to the regulation of influenza infection and replication, as these processes appear bol-
stered by the absence of functional Grail.

Grail KO mice show more severe lung damage.  To further assess the causes of the increased suscepti-
bility of Grail KO mice to WSN infection, histopathological examination of lung tissues collected at 3 and 6 dpi 
was performed. This revealed that both strains of mice developed viral pneumonia (Fig. 3B,D,H,J), in contrast 
to sham-infected mice (Fig. 3F,L). However, Grail KO mice had higher levels of multifocal acute alveolitis, with 
inflammatory cells infiltrating throughout the tissue, intra-alveolar oedema, red blood cell extravasation, epithe-
lial necrosis (Fig. 3H,J), and higher histology scores than WT mice.

Immunohistochemistry further revealed differing levels of IAV antigen expression near the focal inflamma-
tion sites in lung sections (Fig. 3A,C,G,I). WSN-infected KO mice had higher levels and more widespread expres-
sion of viral antigen in the alveolar epithelium at 3 dpi (Fig. 3G). In contrast, WT mice displayed viral antigen 
expression most prominently in the bronchioles and had more limited expression in the alveolar epithelium 
(Fig. 3A).

IAV infection induces increased inflammatory cytokine expression in Grail KO mice.  To assess 
whether pulmonary responses to IAV infection in Grail KO mice differ from those of WT mice, we also deter-
mined the levels of inflammatory cytokines in the lung tissue of both types of infected mice. The mRNA and 
protein levels of TNF-α, IL-6, and IL-1β in the lung tissue of IAV-infected Grail KO mice were found to be signifi-
cantly higher than those in similarly infected WT mice at 3 and 6 dpi (Fig. 4). Importantly, the expression of these 
cytokines did not differ between uninfected WT and Grail KO mice (Fig. 4).

Grail suppresses viral replication.  The data described thus far indicated that Grail may significantly 
enhance IAV-induced lung injury and lethality in mice. This prompted us to further investigate the functional 
relevance of Grail to IAV replication in human cells. We evaluated the growth kinetics of both WSN (an H1N1 
influenza A virus) and 3446 (an H3N2 influenza A virus) in A549 cells under the conditions of either Grail 
overexpression or knockdown. We used shRNA to downregulate endogenous Grail and the retroviral transduc-
tion system for its stable overexpression, and examined the silencing or overexpressing efficacy (Supplementary 
Fig. 3). Upon downregulation of endogenous Grail, infected A549 cells had a significantly higher WSN titre at 
24 hpi. Conversely, Grail overexpression led to a significantly reduced WSN titre at 36 hpi (Fig. 5A). While the 
growth curves of the 3446 virus showed no significant influence of Grail silencing in infected cells, the viral yield 
was significantly decreased at 36 hpi in A549 cells that overexpressed Grail, similar to the effect seen in WSN or 
pandemic/09 H1N1-infected cells (Fig. 5B and Supplementary Fig. 2). Furthermore, the expression of IAV NP 
protein correlated with the viral growth curves in the instances of both Grail knockdown or overexpression in 
cells infected with WSN at an MOI of 0.01 for 24 h, similar to the effect seen in 3446 virus-infected cells (Fig. 5C 
and Supplementary Fig. 4). These results clearly demonstrate that viral replication is suppressed by Grail.
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Grail regulates NP protein levels.  Grail is an E3 ligase that functions by interacting with and degrading 
its targets. To elucidate the possible mechanism of Grail-mediated repression of IAV replication, we analysed 
whether Grail interacts with viral proteins (NP, PA, PB1, PB2, HA, NA, M1, M2 and NS1) and targets them 
for degradation. Lysates from IAV-infected A549 cells were treated with anti-Grail antibody and IP proceeded 
with NP, PA, PB1, PB2, HA, NA, M1, M2 or NS1 antibody. As shown in Fig. 6A, Grail interacted with NP but 
not PA, PB1, PB2, HA, NA, M1, M2 or NS1. In order to determine whether Grail mediates the ubiquitination 
of NP, we co-transfected Flag-NP and Grail into HEK293 cells and performed further IP experiments. These 
data showed that NP ubiquitination was significantly increased in the presence of Grail when compared with 
controls (Fig. 6B). To identify whether Grail targets NP for proteasome-mediated degradation, we transfected 
NP plasmids into A549/Vector and A549/Grail cells with or without MG132 treatment. In these cells, Grail over-
expression reduced the NP protein level when compared to controls. However, NP expression was rescued in the 
presence of MG132 (Fig. 6C). These data provide evidence that Grail can interact with viral NP and subsequently 
target it for proteasome-mediated degradation.

Figure 1.  Grail expression is induced during IAV infection. (A,B) Grail expression in A549 cells infected 
with WSN virus at an MOI of 0.01 or 1 as determined by real-time PCR. (C) Grail expression in the lung 
tissue of mice infected with 1000 PFU of WSN. The data are presented as the mean ± SD and represent three 
independent experiments. ***P < 0.001.
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Discussion
The cellular ubiquitin-proteasome system impacts important steps of the IAV life cycle. Ubiquitination plays 
important roles in innate antiviral immunity by directly targeting viral proteins for degradation and activating 
antiviral signalling cascades31. On the other hand, recent studies have shown that IAV-associated ubiquitination 
promotes viral polymerase function independently of the proteasomal degradation of viral replication machinery 
(RNP complexes)15,22. Therefore, ubiquitination can be considered a double-edged sword in viral pathogenesis 
because it has both proviral and antiviral effects32. Influenza NP is abundant in both virions33 and infected cells34. 
NP plays key roles in the transcription and replication of the viral RNA genome as well as in the nuclear transport 
of vRNP during the life cycle of IAV35. NP is also one of main viral proteins to be targeted by host factors for post-
translational modifications such as phosphorylation, sumoylation, and ubiquitination15. Several recent studies 

Figure 2.  Grail restricts IAV pathogenesis in vivo. Grail knockout mice challenged intranasally with 1000 PFU 
of influenza A/WSN/33 (H1N1) (WSN) show more rapid disease progression and higher mortality than wild 
type mice. Body weight (A) and survival (B) of WSN-infected wild type and KO mice were monitored for 14 
days after infection, revealing significant differences in survival (n = 6, p  = 0.0151). (C) Viral load in the lungs 
of animals challenged with 1000 PFU of WSN was measured at 3 dpi. Error bars show mean ± SD. (D) Near-
infrared fluorescent in vivo imaging over time of WT and KO mice inoculated with 105 PFU of H1N1 PR8-iRFP 
virus (n = 3). Brown colour indicates the most intense signal and blue the lowest.
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on IAV-associated ubiquitin modifications have shown that NP ubiquitination can be catalysed by different E3 
ligases, such as TRIM22, TRIM41, and CNOT419,22,36. We found that the E3 ligase Grail is a host immune factor 
that restricts IAV infection directly through the ubiquitination of NP and its subsequent proteasomal degrada-
tion. Interestingly, it remains unclear how different E3 ligases can have the same substrate specificity for NP.

In this study, we demonstrated that Grail interacts with viral NP and targets it for degradation. As viral NP 
is required for the replication of viral RNA and thus also virus amplification, it follows that a loss of Grail would 
increase IAV replication by increasing the levels of NP, as has also been supported by experiments within this 
study. Conversely, the overexpression of Grail was shown to reduce the rate of virus replication by reducing the 
levels of NP. Our in vitro data were further supported by the in vivo observations that Grail KO mice had more 
immune cell infiltration, higher viral titres, and a greater level of inflammation in their lung tissue than WT mice 
following infection with IAV.

In a previous study, Grail expression was induced in peritoneal macrophages infected with Sev or HSV-1 virus 
and subsequently correlated with increases in TBK1 activation, thereby upregulating IRF3 activation and INF-β 
expression, ultimately leading to a more robust antiviral response29. Our data reveals an alternate antiviral mecha-
nism of action by showing that Grail protects lung epithelial cells from IAV infection by enhancing the degradation 
of viral NP. Combining our data with the literature, we suggest that Grail exerts various antiviral effects through dif-
ferent mechanisms in a cell type-dependent manner. In future studies, it will be interesting to decipher the possible 
function of Grail in the cross-talk between macrophages and epithelial cells of the lung during IAV invasion.

In summary, we have found that Grail inhibits IAV replication through the promotion of NP degradation. 
However, it remains possible that, in addition to its influence of NP stability, Grail may interact with host proteins 
in ways that could also influence the viral infection process.

In conclusion, our findings provide evidence that Grail plays an important regulatory role during IAV infec-
tion and suggest that Grail may be a suitable target for the development of anti-influenza drugs.

Materials and Methods
Cell lines and viruses.  HEK293, GP2-293, 293 T, A549, and MDCK cells were cultured in Dulbecco’s mod-
ified Eagle’s medium (DMEM) supplemented with 10% foetal bovine serum (FBS). The influenza viruses A/
WSN/1933 (WSN, H1N1), pandemic/09 H1N1 and A/Taiwan/3446/2003 (3446, H3N2) were kindly provided by 
Professor Shin-Ru Shih (Chang Gung University, Taiwan). All viruses were propagated in MDCK cells in DMEM 
medium containing 1 µg/ml of L-1-tosyl phenylalanyl chloromethyl ketone (TPCK)-treated trypsin at 37 °C. IAV 
containing a near-infrared fluorescent protein (iRFP) reporter was generated by A/Puerto Rico/8/1934 (PR8, 
H1N1) using backbone 8-plasmid reverse genetics as described previously37. This strain (subsequently referred to 
as IAV-iRFP) was designed with the complete NS1 and NEP/NS2 genes flanking the iRFP reporter gene (iRFP702, 
Addgene). A Gly-Ser-Gly-Gly (GSGG) linker was inserted between the NS1 and iRFP genes, while a GSG linker 
and the 19 amino acid porcine teschovirus-1 (PTV-1) 2 A proteolytic sequence were inserted between the iRFP 
and NEP/NS2 coding sequences. In addition, two silent point mutations (525-CCCGGG-530) were introduced 
into the NS1 ORF in order to disrupt the endogenous splice acceptor site.

cDNA constructs and transfection.  Full length Grail and NP cDNA were cloned into the pCMVTNT 
(Promega) and pCMV-FLAG (Sigma-Aldrich) vector backbones, respectively. The 8-plasmid A/PR8/34 virus 
rescue system was kindly provided by Professor Shin-Ru Shih. The PR8 NS1-iRFP-2A-NEP reporter construct 

Figure 3.  Histopathological findings in the lung of infected wild-type or KO mice. Representative 
histopathological images of WSN-infected lungs from WT or Grail KO mice at 3 and 6 dpi. Left panels show 
immunohistochemical staining for the detection of viral protein. Right panels show haematoxylin and eosin 
staining.
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was synthesized by Genewiz and then cloned into pHW2000. Grail was cloned into the retroviral plasmid vec-
tor pQCXIP (Clontech). The pQCXIP-Grail and pQCXIP-empty plasmids were transfected into GP2-293 cells 
using TransIT-LT1. Transient gene expression was performed using TransIT-LT1 transfection reagent (Mirus 
Bio) according to the manufacturer’s instructions. Cells were plated and grown to 50–60% confluence prior to 
transfection. The cells were harvested and lysed in RIPA buffer (100 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.1% 
SDS, and 1% Triton X-100) after transfection. To produce recombinant influenza A reporter viruses, the 3:1 
co-cultured 293 T and MDCK cells were cotransfected with 1 μg of each plasmid encoding the 7 gene segments 
of the PR8 virus and the NS reporter construct using lipofectamine 2000 transfection reagent (Thermo) as pre-
viously described37.

Immunoprecipitation and immunoblotting.  Cells were harvested in lysis buffer (50 mM Tris pH 8.0, 
5 mM NaCl, 0.5% NP-40, and 1X protease inhibitor), frozen and thawed three times, and then the proteins were 
recovered. Immunoprecipitation (IP) proceeded overnight at 4 °C in IP buffer containing antibodies against 
Grail or Flag. The IP mixture was then incubated with Dynabeads Protein G (Invitrogen) for 1 h prior to iso-
lation using a DynaMag magnet and washing three times with SNNTE buffer (5% sucrose, 1% NP-40, 0.5 M 
NaCl, 50 mM Tris pH 7.4, and 5 mM EDTA). The immunoprecipitates were resuspended in SDS-PAGE sam-
ple buffer, boiled, and loaded onto a gel. Following separation, the proteins were transferred to a nitrocellulose 
membrane and the blot was probed with antibodies diluted in PBS/Tween 20 with 5% non-fat milk. Antibody 
detection was carried out using enhanced chemiluminescence reagents (GE Healthcare), as described by the 
manufacturer. The primary antibodies used for immunoblotting were: anti-PA (GeneTex), anti-PB1 (GeneTex), 
anti-PB2 (GeneTex), anti-HA (GeneTex), anti-NA (GeneTex), anti-NP (GeneTex), anti-M1 (GeneTex), anti-M2 

Figure 4.  Inflammatory cytokine expression is reduced in IAV-infected Grail KO mice. (A–G) IL-1β, IL-6, and 
TNF-α mRNA and protein levels in the lung tissue of WT and Grail KO mice at 3 and 6 days post challenge with 
1000 PFU of WSN. The data are presented as mean ± SD. *P < 0.05; **P < 0.01; ***P < 0.001.
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(GeneTex), anti-NS1 (GeneTex), anti-HA (81B8, Cell Signaling, USA), anti-beta actin (MAb1501, Chemicon), 
and anti-Grail antibodies.

Virus particle production, viral transduction, and RNA interference.  Retroviruses were pre-
pared according to the protocol published on the Clontech website. Oligonucleotides targeting the Grail 
sequence 5′-gaggcatccaagtcacaatgg-3′ were cloned into the retroviral shRNA expression vector pSIREN-Retro-Q 
(Clontech). Retroviruses expressing this Grail shRNA were generated according to the protocol published on 
the Clontech website. Cells were infected with retrovirus in selection medium supplemented with 2 μg/ml 
polybrene. After the infection, cells were treated with 2 μg/ml puromycin in order to positively select for the 
puromycin-resistant infected clones.

Figure 5.  Grail overexpression inhibits IAV infection and Grail silencing increases IAV infection. Growth 
curve of WSN virus (A) or 3446 virus (B) in Grail-overexpressed or knockdown A549 cells. Cells were infected 
with WSN virus at an MOI of 0.01. Viral titres were determined by plaque assay in MDCK cells using cell 
supernatants collected at 12, 24, 36, and 48 hours post infection. NP protein levels (C) were analyzed in Grail-
overexpressed or knockdown A549 cells at 0, 8, and 24 hours post infection. Data represent the mean ± SD from 
three independent experiments. ns, not statistically significant.
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Ethics statement.  This study was carried out in strict accordance with the recommendations in the Guide 
for the Care and Use of Laboratory Animals of the National Institutes of Health (Taiwan). The protocol was 
approved by the Institutional Animal Care and Use Committee of National Defense Medical Center (Taipei, 
R.O.C., Taiwan) (ref no: IACUC-AN106-08) and all efforts were made to minimize suffering.

Mouse experiments.  All experimental animal procedures were approved by the Institutional Animal Care 
and Use Committee (ref no: IACUC-AN106-08) of the Preventive Medicine Institute, National Defense Medical 
Center, Taiwan. The Grail KO mice were generated by the Transgenic Mouse Models Core (Taipei, Taiwan) using 
CRISPR-Cas9 technology, which induced an NHEJ-mediated deletion in Grail exon 1, resulting in the removal of 
the first start codon, and the KO mice were generated on a C57BL/6 J background27. Six-week-old mice were used 
and randomly selected for the experimental and control groups. Mice were anesthetized intramuscularly with 
Zoletil 50 (25 mg/kg) and inoculated intranasally with 1000 PFU of virus in 50 μl of phosphate-buffered saline. 

Figure 6.  Grail interacts with NP and targets it for degradation. (A) Extracts from IAV-infected A549 cells 
were prepared, immunoprecipitated with anti-Grail or rabbit anti-IgG antibodies, and immunoblotted using 
the indicated antibodies, revealing interaction between Grail and viral NP. (B) Lysates from HEK-293 cells 
transiently transfected with HA-Ub, Flag-NP, and Grail expression plasmids were harvested and subjected to 
IP with anti-Flag antibody. Ubiquitination was observed by western blot, revealing a significant increase in NP 
ubiquitination when in the presence of Grail. (C) Cells were infected with IAV at an MOI of 0.1 in the presence 
or absence of MG132 for 24 hr. Immunoblot analysis shows that MG132 treatment rescues the NP depletion 
induced by overexpression of Grail.
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The infected mice were weighed and observed daily for 14 days, noting any signs of illness or death. In accordance 
with institutional guidelines, mice that lost more than 25% of their initial body weight were considered moribund 
and thus scored as dead and euthanised. For the determination of lung titre, three mice from each group were 
euthanized at 3 days post-infection (dpi) and their lungs were collected for virological and pathological exami-
nation. Right lung samples were homogenized in 1.0 ml of unsupplemented DMEM using a Precellys 24 Tissue 
Homogenizer (Bertin). The homogenates were spun for 5 min at 2000 × g to remove cellular debris. Virus titres 
were determined by plaque assays in MDCK cells.

Histopathology and immunohistochemistry.  Three mice from each group were euthanised on days 4 
and 8 post infection. Their left lungs were collected, fixed in 10% neutral-buffered formalin, and embedded in 
paraffin. Histopathological examination of sequential sections stained with haematoxylin and was performed. 
The MultiVision Polymer Detection System (Thermo) was used for antigen staining in serial sections. The pri-
mary antibody used for immunohistochemistry was a goat anti-influenza A antiserum (Chemicon AB1074, 
Millipore) that recognizes both the surface glycoproteins and internal proteins of the virus.

In vivo imaging.  Mice were anesthetized with 2% isoflurane and shaved before imaging. Mice infected with 
the iRFP reporter virus were imaged using the Fluorescence Molecular Tomography (FMT) 2000 Quantitative 
Tomography System (PerkinElmer, Waltham, MA, USA). Mice were placed in a biplanar FMT imaging cassette 
and carefully adjusted to ensure precise identification and repeat observation of the regions of interest (ROIs). 
Mice were imaged for 3–5 minutes using a 680 nm laser. Isoflurane anaesthesia was maintained for the duration 
of the imaging. Fluorescence intensity data were analysed and 3D images reconstructed through the use of the 
TrueQuant software package provided with the FMT2000.

Real-time PCR.  Total RNA from cells and tissues was isolated using TRIzol reagent (Sigma-Aldrich). 
Complementary DNA was synthesized using MMLV Reverse Transcriptase (Epicentre). Gene expression was 
determined using a Roche LightCycler 480. The primers used are listed in Supplementary Table 1.

Cytokine assay.  The expression of IL-1β, IL-6, and TNF-α in lung tissue lysates was determined using the 
Bio-Plex Multiplex Immunoassay kit (Bio-Rad) according to the manufacturer’s instructions. All assays were 
performed at room temperature in 96-well round-bottomed microtiter plates protected from light. Measurements 
and data analyses were performed with the Bio-Plex system in combination with Bio-Plex Manager software.

Statistical analysis.  Graphing and statistical analysis of data were performed using GraphPad Prism 7 
(GraphPad Software). Kaplan-Meier survival curves were analysed using the Mantel-Cox log rank test for sta-
tistical significance. For comparison of multiple data sets, one-way analysis of variance (ANOVA) with Tukey’s 
multiple comparison was used. For analysis of two data sets, an unpaired two-tailed Student’s t-test was used. P 
values of ≤0.05 were considered statistically significant. (*P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant).
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